GIBBS MEASURES OF THE QUANTUM RABI MODEL

Fumio Hiroshima Faculty of Mathematics Kyushu university

May 14, 2025

1 Quantum Rabi model

This is the joint work with Tomoyuki Shirai and a review of [8]. The quantum Rabi model describes a two-level atom coupled to a single mode photon by the dipole interaction term. The single photon is represented by the 1D harmonic oscillator. Suppose that the eigenvalues of the two-level atom is $\{-\Delta, \Delta\}$. Here $\Delta > 0$ is a constant. Let σ_x, σ_y and σ_z be the 2×2 Pauli matrices:

$$\sigma_x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \sigma_y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \quad \sigma_z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$$

Then the Hamiltonian of the two-level atom is represented by $\Delta \sigma_z$. On the other hand let a and a^{\dagger} be the annihilation operator and the creation operator in $L^2(\mathbb{R})$, respectively. They are given by

$$a = \frac{1}{\sqrt{2}} \left(\frac{\mathrm{d}}{\mathrm{d}x} + x \right), \quad a^{\dagger} = \frac{1}{\sqrt{2}} \left(-\frac{\mathrm{d}}{\mathrm{d}x} + x \right).$$

They satisfy the canonical commutation relation $[a, a^{\dagger}] = 1$, and $a^* = a^{\dagger}$, where a^* denotes the adjoint of a. The harmonic oscillator is given by $a^{\dagger}a$, i.e.,

$$a^{\dagger}a = -\frac{1}{2}\frac{\mathrm{d}^2}{\mathrm{d}x^2} + \frac{1}{2}x^2 - \frac{1}{2}.$$

The harmonic oscillator $a^{\dagger}a$ is self-adjoint on $D(\frac{d^2}{dx^2}) \cap D(x^2)$ and the spectrum of $a^{\dagger}a$ is $\operatorname{spec}(a^{\dagger}a) = \mathbb{N} \cup \{0\}$. The quantum Rabi Hamiltonian is defined as a self-adjoint operator on the tensor product Hilbert space $\mathbb{C}^2 \otimes L^2(\mathbb{R})$ by

$$K = \Delta \sigma_z \otimes 1 \!\!\! 1 + 1 \!\!\! 1 \otimes a^{\dagger} a + g \sigma_x \otimes (a + a^{\dagger}).$$

Here $g \in \mathbb{R}$ stands for a coupling constant. It can be seen that K has the parity symmetry:

$$[K, \sigma_z \otimes (-1)^{a^{\dagger}a}] = 0.$$

The parity symmetry is also referred to as \mathbb{Z}_2 -symmetry. We discuss measures associated with the ground state of the quantum Rabi Hamiltonian. The quantum Rabi model can be regarded as the one mode version of the spin-boson model in quantum field theory. In [5] the path measure associated with the ground state of the spin-boson model is discussed. In this note we also show the existence of the measure Π_{∞} associated with the ground state $\Phi_{\rm g}$ of the quantum Rabi Hamiltonian. Then under some condition we can see that

$$(\Phi_{\mathrm{g}}, \mathcal{O}\Phi_{\mathrm{g}}) = \mathbb{E}_{\Pi_{\infty}}[f_{\mathcal{O}}]$$

for some observable \mathcal{O} with a function $f_{\mathcal{O}}$.

2 Probabilistic preparation

2.1 Unitary transformations

In this section we define a self-adjoint operators L. Let $\sigma = (\sigma_x, \sigma_y, \sigma_z)$. The rotation group in \mathbb{R}^3 has an adjoint representation on su(2). Let $n \in \mathbb{R}^3$ be a unit vector and $\theta \in [0, 2\pi)$. Thus $e^{(i/2)\theta n \cdot \sigma}(x \cdot \sigma)e^{-(i/2)\theta n \cdot \sigma} = Rx \cdot \sigma$, where R denotes the 3×3 matrix representing the rotation around n by an angle θ . In particular for n = (0, 1, 0) and $\theta = \pi/2$, we have $U\sigma_x U^{-1} = \sigma_z$ and $U\sigma_z U^{-1} = -\sigma_x$, where

$$U = e^{i\frac{\pi}{4}\sigma_y}.\tag{2.1}$$

Then

$$UKU^{-1} = \begin{pmatrix} -\frac{1}{2}\frac{d^2}{dx^2} + \frac{1}{2}x^2 - \sqrt{2}gx - \frac{1}{2} & -\Delta \\ -\Delta & -\frac{1}{2}\frac{d^2}{dx^2} + \frac{1}{2}x^2 + \sqrt{2}gx - \frac{1}{2} \end{pmatrix}$$

Let us define the unitary operator S_g . Let $p = -i\frac{d}{dx}$ and F denotes the Fourier transform on $L^2(\mathbb{R})$. Then S_g is defined by

$$\mathcal{S}_g = \begin{pmatrix} F & 0\\ 0 & F \end{pmatrix} \begin{pmatrix} 0 & e^{i\sqrt{2}gp}\\ e^{-i\sqrt{2}gp} & 0 \end{pmatrix}.$$
 (2.2)

