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1 Quantum Rabi model

This is the joint work with Tomoyuki Shirai and a review of [8]. The quantum Rabi model
describes a two-level atom coupled to a single mode photon by the dipole interaction term.
The single photon is represented by the 1D harmonic oscillator. Suppose that the eigenvalues
of the two-level atom is {—A, A}. Here A > 0 is a constant. Let o,,0, and o, be the 2 x 2

Pauli matrices:
(01 (0 —i (1 0
9%=\10) %= \i o) %27 \o -1/

Then the Hamiltonian of the two-level atom is represented by Ao,. On the other hand let a
and a' be the annihilation operator and the creation operator in L?(R), respectively. They

are given by
V2 \dz ’ V2 \ dr '

They satisfy the canonical commutation relation [a,a'] = 1, and a* = a', where a* denotes
the adjoint of a. The harmonic oscillator is given by a'a, i.e.,

o L 1, 1
a'a = ——— 4+ —a° — —.
2dz?2 2 2

The harmonic oscillator a'a is self-adjoint on D(dd—;) N D(2?) and the spectrum of a'a is
spec(a’a) = NU {0}. The quantum Rabi Hamiltonian is defined as a self-adjoint operator
on the tensor product Hilbert space € ® L*(R) by

K=Ao,@1+1®da+ go, ® (a+ al).
Here g € R stands for a coupling constant. It can be seen that K has the parity symmetry:

[K,0.® (—1)*% = 0.
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The parity symmetry is also referred to as Zs-symmetry. We discuss measures associated
with the ground state of the quantum Rabi Hamiltonian. The quantum Rabi model can be
regarded as the one mode version of the spin-boson model in quantum field theory. In [5]
the path measure associated with the ground state of the spin-boson model is discussed. In
this note we also show the existence of the measure Il associated with the ground state ®,
of the quantum Rabi Hamiltonian. Then under some condition we can see that

((IDg, Oq)g) = Enr, [fo]

for some observable O with a function fo.

2 Probabilistic preparation

2.1 Unitary transformations

In this section we define a self-adjoint operators L. Let o = (0, 0,,0,). The rotation group
in R® has an adjoint representation on su(2). Let n € R? be a unit vector and 6 € [0, 27).
Thus e@/27 (g . g)e= (/297 = Ry . 5, where R denotes the 3 x 3 matrix representing the
rotation around n by an angle §. In particular for n = (0,1,0) and § = 7/2, we have
Uo,U ' =0, and Uo,U™! = —0,, where

U =elio, (2.1)
Then
UKU™! = (_%;_;*%xz_ﬁgx_% , A )
—-A —1 1?4 V2gr - L
Let us define the unitary operator S;. Let p = —i% and F' denotes the Fourier transform

on L*(R). Then S, is defined by

F 0 0 V2
S = <O F) (ei\/igp 0 > : (2.2)

Let ¢4 be the normalized ground state of a'a, i.e., a'ap, = 0 and it is explicitly given by

polr) = e

Since g is strictly positive, we can define the unitary operator U, : L*(R) — L*(R, gozd:c)
by

Up, | = 07, (2.3)
We set the probability measure @7 (x)dz on R by du, i.e.,

1
du(z) = ﬁe—‘x'de.



Define
H=C>® L*(R,du).

Let U = U, ,U. We define the self-adjoint operator L by

L=UKU"'=-No, @1+ go.® (b +b) +120b'b

(it 0 (V2 D (2.4)
0 X A V2gx)° '

Here b and b' are the annihilation operator and the creation operator in L?(R,du), which
are defined by gpgla%g = bf. It is actually given by

X X
b=a+-—=, bl=a -~
‘ V2 ¢ V2
2.2  Ornstein-Uhrenbeck process

Let (X;)i>0 be the Ornstein-Uhrenbeck process on a probability space
(X, By, P7).

We see that P*(Xy=2) =1 and

/R B2 [X,] dpu(z) = 0, / B [X,X.] du(x) = 2o

Here EE [- - - | denotes the expectation with respect to the probability measure P®. Let h = b'b.
The generator of X; is given by —h and

(O ) = [ B [T d(o). (25)

It is well known that the Ornstein-Uhrenbeck process can be represented by 1D-Brownian
motion. Let (Bj;);>o be 1D-Brownian motion starting from z at ¢ = 0 on a probability

space (X, By, WY). The distributions of X, under P* and e~* (x + \%Bezs_l) under W° are

identical. We denote this as

4 _ 1
X, = e’ |z+—=B.as_ s> 0. 2.6
( N 1) (2.6)

We can compute the density function x; of X; as

ES[f(X)] = / F(w)ruly, 2)dy,

where

1 ly —e 'zl
Ht(y, ilj') = m exp <_1——6_2t . (27)



The Mehler kernel M; is defined by

0g () 1 . ( L(1+e ) (22 +y?) — 4a:yet) |

2 1 —e 2

A4%Cr7y) = K&(y,dﬁ =

ex
vg(y) (1 — e %)
For the later use we extend the Ornstein-Uhrenbeck process (X:)i>o to the Ornstein-

Uhrenbeck process (Xt)teR on the whole real line on the probability space (X, Bg, P?). Here
X =X x X, By =By x By and P* = P* @ P*. Define for w = (wy,wz) € X x X

9 { )Q(uh)a tEZ 07

Xe(w) = X_i(ws), t<O0. (28)

Then X, and X_, for any s,t > 0 are independent. We also see that

(6 ") = | B [H0(D)] di(o) = [

R

g, [6(X)o(X,)| du@)  (29)

for any 0 < s < t.

2.3 Spin process

In order to show the spin part by a path measure we introduce a Poisson process. Let (IVy)i>o
be a Poisson process on a probability space

(Jjalgy711)
with the unit intensity, i.e.,
o
En [n{Nt:n}} ¢ >0

Note that NV; is a nonnegative integer-valued random process, Ny = 0 and t — N, is not
decreasing. Furthermore ¢ — N, is right continuous and its left limit exists (cadldg). Let

Zy = {—1,+1}.

Then for u € L*(Zy),

lulfazny = D lu(@).

aEZ
Introducing the norm on C? by (u,v)c2 = 2?21 w;v;, we identify C? = L?(Zy) by C? 5> u =

(Zl ) = u(a) with u(+1) = uy and u(—1) = up. Note that
2

(U, v)c2 = (U, V) 12(zy)-

Under this identification o, 0, and o, are represented as the operators U, U, and U, re-
spectively on L*(Zs) by

Uyu(a) = u(—a), Uypu(a) = —icu(—a), Uu(a)=aula), ue L*(Zy). (2.10)



We define
St ( )Nta, a € Zo.

Here (S;)s>0 is a dichotomous process which is referred to as a spin process in this note. Let
or = (0. +1i0,)(0, —ic,) = —0,+ 1 be the fermionic harmonic oscillator. Then it is known

that for u,v € C*, (u,e™""v)e2 = 3, En[u(So)v(Sy)]. Hence

(u, €% )2 = € Z Err[u(So)v(Sy)]. (2.11)

SV

We also extend the Poisson process (NV;)i>o to the Poisson process (Nt)teR on the whole real
line on a probability space (), By, 1), where Y = Y x Y, By = By x By and Il = I ® IL.
Let (N;)¢>0 be a Poisson process on (), By, II) such that ¢ — N, is left continuous and its
right limit exists (caglad). Define for w = (wy, wq) € Y X ),

~ o ]\[t('l,Ul)7 tZ O,
Ne(w) = { N y(ws), t<0.

Then R 3 ¢ +— N, is a cadlag path. Note that N, is independent of N_, for any s,t > 0. We
define ) A
St = (—1)Nt04, € Zs.

By the shift invariance of S, 9, Proposition 3.44] we can see that for u,v € C?

(u, "7 v)e2 = € ZEH v(S)] = e ZEH t—s)]

a€Z aEZ

for any 0 < s <'t.

3 Path measure associated with the ground state

In this section we construct the path measure associated with the ground state of the quan-
tum Rabi model. We recall that L = —Ac, ® 1+ 1® bib+ go, @ (b+b'). Let &4 be the
ground state of L such that

Lo, = ED,

with E = infspec(L). It is shown that ®, > 0 in [4] under the identification (3.1). Hence
(1, ®4)y # 0. Then

7tLIl
®, = lim

t=0o0 [|e= |,

Let us set

<O> = ((I)gv Oq)g)?—t

for a bounded operator @. Then we have




The right-hand side can be represented in terms of Feynman-Kac formula, and under some
condition we can also see that

(O) = En.[fo]

with some probability measure II,, and a function fn. The probability measure Il is
referred to as the path measure associated with the ground state ®,. The similar results are
investigated in models in quantum field theory [10, 1, 5, 6, 7], but as far as we know there
is no example in quantum mechanics.

3.1 Feynman-Kac formula

Combining (2.5) and (2.11) we can represent (¢, e *1)) by a path measure. Let
gs = (Ssaxs) 5> 0

be the (Zy x R)-valued random process on the probability space (X @ Y, By ® By, P* @ II).
We introduce the identification:

H = [*(Zy X R) (3.1)

7N
ASHIRSH
I+
SIS
~—
N————
12

O, ) = 041004 (x) +0_100_(x), (a,x) € Zy X R. (3.2)

Here 6,5 = { (1J g ;g . We use identification (3.1) without notices unless no confusion
arises. Let W : Zy X R — R be defined by
W(a,z) = V2.
Thus W (g,—) = v/25,_X,. The Poisson integral foH W (qs—)dNy is a random process on the
probability space (X ® YV, By ® By, P* ® II), which is defined by
t+ n n
( / W(qs_)dNS) (wi,wp) = Y W(gs, (wi,ws)) = V2 ) Sy (w1) X, (ws).
0 =1 j=1