Let $\varphi_{\rm g}$ be the normalized ground state of $a^{\dagger}a$, i.e., $a^{\dagger}a\varphi_{\rm g}=0$ and it is explicitly given by

$$\varphi_{\rm g}(x) = \pi^{-1/4} e^{-|x|^2/2}.$$

Since $\varphi_{\rm g}$ is strictly positive, we can define the unitary operator $\mathcal{U}_{\varphi_{\rm g}}: L^2(\mathbb{R}) \to L^2(\mathbb{R}, \varphi_{\rm g}^2 \mathrm{d}x)$ by

$$\mathcal{U}_{\varphi_{\mathbf{g}}}f = \varphi_{\mathbf{g}}^{-1}f. \tag{2.3}$$

We set the probability measure $\varphi_{g}^{2}(x)dx$ on \mathbb{R} by $d\mu$, i.e.,

$$\mathrm{d}\mu(x) = \frac{1}{\sqrt{\pi}} e^{-|x|^2} \mathrm{d}x.$$

Define

$$\mathcal{H} = \mathbb{C}^2 \otimes L^2(\mathbb{R}, \mathrm{d}\mu)$$

Let $\mathcal{U} = \mathcal{U}_{\varphi_g} U$. We define the self-adjoint operator L by

$$L = \mathcal{U}K\mathcal{U}^{-1} = -\Delta\sigma_x \otimes 1 + g\sigma_z \otimes (b^{\dagger} + b) + 1 \otimes b^{\dagger}b$$
$$= \begin{pmatrix} -\frac{1}{2}\frac{\mathrm{d}^2}{\mathrm{d}x^2} + x\frac{\mathrm{d}}{\mathrm{d}x} & 0\\ 0 & -\frac{1}{2}\frac{\mathrm{d}^2}{\mathrm{d}x^2} + x\frac{\mathrm{d}}{\mathrm{d}x} \end{pmatrix} - \begin{pmatrix} -\sqrt{2}gx & \Delta\\ \Delta & \sqrt{2}gx \end{pmatrix}.$$
(2.4)

Here b and b^{\dagger} are the annihilation operator and the creation operator in $L^2(\mathbb{R}, d\mu)$, which are defined by $\varphi_{g}^{-1}a^{\sharp}\varphi_{g} = b^{\sharp}$. It is actually given by

$$b = a + \frac{x}{\sqrt{2}}, \quad b^{\dagger} = a^{\dagger} - \frac{x}{\sqrt{2}}$$

2.2 Ornstein-Uhrenbeck process

Let $(X_t)_{t>0}$ be the Ornstein-Uhrenbeck process on a probability space

$$(\mathcal{X}, \mathcal{B}_{\mathcal{X}}, \mathbf{P}^x).$$

We see that $P^x(X_0 = x) = 1$ and

$$\int_{\mathbb{R}} \mathbb{E}_{\mathrm{P}}^{x} \left[X_{t} \right] \mathrm{d}\mu(x) = 0, \quad \int_{\mathbb{R}} \mathbb{E}_{\mathrm{P}}^{x} \left[X_{t} X_{s} \right] \mathrm{d}\mu(x) = \frac{1}{2} e^{-|t-s|}.$$

Here $\mathbb{E}_{P}^{x}[\cdots]$ denotes the expectation with respect to the probability measure P^{x} . Let $h = b^{\dagger}b$. The generator of X_{t} is given by -h and

$$(\phi, e^{-th}\psi)_{L^2(\mathbb{R}, \mathrm{d}\mu)} = \int_{\mathbb{R}} \mathbb{E}_{\mathrm{P}}^x \left[\overline{\phi(X_0)}\psi(X_t)\right] \mathrm{d}\mu(x).$$
(2.5)

It is well known that the Ornstein-Uhrenbeck process can be represented by 1D-Brownian motion. Let $(B_t)_{t\geq 0}$ be 1D-Brownian motion starting from x at t = 0 on a probability space $(\mathcal{X}, \mathcal{B}_{\mathcal{X}}, \mathcal{W}^0)$. The distributions of X_s under \mathbb{P}^x and $e^{-s}\left(x + \frac{1}{\sqrt{2}}B_{e^{2s}-1}\right)$ under \mathcal{W}^0 are identical. We denote this as

$$X_s \stackrel{d}{=} e^{-s} \left(x + \frac{1}{\sqrt{2}} B_{e^{2s} - 1} \right) \quad s \ge 0.$$
 (2.6)

We can compute the density function κ_t of X_t as

$$\mathbb{E}_{\mathrm{P}}^{x}[f(X_{t})] = \int_{\mathbb{R}} f(y)\kappa_{t}(y, x)\mathrm{d}y,$$

where

$$\kappa_t(y,x) = \frac{1}{\sqrt{\pi(1-e^{-2t})}} \exp\left(-\frac{|y-e^{-t}x|^2}{1-e^{-2t}}\right).$$
(2.7)

The Mehler kernel M_t is defined by

$$M_t(x,y) = \frac{\varphi_{\rm g}(x)}{\varphi_{\rm g}(y)} \kappa_t(y,x) = \frac{1}{\sqrt{\pi(1-e^{-2t})}} \exp\left(-\frac{1}{2} \frac{(1+e^{-2t})(x^2+y^2) - 4xye^{-t}}{1-e^{-2t}}\right).$$