Here {s;} is the set of jump points such that Ny, _(w:) # N 4 (w1) for 0 <s; <t. Let

El.]= % S /RE@EH L Jdu(z).

acZz

Lemma 3.1 Let ¢,7) € H. Then under the identification (3.2), it follows that

(97 H) = 26'E [6(go)up(qn) A e 0 o Wadte] (33)



Proof: We refer the reader to [8]. |

Lemma 3.1 can be extended to the path integral representations of Euclidean Green
functions. Let h = —A/2 and (By):>¢ be 1D Brownian motion on (X, By, W?*). Suppose that
O<ty<ti <...<t,. Let C{to’tl """ t”}(A()X"'XAn) :{(A) eXx | W(tj) GAj,jZO,]_,...,TZ}
be a cylinder set. Then it is known that

Wx<c{t0’t1 """ t”}(Ao X oo X An)) =E* [(H ]lAj(Btj)>
7=0

We know furthermore that for f, g € L*(R),

/REI [(H ]lAj(Btj)) f(Bo)g(Bt)

Lemma 3.2 Let f; = fj(o, x) be bounded function on Zy x R for j = 0,1,...,n. Suppose
that 0 <tg <ty <...<t,. Then

dm — (f’ eftoh]lAOef(tlfto)h . 67(tn7tn_1)h]1An67(t7tn)hg).

(¢, 7oL fye=(to)L f o=(t=t)L | o=(tn—tu-1)L § o=(t=tn)Ly)
=0

Proof: Denote the natural filtrations of (N¢)i>o and (X¢)i>o by As = o(N,,0 < r <'s) and
My = o(X,,0 <r <s), respectively. The Markov properties of (V;);>o and (Xy)¢>o yield
that

= 2¢'E

(estfeftL(Zb) (Oé, I)

— e HEpmp [0 W f(g R ES [0 Wit g, ||

= es+t]EnE1€ -6_9 Jo W(qr)drf(QS)EnEﬁ [e_g o W(qrﬂ)drﬁﬁ(qlﬁs)

o]

= " HMEHES |79 I W(q")drf(qs)@_g Io W(QT+S)dT¢(Qt+s>}

— 65+tEHEi:E) o9 ;+t W(qr)drf(qs)¢(qt+s)] _

Repeating these procedures we have the lemma. [ |

3.2 Probability measure Il associated with the ground state

We set Ty = Sa, and ¢ = (Ty, X,). We assume that A > 0 in what follows.

Lemma 3.3 Let ¢, € H. Then

(et =2 Y [ s [ola (e )e BV aua), (3.4)

a€Z2



Proof: Since

1 1 g
I =— —pf = ¥
; 0, @1+1® —b'b+ -0, @ (b' +),

the Feynman-Kac formula (3.3) yields that

(9,07") = (9,e 5 g) = e Y / BEp |9(So, Xo)¥(Sar Xo)e BV Xro® ] ().

acZz

By the change of variable s to As in £ foAt \/iSsXS/Ads, we see (3.4). [ |
For the later use we have a technical lemma below.

Lemma 3.4 We have

2 _e—2t Y
e R e T e e (A

In particular

2 _e—2t
EZ [efgfgmq?)ds] < elol=emDz o [T T2 e—yPdy.

Proof: We have
EIID [6_9 f(f W(ésA)dsi| _ E?/V |:e_gfg eis(fc"'%Ber,l)(—l)NASds]

= o el [om0fy Bueman () et

_ efg(fg e’s(fl)NAsds)xe% Hfot ]1<17572s)/2(‘)(—1)NA5d5H2L2(]R) )

Then the lemma is proven. [

Now we extend (7});>o to the process on the whole real line. Let
T, = (-1)Narq ter,

We can realize (T} )seq as a coordinate process as usual. Let D = D(R) be the space of cadlag
paths on R. There exists a topology d° on D such that (D, d°) is a separable and complete
metric space (e.g. [3, Section 3.5] and [2, Section 16]). Let Bp be the Borel sigma-field of
D. Thus .

T, : (Y, By,11) = (D, Bp)

is an D-valued random variable. We denote its image measure on (D,Bp) by Q% i.e.,
Q“(A) = II(T;*(A)) for A € Bp, and the coordinate process on (D, Bp) by the same symbol
(T})i=0, i-€., Ti(w) = w(t) for w € D. Let my : D — RM be the projection defined by
ma(w) = (w(to),...,w(t,)) for w € D and A = {tg,...,t,}. Then

A= {r; (E)|A C R, #A < 00, E € B(RY)}

is the family of cylinder sets. It is known that the sigma-field generated by cylinder sets
coincides with Bp. Moreover let Dy = D([—T,T]) be the space of cadlag paths on [—T, T



and 77 : D — Dr be the projection defined by mprw = w[[_T,T]. Let By be the Borel sigma-
field of Dr. Let my : Dy — R be the projection defined by 75 (w) = (w(ty), .. .,w(t,)) for
w € Dy and A = {ty,...,t,}. Note that we use the same notation 7 as the projection from
D to R*. Then

Ar = {m {(E)|A C [-T,T), #A < oo, E € B(RY)}

is the family of cylinder sets. We set

B=Jr'B), Br= |J (B

s>0 0<s<T

It is also seen that the sigma-field generated by l% (resp. Z%T) coincides with Bp (resp. Br).
Together with them we have

o o

Bp =0(A)=0(B), Br=o(Ar)=0o(Br). (3.5)

Hence (3.3) can be reformulated in terms of the coordinate process (T})>0 on (D, Bp, Q%)
instead of (Y, By, 1I) as

(6 etp) = 20 3 / By [6(@0)e 0 1 (g2)| du(a). (3.6)

Here o
@& = (T, X,) s€ER,

where X, is the Ornstein-Uhlenbeck process on the whole real line. The advantage of (3.4)
is that AN disappears. AN is not shift invariant but 7} in (3.4) is shift invariant. Then

3 /EQE“? Je—9Jo W )dw(th)] dp(x)

acZs
= 3 [ wamp o) B0 )] dute)
ez
for any 0 < r <t. Let
Wal(t,s) = T,T,e” 14, (3.7)

Lemma 3.5 We have

2 gt t
e =2y foxp (. [Las [[arwagonn)) |
0 0

Proof: By the Feynman-Kac formula given by (3.4) and inserting (2.6), we can see that

(1,070 = 37 g [of [emn it na] [ (BT )
R

[ASY)
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Since

Elg% |:€*9f0t Tse—SBezsflds = exp ( / dS/ d’T’TT e (S+T‘)( 2(sAr) 1>>

/R ~(VE3o Jy Tee™ds)e g (0) = excp {92 (/O Te_sds) },

we obtain that
—tLqy _ At o 9_2 ' L —|s—7]
(L,e™™ 1) =e ZEQ exp | 3 ds | drT,T,e :
0 0

acZz

Hence the lemma follows. |

Remark 3.6 (1) Since Wa(s,r) is independent of o, EG [exp( f ds fo drWa(s 7“))] is

also independent of o. )
(2) By the shift invariance of Ts we can also see that

EQ [exp (9; /Ot ds/oterA(s,r))] - {exp <92—2 /_tuuds/_tuuerA(s,r))}

for any 0 < u <t. Thus we see that

(e7"1,e 1) = 2e**'EQ [exp (9—2 / ) ds / ) erA(s,r))}
= 24 [exp( / ds/ drWa(s,r )} . (3.8)

We can also compute (e 21, e ~LT) for 5 > 0.

Lemma 3.7 Let f > 0. Then

(6—tL ]l, 6—BbTb6—tL ﬂ)

2 et gt 0 pt
= 2**'E [exp <92 / Wa(s,r)dsdr — g*(1 — eﬂ)/ / Wal(s, r)dsdr)} :
—tJ—t -t J0

Proof: Since

(6 ey = 3 / B(ar, Xo)EL (0, X5)]dpu(x),
acZ
we see that

( 7tL]1 —3bTh —tL]l Z/ 7tL]1 Oé XO [( *tLIl)(a,Xg)]d,u(:c).

acZa
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It is straightforward to compute (e *1)(a, Xo) and (e **1)(c, X;5). We have

(e 1) (a, Xo) = e EJES [e‘ﬂgfot ﬁxgds}

— eAtE% |:6—\/§g fg Tsefsdsx]Eg)/v |:€—g f(f TsefsBcgs_lds:H

= eAtE% |:6_\/§ng Tse~dsx *fo dsfo drTsTre™ (S+T>(e2(SAT> 1):| .

The computation of EZ [(e*“1)(a, X3)] is more complicated than that of (e™*#1)(a, Xo).
We have

Ef [(e7"1)(a, Xp)] = e™'E {Eé {e_ﬁgfﬂtﬁesds*xﬂeg; Jods o drTsTr@(SH)(J(W)_DH '
Inserting (2.6) to X3 above again, we obtain that
¢"MED, {E% [eﬁg Jo Teemrdse™ (at J5B,25.,) 4 [ as drme<s+r><e2(“”—1>] }
eDUES {e—(\/igfg Toeds)e Pz 5 [ ds [{ drTyTre= (-0 (1-=28) & [Lds ! drTSTTe(5+T)(e2(SAT)—1):|

~ 2 N N 2 N N
eAES {e‘(ﬂg J§ Tomvemds)e P 2 1 ds [ drTy By yem o+ (1e=20) 2 [ ds Ji drTs-zTr_te<S+T><e2<w>—“] .