For the later use we extend the Ornstein-Uhrenbeck process $(X_t)_{t\geq 0}$ to the Ornstein-Uhrenbeck process $(\hat{X}_t)_{t\in\mathbb{R}}$ on the whole real line on the probability space $(\bar{\mathcal{X}}, \mathcal{B}_{\bar{\mathcal{X}}}, \bar{\mathbf{P}}^x)$. Here $\bar{\mathcal{X}} = \mathcal{X} \times \mathcal{X}, \ \mathcal{B}_{\bar{\mathcal{X}}} = \mathcal{B}_{\mathcal{X}} \times \mathcal{B}_{\mathcal{X}}$ and $\bar{\mathbf{P}}^x = \mathbf{P}^x \otimes \mathbf{P}^x$. Define for $w = (w_1, w_2) \in \mathcal{X} \times \mathcal{X}$

$$\hat{X}_t(w) = \begin{cases} X_t(w_1), & t \ge 0, \\ X_{-t}(w_2), & t < 0. \end{cases}$$
(2.8)

Then \hat{X}_t and \hat{X}_{-s} for any s, t > 0 are independent. We also see that

$$(\phi, e^{-th}\psi)_{L^2(\mathbb{R}, \mathrm{d}\mu)} = \int_{\mathbb{R}} \mathbb{E}_{\bar{\mathrm{P}}^x} \left[\overline{\phi(\hat{X}_0)} \psi(\hat{X}_t) \right] \mathrm{d}\mu(x) = \int_{\mathbb{R}} \mathbb{E}_{\bar{\mathrm{P}}^x} \left[\overline{\phi(\hat{X}_{-s})} \psi(\hat{X}_{t-s}) \right] \mathrm{d}\mu(x)$$
(2.9)

for any $0 \le s \le t$.

2.3 Spin process

In order to show the spin part by a path measure we introduce a Poisson process. Let $(N_t)_{t\geq 0}$ be a Poisson process on a probability space

$$(\mathcal{Y}, \mathcal{B}_{\mathcal{Y}}, \Pi)$$

with the unit intensity, i.e.,

$$\mathbb{E}_{\Pi}\left[\mathbb{1}_{\{N_t=n\}}\right] = \frac{t^n}{n!}e^{-t}, \quad n \ge 0.$$

Note that N_t is a nonnegative integer-valued random process, $N_0 = 0$ and $t \mapsto N_t$ is not decreasing. Furthermore $t \mapsto N_t$ is right continuous and its left limit exists (cádlág). Let

$$\mathbb{Z}_2 = \{-1, +1\}.$$

Then for $u \in L^2(\mathbb{Z}_2)$,

$$||u||_{L^2(\mathbb{Z}_2)}^2 = \sum_{\alpha \in \mathbb{Z}_2} |u(\alpha)|^2$$

Introducing the norm on \mathbb{C}^2 by $(u, v)_{\mathbb{C}^2} = \sum_{i=1}^2 \bar{u}_i v_i$, we identify $\mathbb{C}^2 \cong L^2(\mathbb{Z}_2)$ by $\mathbb{C}^2 \ni u = \begin{pmatrix} u_1 \\ u_2 \end{pmatrix} \cong u(\alpha)$ with $u(+1) = u_1$ and $u(-1) = u_2$. Note that

$$(u,v)_{\mathbb{C}^2} = (u,v)_{L^2(\mathbb{Z}_2)}.$$

Under this identification σ_x, σ_y and σ_z are represented as the operators U_x, U_y and U_z , respectively on $L^2(\mathbb{Z}_2)$ by

$$U_x u(\alpha) = u(-\alpha), \quad U_y u(\alpha) = -i\alpha u(-\alpha), \quad U_z u(\alpha) = \alpha u(\alpha), \quad u \in L^2(\mathbb{Z}_2).$$
(2.10)

5

We define

$$S_t = (-1)^{N_t} \alpha, \quad \alpha \in \mathbb{Z}_2.$$

Here $(S_t)_{t\geq 0}$ is a dichotomous process which is referred to as a spin process in this note. Let $\sigma_F = \frac{1}{2}(\sigma_z + i\sigma_y)(\sigma_z - i\sigma_y) = -\sigma_x + 1$ be the fermionic harmonic oscillator. Then it is known that for $u, v \in \mathbb{C}^2$, $(u, e^{-t\sigma_F}v)_{\mathbb{C}^2} = \sum_{\alpha \in \mathbb{Z}_2} \mathbb{E}_{\Pi}[\overline{u(S_0)}v(S_t)]$. Hence

$$(u, e^{t\sigma_x} v)_{\mathbb{C}^2} = e^t \sum_{\alpha \in \mathbb{Z}_2} \mathbb{E}_{\Pi}[\overline{u(S_0)}v(S_t)].$$
(2.11)

We also extend the Poisson process $(N_t)_{t\geq 0}$ to the Poisson process $(\hat{N}_t)_{t\in\mathbb{R}}$ on the whole real line on a probability space $(\bar{\mathcal{Y}}, \mathcal{B}_{\bar{\mathcal{Y}}}, \bar{\Pi})$, where $\bar{\mathcal{Y}} = \mathcal{Y} \times \mathcal{Y}, \mathcal{B}_{\bar{\mathcal{Y}}} = \mathcal{B}_{\mathcal{Y}} \times \mathcal{B}_{\mathcal{Y}}$ and $\bar{\Pi} = \Pi \otimes \Pi$. Let $(\bar{N}_t)_{t\geq 0}$ be a Poisson process on $(\mathcal{Y}, \mathcal{B}_{\mathcal{Y}}, \Pi)$ such that $t \mapsto \bar{N}_t$ is left continuous and its right limit exists (càglàd). Define for $w = (w_1, w_2) \in \mathcal{Y} \times \mathcal{Y}$,

$$\hat{N}_t(w) = \begin{cases} N_t(w_1), & t \ge 0, \\ \bar{N}_{-t}(w_2), & t < 0. \end{cases}$$