In the last line above we shift Ts by t. Since Tu for 0 < u <t and Ts_t for 0 < s <t are
independent, combining above computations, we have

( _tLll —Bbtb —tLIl)

— E 2At/ |: \[gfo Tie™ Sds)m —(\[gfo h_t€ Sds)e—ﬁz z fo dsfo ArT,Tre~ (s+r)( (S/\T)_l)

[ASY )

2 t o - _ _ 2 t oo - _ .
Xe% fo ds fo drTs—Tr— e~ 5+ (1—e 2ﬂ)697 fo ds fo drTs—¢Tr—te (s+r)(e2(wr)_1):| dx. (39)

Terms dependent on x on the exponent above can be computed as

t t
_ IQ _ \/_g < - / AS teisds +/ Tsesds) xr
0
g t 2 92 t t 2
= _ <x + == / Te *ds + —G_B Ts te_sds) + = </ T.e *ds + e_ﬁ/ Ts_te_sds) .
\/_ 0 2 0 0

The first term on the right-hand side can be integrated with respect to dz as

1 (a8 [t 9B [P emsds)
L o e gy i) gy
VT e
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The second term on the right-hand side can be computed as

t t
(/ T.e *ds + e /Ts tesds)
/ / T. 1.t dsdr + 2 / / L Te T dsdr + e / / T, T e~ 5t dsdr.

(3.10)

2

Terms independent of x on (3.9) are

t
/ ds/ T,T.e5F7) (e21r) 1)dr+/ ds/ e (1 — e dr
0 0
t
+/ ds/ T e T (26N _ ydr (3.11)
0

Then the sum of (3.10) and (3.11) is
(3.10) + (3.11)

/ds/ Y Tdr—i—/ ds/ T.T.e*"ldr + 2¢77 / / et dsdr
0
:/ ds/ TSTT,e_S_”der/ ds/ TSTT6_|5_T‘d7“+26 / / el dsdr,
—t —t 0 0

By the trick ff fft = ff] ff —l—f(f fot +2 ff) fot, we see that

(3.10) + (3.11) = /ds/ T.T.e = "ldr —2(1 — ¥ //TTe 5=l dsdr.,

Then the lemma follows. |

Define the probability measure I1; on (D, Bp) by

11
ZTA Z an |:IlA€ 5 f_ dtf dsWa ts):| 7 Ae BD> (312)

Mr(4) = Zr2°
Q€L

2 T T
where Zp = e?74 D [e%f—T oy dSWA(t’S)] is the normalizing constant. Note that

pair interaction Wa(t,s) is independent of o and hence one can replace ) ., E§ with
2EQ in (3.12). We also notice that 1 = [ @5, = > | Py (v, ) Pdu(z), 2 = |13, =
> acz, Jo dp(x) and 227 = [le”TE 12,

Let A; € B(R) for j =0,1,...,n and A = {to,t1,...,t,} C [=T,T]. The cylinder set is
defined by

QE€Z2 fR

C%(on )—{MEDT|W( )EAJ, O,l,...,n}.

Recall that the family of cylinder sets is denoted by Ap. We also note that o(Arp) = Br.
Let

my(A) = ey / EQE“C m G5 Dy (G )e 0 1= ”8] dp(). (3.13)

aEZo
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Since l% is a finitely additive family of sets, we define the finitely additive set function v on
(D, B) by v(A) = my(A) for A € 7, 1(B,).

Lemma 3.8 v is well defined, i.c., my(A) = my(A) for A€ m, (B,) C n74(B,).

Proof: Notice that m; o ;' and m, o, ! are probability measures on (D;, B;). We compute
finite dimensional distributions of m; o m, ' and myom; ', Let A = {to,t1,...,t,} C [~t,t] C
[—s, s]. Since e " ®, = @, for any r > 0, we have by (4.4),

mtOﬂ';l(CA(AO X oo X Ay))
i R R ot A2 ds
— 2Bt 24t Z /EQIE (H > qft)i)g(qt&)e 9 S, W(gs)d dp(z)
aEZ2 J
_ ( —(to+t) LCID R —(tl—to)ZﬂAl . -e_(t"_t’“l)LIlAne_(t_t")ZCDg)
((I)g; ]1A0 —(t1— tO)L]l (tn tn_1 LI[ q) )

:( —(to+s) L(I) ]l (t1 to)L]lA e (tnftn_l)LﬂAnef(sftn)Eq)g)

1

= mgom, L (C* (on--~><An)).

It is straightforward to see that the Kolmogorov consistency condition also holds true:

my O7Tt_1 (Ct{A,sl ..... Sm} (Ao X X A, X HR)) =my o,n.t—l(CtA(AO VTR An))

Let my : [—t,1]* — R® be the projection such that for w € [—t,#]%, myw = (w(to),. .., w(tn)).
Thus by the Kolmogorov extension theorem there exists a unique probability measure m; on
([—t,t]*, o(A;)) such that

(T (Ag X -+ x Ap)) =my o H(CMAg x - x A)) (3.14)

for all A C [—t,t] with #A < 0o and A; € B(R). Since the extension is unique, m; o7, ' =
my. Similarly there exists a unique probability measure m, on ([—t,t]%, o(A;)) such that
mg O T, ' — . Then my o T, L—mo T L on B;, which implies the lemma. |

The first task is to extend v to a probability measure by the Hopf extension theorem.
Lemma 3.9 v can be uniquely extended to a probability measure 11, on (D, Bp).