Then $\mathbb{R} \ni t \mapsto \hat{N}_t$ is a càdlàg path. Note that \hat{N}_t is independent of \hat{N}_{-s} for any s, t > 0. We define

$$\hat{S}_t = (-1)^{\hat{N}_t} \alpha, \quad \alpha \in \mathbb{Z}_2$$

By the shift invariance of \hat{S}_s [9, Proposition 3.44] we can see that for $u, v \in \mathbb{C}^2$,

$$(u, e^{t\sigma_x}v)_{\mathbb{C}^2} = e^t \sum_{\alpha \in \mathbb{Z}_2} \mathbb{E}_{\bar{\Pi}}[\overline{u(\hat{S}_0)}v(\hat{S}_t)] = e^t \sum_{\alpha \in \mathbb{Z}_2} \mathbb{E}_{\bar{\Pi}}[\overline{u(\hat{S}_{-s})}v(\hat{S}_{t-s})]$$

for any $0 \le s \le t$.

3 Path measure associated with the ground state

In this section we construct the path measure associated with the ground state of the quantum Rabi model. We recall that $L = -\Delta \sigma_x \otimes \mathbb{1} + \mathbb{1} \otimes b^{\dagger}b + g\sigma_z \otimes (b + b^{\dagger})$. Let Φ_g be the ground state of L such that

$$L\Phi_{\rm g} = E\Phi_{\rm g}$$

with $E = \inf \operatorname{spec}(L)$. It is shown that $\Phi_g > 0$ in [4] under the identification (3.1). Hence $(\mathbb{1}, \Phi_g)_{\mathcal{H}} \neq 0$. Then

$$\Phi_{\mathbf{g}} = \lim_{t \to \infty} \frac{e^{-tL} \mathbb{1}}{\|e^{-tL} \mathbb{1}\|_{\mathcal{H}}}$$

Let us set

$$\langle \mathcal{O}
angle = (\Phi_{\rm g}, \mathcal{O} \Phi_{\rm g})_{\mathcal{H}}$$

for a bounded operator \mathcal{O} . Then we have

$$\langle \mathcal{O} \rangle = \lim_{t \to \infty} \frac{(e^{-tL} \mathbb{1}, \mathcal{O} e^{-tL} \mathbb{1})_{\mathcal{H}}}{\|e^{-tL} \mathbb{1}\|_{\mathcal{H}}^2}$$

The right-hand side can be represented in terms of Feynman-Kac formula, and under some condition we can also see that

$$\langle \mathcal{O} \rangle = \mathbb{E}_{\Pi_{\infty}}[f_{\mathcal{O}}]$$

with some probability measure Π_{∞} and a function $f_{\mathcal{O}}$. The probability measure Π_{∞} is referred to as the path measure associated with the ground state Φ_{g} . The similar results are investigated in models in quantum field theory [10, 1, 5, 6, 7], but as far as we know there is no example in quantum mechanics.

3.1 Feynman-Kac formula

Combining (2.5) and (2.11) we can represent $(\phi, e^{-tH}\psi)$ by a path measure. Let

$$q_s = (S_s, X_s) \quad s \ge 0$$

be the $(\mathbb{Z}_2 \times \mathbb{R})$ -valued random process on the probability space $(\mathcal{X} \otimes \mathcal{Y}, \mathcal{B}_{\mathcal{X}} \otimes \mathcal{B}_{\mathcal{Y}}, \mathbb{P}^x \otimes \Pi)$. We introduce the identification:

$$\mathcal{H} \cong L^2(\mathbb{Z}_2 \times \mathbb{R}) \tag{3.1}$$

by

$$\begin{pmatrix} \phi_+(x)\\ \phi_-(x) \end{pmatrix} \cong \phi(\alpha, x) = \delta_{+1\alpha}\phi_+(x) + \delta_{-1\alpha}\phi_-(x), \quad (\alpha, x) \in \mathbb{Z}_2 \times \mathbb{R}.$$
(3.2)

Here $\delta_{\alpha\beta} = \begin{cases} 1 & \alpha = \beta \\ 0 & \alpha \neq \beta \end{cases}$. We use identification (3.1) without notices unless no confusion arises. Let $W : \mathbb{Z}_2 \times \mathbb{R} \to \mathbb{R}$ be defined by

$$W(\alpha, x) = \sqrt{2\alpha x}.$$

Thus $W(q_{s-}) = \sqrt{2}S_{s-}X_s$. The Poisson integral $\int_0^{t+} W(q_{s-}) dN_s$ is a random process on the probability space $(\mathcal{X} \otimes \mathcal{Y}, \mathcal{B}_{\mathcal{X}} \otimes \mathcal{B}_{\mathcal{Y}}, \mathbf{P}^x \otimes \Pi)$, which is defined by

$$\left(\int_{0}^{t+} W(q_{s-}) \mathrm{d}N_{s}\right)(w_{1}, w_{2}) = \sum_{j=1}^{n} W(q_{s_{j}}(w_{1}, w_{2})) = \sqrt{2} \sum_{j=1}^{n} S_{s_{j}-}(w_{1}) X_{s_{j}}(w_{2})$$

Here $\{s_j\}$ is the set of jump points such that $N_{s_j-}(w_1) \neq N_{s_j+}(w_1)$ for $0 \leq s_j \leq t$. Let

$$\mathbf{E}\left[\ldots\right] = \frac{1}{2} \sum_{\alpha \in \mathbb{Z}_2} \int_{\mathbb{R}} \mathbb{E}_{\mathbf{P}}^{x} \mathbb{E}_{\Pi}\left[\ldots\right] \mathrm{d}\mu(x).$$

Lemma 3.1 Let $\phi, \psi \in \mathcal{H}$. Then under the identification (3.2), it follows that

$$(\phi, e^{-tL}\psi) = 2e^{t} \mathbf{E} \left[\overline{\phi(q_0)} \psi(q_t) \Delta^{N_t} e^{-g \int_0^t W(q_s) \mathrm{d}s} \right].$$
(3.3)

Proof: We refer the reader to [8].

Lemma 3.1 can be extended to the path integral representations of Euclidean Green functions. Let $h = -\Delta/2$ and $(B_t)_{t\geq 0}$ be 1D Brownian motion on $(\mathcal{X}, \mathcal{B}_{\mathcal{X}}, \mathcal{W}^x)$. Suppose that $0 < t_0 < t_1 < \ldots < t_n$. Let $C^{\{t_0, t_1, \ldots, t_n\}}(A_0 \times \cdots \times A_n) = \{\omega \in \mathcal{X} \mid \omega(t_j) \in A_j, j = 0, 1, \ldots, n\}$ be a cylinder set. Then it is known that

$$\mathcal{W}^{x}(C^{\{t_{0},t_{1},\ldots,t_{n}\}}(A_{0}\times\cdots\times A_{n}))=\mathbb{E}^{x}\left[\left(\prod_{j=0}^{n}\mathbb{1}_{A_{j}}(B_{t_{j}})\right)\right].$$

We know furthermore that for $f, g \in L^2(\mathbb{R})$,

$$\int_{\mathbb{R}} \mathbb{E}^{x} \left[\left(\prod_{j=0}^{n} \mathbb{1}_{A_{j}}(B_{t_{j}}) \right) \bar{f}(B_{0}) g(B_{t}) \right] \mathrm{d}x = (f, e^{-t_{0}h} \mathbb{1}_{A_{0}} e^{-(t_{1}-t_{0})h} \cdots e^{-(t_{n}-t_{n-1})h} \mathbb{1}_{A_{n}} e^{-(t-t_{n})h} g).$$

Lemma 3.2 Let $f_j = f_j(\alpha, x)$ be bounded function on $\mathbb{Z}_2 \times \mathbb{R}$ for j = 0, 1, ..., n. Suppose that $0 < t_0 < t_1 < ... < t_n$. Then

$$(\phi, e^{-t_0 L} f_0 e^{-(t_1 - t_0) L} f_1 e^{-(t_2 - t_1) L} \cdots e^{-(t_n - t_{n-1}) L} f_n e^{-(t - t_n) L} \psi)$$

= $2e^t \mathbf{E} \left[\bar{\phi}(q_0) \psi(q_t) \left(\prod_{j=0}^n f_j(q_{t_j}) \right) e^{-g \int_0^t W(q_s) \mathrm{d}s} \right].$

Proof: Denote the natural filtrations of $(N_t)_{t\geq 0}$ and $(X_t)_{t\geq 0}$ by $\mathcal{N}_s = \boldsymbol{\sigma}(N_r, 0 \leq r \leq s)$ and $\mathcal{M}_s = \boldsymbol{\sigma}(X_r, 0 \leq r \leq s)$, respectively. The Markov properties of $(N_t)_{t\geq 0}$ and $(X_t)_{t\geq 0}$ yield that

$$\begin{split} & \left(e^{-sL}fe^{-tL}\phi\right)(\alpha,x) \\ &= e^{s+t}\mathbb{E}_{\Pi}\mathbb{E}_{\mathrm{P}}^{x}\left[e^{-g\int_{0}^{s}W(q_{r})\mathrm{d}r}f(q_{s})\mathbb{E}_{\Pi}^{S_{s}}\mathbb{E}_{\mathrm{P}}^{S_{s}}\left[e^{-g\int_{0}^{t}W(q_{r})\mathrm{d}r}\phi(q_{t})\right]\right] \\ &= e^{s+t}\mathbb{E}_{\Pi}\mathbb{E}_{\mathrm{P}}^{x}\left[e^{-g\int_{0}^{s}W(q_{r})\mathrm{d}r}f(q_{s})\mathbb{E}_{\Pi}\mathbb{E}_{\mathrm{P}}^{x}\left[e^{-g\int_{0}^{t}W(q_{r+s})\mathrm{d}r}\phi(q_{t+s})\middle|\mathscr{N}_{s}\times\mathscr{M}_{s}\right] \\ &= e^{s+t}\mathbb{E}_{\Pi}\mathbb{E}_{\mathrm{P}}^{x}\left[e^{-g\int_{0}^{s}W(q_{r})\mathrm{d}r}f(q_{s})e^{-g\int_{0}^{t}W(q_{r+s})\mathrm{d}r}\phi(q_{t+s})\right] \\ &= e^{s+t}\mathbb{E}_{\Pi}\mathbb{E}_{\mathrm{P}}^{x}\left[e^{-g\int_{0}^{s+t}W(q_{r})\mathrm{d}r}f(q_{s})\phi(q_{t+s})\right]. \end{split}$$

Repeating these procedures we have the lemma.

3.2 Probability measure Π_{∞} associated with the ground state

We set $T_s = S_{\Delta s}$ and $q_s^{\Delta} = (T_s, X_s)$. We assume that $\Delta > 0$ in what follows.