Proof: Suppose that E, El%’ such that F,, D E,41 D ... and lim, o v(E,) = a > 0. It is
enough to show that (), E, # 0 by the Hopf extension theorem. Let E, = m; (E,) with
E! € Br,. We can assume that T, < T,,;; <— oo. Let ur = vo m;l be a probability
measure on Dr. Since Dr is a Polish space, ur is regular, i.e., for A € Br and € > 0 there
exist a compact set K and an open set O in Dy such that K C A C O and ur(O \ K) <e.
There exists a compact set K/, C Dy, such that pr, (E, \ K},) < /2" Let K, = 77 (K}),

==, Kj and D =2, Dy,. Since D C ), Ey, it is enough to show that D # 0. We
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E,) — v(D,) < v(E, \D)

(
(Ui Bn \ K;) = V(?TT E, N\ Kj) = pr, (Ujoy B\ K5)

] 1

pr, (B, \ K}) < Zun Ej\ K)) < Za/%

Then 0 < v(D,,) and we see that D,, # 0. Let f, € D, i.e., f, € ﬂ?zl K;. Thus
fn € K; for any n > /.

Let ¢ = 1. Then 71, (f,) € Kj for any n > 1. Taking a subsequence n', we see that
limy, oo 1y (frr) = h1 € K7 exists. Let £ = 2. Then 7, (f,) € Kj for any n’ > 2. Take
a subsequence n” of n’ again, then lim, ., 77, (fr) = he € K} exists. Proceeding this
procedure, we can obtain a subsequence {m} that lim,, . 7r,(fm) = he € K exists for
any (. Let g, = n'(h¢) € Ly. Define g € D by g(z) = go(x) for x € [T}, T]. By the
construction this is well defined, i.e., g/(x) = go41(x) for x € [T, T;]. We see that g € D
and D # (. [

For probablhty measures Iy and Il on (D, Bp) in order to show that II7(A) — II(A)

for every A € B we define the finitely additive set function pr on (Dr, BT) Let 1p = e~ 721
for ¢ > 0. Then s-limy o Iy = @, and ||17]]* = 2e27# Z7. The finitely additive set function

pr on (Dr, ZOST) is defined by
t JUAN
pr(A) = eQEfezfAHHTHQ > / EQH«: nAnT (G5 My (g7)e 0= W@ dp(ar) (3.15)
[ A<V

for A € 7;1(B;) but t < T. The right-hand side of (3.15) is denoted by My (A).
Lemma 3.10 py is well defined, i.e, My (A) = My (A) for A€ n; ' (By) C 771(B,).
Proof: This is shown in a similar manner to Lemma 3.8. Let

Mrg(A) = Pea ) /]EQE ﬂA]lT (@5 Doy (GF)e 2 WS | (),

a€Zs

Then My om; ' and My jom; ' are probability measures on (Dy, By). Let A = {to,t1,...,t,} C
[—t,t] C [—s,s]. We have by (4.4),

My o H(CHAg x -+ x Ay))

amn S [ gy [(Hm (&) )nT (G5 (G0 W1 >dr] du(z)

aEZs 7=0
_ (6—(to+t)LIlT_ ]lA 6—(t1 to LIl AL —(t7l—tn,1)L]1 —(t—tn)LIlT t)

_ (6_(t0+s)z]lT—57]1A0 (t1i— tO)L]lAl' e~ (tn—tn_1 L]l (s— tn)L]l _S)

= MT,s O7T;1<Cé\(z40 X oo X An))
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It is straightforward to see that the Kolmogorov consistency condition also holds true:

Mygom; ! (ch’SI ’’’’’ omJ (Ao X - X Ay X HR)) = My om H(CMAg x -+ x Ap)).

Thus by the Kolmogorov extension theorem there exists a unique probability measure MT,t
n ([—t,t]%, o(A;)) such that

My (ny N (Ag x -+ x Ay)) = Mpyom, Y(CHMAg x -+ x Ay)) (3.16)

for all A C [T, T] with #A < 0o and A; € B(R). Since the extension is unique, My om; ! =
Mr,;. Similarly there exists a unique probability measure My, on ([—t,#]*, o (A;)) such that
Mr s o 7rt_1 = Myp. Then My o 7Tt_1 = Mg 0 7rt_1 on B;, which implies the lemma. [ |

We shall show that pr = IIy on I%T for any T > 0.

Lemma 3.11 We have pr = llp on l%’T.

Proof: Let ¢t < T. It is enough to show that II;(A) = pr(A) for A € 7, (B;). Let A =
{to,t1,....tn} C [~t,t] C [T, T]) and Ay x --- x A, € B(R). We have

1 1 - . 2 (T g (T
HT o ﬂ_t—l(C«tA(AO TR, An)) _ _€2TA§ Z E% [(H ﬂAJ’(ﬂj)) ez dethdSWA(t,S)] ,

Zr €y j=0
(3.17)
prom; (CMNAg x -+ x Ay))

1 n R ) . ot 2V ds
_ ezEtGQAtHIlTHQ Z /R]E%E; [(H 14, (th)> IlT—t(qft)]lT—t(QtA)e g [t W(gs)d ] dp().
j=0

[ASY)

(3.18)

By (4.4) we see that

1
(3.17) = W(ﬂ’ e~ (ALY o~t—to)ly, L, o~ (T-t)LY)
T

62Et

N W<]1T—t, e—(to—l-t)LﬂAoe—(tl—to)L]lAl . ﬂAne_(t_tn)L]lT—t) _ (318)
T

Then we have
pom H(CHAg x - x A,)) = prom, Y (CMAg x -+ x Ay)). (3.19)

Since both sides of (3.19) satisfy the Kolmogorov consistency condition, there exists a unique
probability measure p on (Dr, B;) such that

u(ﬁxl(Ao X o x Ay)) =1rp owt_l(C’tA(Ao X X Ap)) = pr owt_l(CtA(Ao X oo X Ap)).
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[yom; ' and prom; ! are probability measures on (D;, B;), and Hyom, H(CA(Agx---x A,)) =
Mrom, Hay(Agx - x A,)) = prom;, (CMAgx - x A,)) = prom; HmyH(Ag x - x Ay)).
Since the extension is unique, Iz o ;" = = prom; * on (D, By) follows. |

The following proposition is shown for spin boson model in [5, Theorem 3.8] and for rela-
tivistic Pauli-Fierz model in [6, Lemma 7.6], and the proof for the quantum Rabi Hamiltonian
is a minor modification of [5, 6].

Proposition 3.12 There exists a probability measure I, on (D, Bp) such that

lim IIp(A) = [Lo(A) A€B.

T—o0
Proof: By s-limy_,o Iy = ®, we obtain that s-limp_ Ip_, = &, and limp, ||17|| = 1.
Then for each o € Zy, (Ig—¢/|[17|)(-,0) = @g(-,0) as T — oo in L*(R,dp). Let @] = Tl

Note that ®,, &I € L>(Zy x R). Let A € m; '(B;). Then IIp(A) = pr(A) by Lemma 3.11
and v(A) = [I(A) by Lemma 3.8. We have

[7(A) = Moo (A) = pr(A) — v(A)

R X . ) ot AV ds
_ 2Bt 20t Z EQ []]A/Ei% K@g(ﬁ)@g(qf) - @g(qft)@g(qu =9 2 W(@)d ] d,u(x)] .
R

[ AV

Then

A N ~ N _ t PUAN s
04 (G5) P (01) —q>g<q§t)q>g(q§)’e o ft, W) ] ()
A N N ot JUN B
< /E% Hég(qﬁ) — ‘Pg(qft)lcbg(qf)‘ =9  W(ds)d } dyu(z)
R

N N . ot 2 ds
[ 55 ozl [ou(a) — o) et duga).
R

AF

We estimate [, EL H@g(éft) — <I>§(éﬁ)|‘1>g(éf)

we have

e 9 It W(d?)ds] du(z). By the shift invariance

[ 55 [[(@aat) - r @@ e, e aua
R

R . . o (2P W (62 ds
= [124068) - 8L IE [ outai] e 7T dpta).
R

Dy (d3;)

By the Schwarz inequality we also have

< ( [ 1wt - <b§<q§>|2du<x>>l/2( [ = [

Since by Lemma 3.4,

N
q)g (Q2t)

2} dﬂ(x))l/ZE% [6_29f02tw(‘5£)d5]>1/2.

- 2t JUN -2t 2 p(1—e /2, 19
EZ [e 29 f' W(aS )ds] < elol0—e")le] 97 Jg [2t—y[2dy.
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we have

[ (|t - o) auto

=¢ (/'Cb ‘I’g(@f)Vdu(x))m (/Re|9|(1—e2t)|zdu(x)>1/2'

Here we employed that ®, € L™(Z, x R). Since [, |®4(d5’) — CIJgT(CjOA)qu(x) —0asT — oo,

[

as T — oo. Similarly we can also show that
~ N . ot 89 4
[ (19551 @s(a) - ¥ a2)|eoE ua) =0
R

as T — oo. Then the proof is complete. [ |

. R R ot 0 ds
Do) — L@@y (a)] IV du(a) 0

The sequence of probability measures (Il7)7s is said to locally converge to the probability
measure I, whenever limy_,o, II7(A) = [ (A) for all A € 7, '(B;) and for all ¢ > 0.