Lemma 3.3 Let $\phi, \psi \in \mathcal{H}$. Then

$$(\phi, e^{-tL}\psi) = e^{\Delta t} \sum_{\alpha \in \mathbb{Z}_2} \int_{\mathbb{R}} \mathbb{E}_{\Pi} \mathbb{E}_{P}^{x} \left[\overline{\phi(q_0^{\Delta})} \psi(q_t^{\Delta}) e^{-g \int_0^t W(q_s^{\Delta}) ds} \right] d\mu(x).$$
(3.4)

Proof: Since

$$\frac{1}{\triangle}L = -\sigma_x \otimes 1 \!\!1 + 1 \!\!1 \otimes \frac{1}{\triangle}b^{\dagger}b + \frac{g}{\triangle}\sigma_z \otimes (b^{\dagger} + b),$$

the Feynman-Kac formula (3.3) yields that

$$(\phi, e^{-tL}\phi) = (\phi, e^{-\Delta t \frac{1}{\Delta}L}\phi) = e^{\Delta t} \sum_{\alpha \in \mathbb{Z}_2} \int_{\mathbb{R}} \mathbb{E}_{\Pi} \mathbb{E}_{\mathrm{P}}^x \left[\overline{\phi(S_0, X_0)} \psi(S_{\Delta t}, X_t) e^{-\frac{g}{\Delta} \int_0^{\Delta t} \sqrt{2} S_s X_{s/\Delta} \mathrm{d}s} \right] \mathrm{d}\mu(x).$$

By the change of variable s to $\triangle s$ in $\frac{g}{\triangle} \int_0^{\triangle t} \sqrt{2} S_s X_{s/\triangle} ds$, we see (3.4).

For the later use we have a technical lemma below.

Lemma 3.4 We have

$$\mathbb{E}_{\mathbf{P}}^{x} \left[e^{-g \int_{0}^{t} W(\hat{q}_{s}^{\bigtriangleup}) \mathrm{d}s} \right] = e^{-g \left(\int_{0}^{t} e^{-s} (-1)^{N_{\bigtriangleup s}} \mathrm{d}s \right) x} e^{\frac{g^{2}}{4} \int_{0}^{(1-e^{-2t})/2} \left| \int_{y}^{t} (-1)^{N_{\bigtriangleup s}} \mathrm{d}s \right|^{2} \mathrm{d}y}.$$

In particular

$$\mathbb{E}_{\mathbf{P}}^{x} \left[e^{-g \int_{0}^{t} W(\hat{q}_{s}^{\bigtriangleup}) \mathrm{d}s} \right] \leq e^{|g|(1-e^{-t})x} e^{\frac{g^{2}}{4} \int_{0}^{(1-e^{-2t})/2} |t-y|^{2} \mathrm{d}y}$$

Proof: We have

$$\begin{split} \mathbb{E}_{\mathbf{P}}^{x} \left[e^{-g \int_{0}^{t} W(\hat{q}_{s}^{\bigtriangleup}) \mathrm{d}s} \right] &= \mathbb{E}_{\mathcal{W}}^{0} \left[e^{-g \int_{0}^{t} e^{-s} (x + \frac{1}{\sqrt{2}} B_{e^{2s} - 1})(-1)^{N_{\bigtriangleup s}} \mathrm{d}s} \right] \\ &= e^{-g \left(\int_{0}^{t} e^{-s} (-1)^{N_{\bigtriangleup s}} \mathrm{d}s \right) x} \mathbb{E}_{\mathcal{W}}^{0} \left[e^{-g \int_{0}^{t} B_{(1 - e^{-2s})/2}(-1)^{N_{\bigtriangleup s}} \mathrm{d}s} \right] \\ &= e^{-g \left(\int_{0}^{t} e^{-s} (-1)^{N_{\bigtriangleup s}} \mathrm{d}s \right) x} e^{\frac{g^{2}}{4} \left\| \int_{0}^{t} \mathbbm{1}_{(1 - e^{-2s})/2}(\cdot)(-1)^{N_{\bigtriangleup s}} \mathrm{d}s} \right\|_{L^{2}(\mathbb{R})}^{2}. \end{split}$$

Then the lemma is proven.

Now we extend $(T_t)_{t\geq 0}$ to the process on the whole real line. Let

$$\hat{T}_t = (-1)^{\hat{N}_{\Delta t}} \alpha \quad t \in \mathbb{R}.$$

We can realize $(\hat{T}_t)_{t\in\mathbb{R}}$ as a coordinate process as usual. Let $\mathcal{D} = D(\mathbb{R})$ be the space of càdlàg paths on \mathbb{R} . There exists a topology d° on \mathcal{D} such that (\mathcal{D}, d°) is a separable and complete metric space (e.g. [3, Section 3.5] and [2, Section 16]). Let $\mathcal{B}_{\mathcal{D}}$ be the Borel sigma-field of \mathcal{D} . Thus

$$\hat{T}_{\bullet}: (\bar{\mathcal{Y}}, \mathcal{B}_{\bar{\mathcal{Y}}}, \bar{\Pi}) \to (\mathcal{D}, \mathcal{B}_{\mathcal{D}})$$