Corollary 3.13 Let f be a B;-measurable and bounded function. Then

lim Er, [f] = Emr, [f}

T—o0

Proof: It is enough to show the corollary for a nonnegative function f. Since f is bounded
and Bi-measurable, there exists a sequence { f,,} such that lim,,_,o sup,cp | fu(z) — f(2)] = 0.
Here f,, is of the form f, = Z;n a;jla, with A; € By and a; > 0. Let € > 0 be arbitrary.
We assume that sup,cp | fn(2) — f(z)] § €. Then we see that

En [f] = Eng [f]] < Eng[[f = fall + [Bug [fa] = En[fall + B[l fe —
<2+ |]EHT[fTL] — Em.. [fn”

and from Proposition 3.12 it follows that limy_, [Er,. [ f] — En, [f]| < 2e. Then the corollary
follows. |

il

4 Expectations by Il

In this section we give some examples of application of II,,. These examples are one mode
versions of the spin boson model [10, 5|. Then we show only outlines of proofs.

4.1 Number operator b'b
Theorem 4.1 Let 3 € C. Then
() = B[00 o Watenar] )

((b'D)™) = ial(m)gﬂEnw [( / (; /0 h WA(s,r)dsdr)l] : (4.2)

=1
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Here a;(m) = (_l—,l)l Zi=1(_1)s(i) are the Stirling numbers. In particular ((bTb)™) < 29 — 1
for any m > 0.

Simple but non trivial application is as follows. We know that (o, ® (—1)'?) < 0 since the
parity of @, is —1. As a corollary of Theorem 4.1 we can show that ((—1)"'?) > 0.

Corollary 4.2 We have

<(_Il)btb> = En 6_292 fEOO fooo Wa(s,r)dsdr < 0.

oo

Proof: Put g = ¢7 in Theorem 4.1. Then the corollary follows. |

4.2 Gaussian functions

We construct a path integral representation of (e%).

Theorem 4.3 We have . ) ,
(%) = e~ P /AEy (%],

9 [T
K=—-——— T.e ¥lds.
I

Corollary 4.4 Let 5 € C such that |5| < 1. Then

where

1
1-p

(P = oy [eKﬂ] . (4.3)

In particular limgy ||ef39”2/2<13g||2 = 00.

Proof: By Theorem 4.2 we see that

2.2 ]. ; 2 ]. 232 1 2
(P = ir / (Bg, ™7 g)e ™ Pk = —— / e P gy [ e 2dk:
R R

2T

]_ —k2ﬁ2/4 kﬁK —k2/2 :| ]_ [ _W:|
=E — (& e (& dk| = ———F .
Hoe L/%/R VIt B2

By an analytic continuation we obtain (4.3) for § € C such that || < 1. Then the corollary
follows. [

4.3 Spin o,

Let L = L — E. Path integral representations of Euclidean Green functions by Lemma 3.2
can be rewritten as follows.
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Corollary 4.5 (1) Suppose that ¢,v¢ € H and f; = f;(a,x) € L®(ZyxR) forj =0,1,...,n,
and 0 <ty <t; <...<t,<t. Then

(gb, e—toifoe—(tl—to)fifle—(tg—tl)/i . 6—(tn—tn71)Efne—(t—tn)i¢)

—etiem 3 [ ey [&(aﬁwﬁ (H fj@@)) e—ngW@f)ds] . (44)
aczZy VR =0

(2) Suppose that g; = g;(a) € L>(Zy) for j =0,1,...,nand 0 <ty <t; < ...<t, <t
Then

(]17 e—toigo(o_z)e—(tl—to)igl (gz)e—(tQ—tl)L . 6—(tn—tn71)i/gn(O_Z)e—(t—tn)f,ﬂ)

=etef )y Eg [(ﬁgjmj)) / AR du(w)] . (4.5)

aEZ2
Proof: (1) is a simple reworking of Lemma 3.2 and (2) is a special case of (1). |

One can see that the integrand in (4.5) is
EZ [efgfot W(d?)ds] _ e—g( ge*S(—1)NAsds)x€§ f0<1*e‘2t)/2’f;(_l)NAsdsfdy.
by Lemma 3.4.

Theorem 4.6 We have (Uze’|t’s‘iaz> = En_, [T,:Ts] for any t,s € R.

Proof: By Lemma 4.5 and a limiting argument, we see that

P —tL d — | 3 —+L -
(Uz g € Oz g) T1—I>Iolo ||IlT—t/2H2(0-Z]1T t/2, € o lr t/2)
o2ET 2T A {A R .
— im S N w17 QGQI_Tdtf_TdsWA(t,@] ‘

T—oo ||]1T—t/2H2 C%Z:Q Q /224

Then we have

H ]1T||2 62ET62TA

o, P ,€_tLO' d,) = lim
( z+g z g) T o0 ||]1T—t/2||2 ||]1T||2

5 g [y s
aEZL2

| 172 EQ {T—tmft/QerfTTdthTdSWA(t,S)}
; = En., [T12 T3 2],

= lim
T—00 H]IT—t/2H2 E% [6% fTTdthTdSWA(t7S):|

Hence for t > s,

N

(0. Py, e 0. 0y) = B [T 1-5) 2T (t—s)/2) = Enr,o [T11)]
by the shift invariance. [ |
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