is an \mathcal{D} -valued random variable. We denote its image measure on $(\mathcal{D}, \mathcal{B}_{\mathcal{D}})$ by Q^{α} , i.e., $Q^{\alpha}(A) = \overline{\Pi}(\hat{T}_{\bullet}^{-1}(A))$ for $A \in \mathcal{B}_{\mathcal{D}}$, and the coordinate process on $(\mathcal{D}, \mathcal{B}_{\mathcal{D}})$ by the same symbol $(\hat{T}_{t})_{t\geq 0}$, i.e., $\hat{T}_{t}(\omega) = \omega(t)$ for $\omega \in \mathcal{D}$. Let $\pi_{\Lambda} : \mathcal{D} \to \mathbb{R}^{\Lambda}$ be the projection defined by $\pi_{\Lambda}(\omega) = (\omega(t_{0}), \ldots, \omega(t_{n}))$ for $\omega \in \mathcal{D}$ and $\Lambda = \{t_{0}, \ldots, t_{n}\}$. Then

$$\mathcal{A} = \{\pi_{\Lambda}^{-1}(E) \,|\, \Lambda \subset \mathbb{R}, \#\Lambda < \infty, E \in \mathcal{B}(\mathbb{R}^{\Lambda})\}$$

is the family of cylinder sets. It is known that the sigma-field generated by cylinder sets coincides with $\mathcal{B}_{\mathcal{D}}$. Moreover let $\mathcal{D}_T = D([-T,T])$ be the space of càdlàg paths on [-T,T]

and $\pi_T : \mathcal{D} \to \mathcal{D}_T$ be the projection defined by $\pi_T \omega = \omega \lceil [-T,T] \rceil$. Let \mathcal{B}_T be the Borel sigmafield of \mathcal{D}_T . Let $\pi_\Lambda : \mathcal{D}_T \to \mathbb{R}^\Lambda$ be the projection defined by $\pi_\Lambda(\omega) = (\omega(t_0), \ldots, \omega(t_n))$ for $\omega \in \mathcal{D}_T$ and $\Lambda = \{t_0, \ldots, t_n\}$. Note that we use the same notation π as the projection from \mathcal{D} to \mathbb{R}^Λ . Then

$$\mathcal{A}_T = \{\pi_{\Lambda}^{-1}(E) \mid \Lambda \subset [-T,T], \#\Lambda < \infty, E \in \mathcal{B}(\mathbb{R}^{\Lambda})\}$$

is the family of cylinder sets. We set

$$\overset{\circ}{\mathcal{B}} = \bigcup_{s \ge 0} \pi_s^{-1}(\mathcal{B}_s), \quad \overset{\circ}{\mathcal{B}}_T = \bigcup_{0 \le s \le T} \pi_s^{-1}(\mathcal{B}_s).$$

It is also seen that the sigma-field generated by $\overset{\circ}{\mathcal{B}}$ (resp. $\overset{\circ}{\mathcal{B}}_T$) coincides with $\mathcal{B}_{\mathcal{D}}$ (resp. \mathcal{B}_T). Together with them we have

$$\mathcal{B}_{\mathcal{D}} = \boldsymbol{\sigma}(\mathcal{A}) = \boldsymbol{\sigma}(\overset{\circ}{\mathcal{B}}), \quad \mathcal{B}_{T} = \boldsymbol{\sigma}(\mathcal{A}_{T}) = \boldsymbol{\sigma}(\overset{\circ}{\mathcal{B}}_{T}).$$
 (3.5)

Hence (3.3) can be reformulated in terms of the coordinate process $(\hat{T}_t)_{t\geq 0}$ on $(\mathcal{D}, \mathcal{B}_{\mathcal{D}}, \mathbf{Q}^{\alpha})$ instead of $(\bar{\mathcal{Y}}, \mathcal{B}_{\bar{\mathcal{Y}}}, \bar{\Pi})$ as

$$(\phi, e^{-tL}\psi) = e^{\Delta t} \sum_{\alpha \in \mathbb{Z}_2} \int_{\mathbb{R}} \mathbb{E}_{\mathbf{Q}}^{\alpha} \mathbb{E}_{\mathbf{P}}^{x} \left[\overline{\phi(\hat{q}_0^{\Delta})} e^{-g \int_0^t W(\hat{q}_s^{\Delta}) ds} \psi(\hat{q}_t^{\Delta}) \right] d\mu(x).$$
(3.6)

Here

$$\hat{q}_s^{\Delta} = (\hat{T}_s, \hat{X}_s) \quad s \in \mathbb{R}$$

where \hat{X}_t is the Ornstein-Uhlenbeck process on the whole real line. The advantage of (3.4) is that Δ^{N_t} disappears. Δ^{N_t} is not shift invariant but \hat{T}_s in (3.4) is shift invariant. Then

$$\begin{split} &\sum_{\alpha \in \mathbb{Z}_2} \int_{\mathbb{R}} \mathbb{E}_{\mathbf{Q}}^{\alpha} \mathbb{E}_{\bar{\mathbf{P}}}^{x} \left[\overline{\phi(\hat{q}_{0}^{\bigtriangleup})} e^{-g \int_{0}^{t} W(\hat{q}_{s}^{\bigtriangleup}) ds} \psi(\hat{q}_{t}^{\bigtriangleup}) \right] d\mu(x) \\ &= \sum_{\alpha \in \mathbb{Z}_2} \int_{\mathbb{R}} \mathbb{E}_{\mathbf{Q}}^{\alpha} \mathbb{E}_{\bar{\mathbf{P}}}^{x} \left[\overline{\phi(\hat{q}_{-r}^{\bigtriangleup})} e^{-g \int_{0}^{t} W(\hat{q}_{s-r}^{\bigtriangleup}) ds} \psi(\hat{q}_{t-r}^{\bigtriangleup}) \right] d\mu(x) \end{split}$$

for any $0 \le r \le t$. Let

$$W_{\Delta}(t,s) = \hat{T}_t \hat{T}_s e^{-|t-s|}.$$
 (3.7)

Lemma 3.5 We have

$$(\mathbb{1}, e^{-tL}\mathbb{1}) = 2e^{\Delta t} \mathbb{E}_{\mathbf{Q}}^{\alpha} \left[\exp\left(\frac{g^2}{2} \int_0^t \mathrm{d}s \int_0^t \mathrm{d}r W_{\Delta}(s, r)\right) \right].$$

Proof: By the Feynman-Kac formula given by (3.4) and inserting (2.6), we can see that

$$(\mathbb{1}, e^{-tL}\mathbb{1}) = e^{\Delta t} \sum_{\alpha \in \mathbb{Z}_2} \mathbb{E}_{\mathbf{Q}}^{\alpha} \left[\mathbb{E}_{\bar{\mathbf{P}}}^x \left[e^{-g \int_0^t \hat{T}_s e^{-s} B_{e^{2s-1}} \mathrm{d}s} \right] \int_{\mathbb{R}} e^{-\left(\sqrt{2}g \int_0^t \hat{T}_s e^{-s} \mathrm{d}s\right) x} \mathrm{d}\mu(x) \right]$$

Since

$$\mathbb{E}_{\bar{P}}^{x} \left[e^{-g \int_{0}^{t} \hat{T}_{s} e^{-s} B_{e^{2s}-1} \mathrm{d}s} \right] = \exp\left(\frac{g^{2}}{2} \int_{0}^{t} \mathrm{d}s \int_{0}^{t} \mathrm{d}r \hat{T}_{s} \hat{T}_{r} e^{-(s+r)} (e^{2(s\wedge r)} - 1) \right)$$
$$\int_{\mathbb{R}} e^{-\left(\sqrt{2}g \int_{0}^{t} \hat{T}_{s} e^{-s} \mathrm{d}s\right)^{x}} \mathrm{d}\mu(x) = \exp\left\{\frac{g^{2}}{2} \left(\int_{0}^{t} \hat{T}_{s} e^{-s} \mathrm{d}s\right)^{2}\right\},$$

we obtain that

$$(\mathbb{1}, e^{-tL}\mathbb{1}) = e^{\Delta t} \sum_{\alpha \in \mathbb{Z}_2} \mathbb{E}_{\mathbf{Q}}^{\alpha} \left[\exp\left(\frac{g^2}{2} \int_0^t \mathrm{d}s \int_0^t \mathrm{d}r \hat{T}_s \hat{T}_r e^{-|s-r|} \right) \right]$$

Hence the lemma follows.

Remark 3.6 (1) Since $W_{\Delta}(s,r)$ is independent of α , $\mathbb{E}_{\mathbf{Q}}^{\alpha}\left[\exp\left(\frac{g^2}{2}\int_0^t \mathrm{d}s\int_0^t \mathrm{d}r W_{\Delta}(s,r)\right)\right]$ is also independent of σ .

(2) By the shift invariance of \hat{T}_s we can also see that

$$\mathbb{E}_{\mathbf{Q}}^{\alpha}\left[\exp\left(\frac{g^2}{2}\int_0^t \mathrm{d}s\int_0^t \mathrm{d}rW_{\Delta}(s,r)\right)\right] = \mathbb{E}_{\mathbf{Q}}^{\alpha}\left[\exp\left(\frac{g^2}{2}\int_{-u}^{t-u} \mathrm{d}s\int_{-u}^{t-u} \mathrm{d}rW_{\Delta}(s,r)\right)\right]$$

for any $0 \le u \le t$. Thus we see that

$$(e^{-tL}\mathbb{1}, e^{-tL}\mathbb{1}) = 2e^{2\Delta t} \mathbb{E}_{\mathbf{Q}}^{\alpha} \left[\exp\left(\frac{g^2}{2} \int_0^{2t} \mathrm{d}s \int_0^{2t} \mathrm{d}r W_{\Delta}(s, r)\right) \right]$$
$$= 2e^{2\Delta t} \mathbb{E}_{\mathbf{Q}}^{\alpha} \left[\exp\left(\frac{g^2}{2} \int_{-t}^t \mathrm{d}s \int_{-t}^t \mathrm{d}r W_{\Delta}(s, r)\right) \right].$$
(3.8)

We can also compute $(e^{-tL}\mathbb{1}, e^{-\beta b^{\dagger}b}e^{-tL}\mathbb{1})$ for $\beta > 0$.

Lemma 3.7 Let $\beta > 0$. Then

$$(e^{-tL}\mathbb{1}, e^{-\beta b^{\dagger} b} e^{-tL}\mathbb{1}) = 2e^{2\Delta t} \mathbb{E}_{\mathbf{Q}}^{\alpha} \left[\exp\left(\frac{g^2}{2} \int_{-t}^{t} \int_{-t}^{t} W_{\Delta}(s, r) \mathrm{d}s \mathrm{d}r - g^2(1 - e^{-\beta}) \int_{-t}^{0} \int_{0}^{t} W_{\Delta}(s, r) \mathrm{d}s \mathrm{d}r \right) \right].$$

Proof: Since

$$(\phi, e^{-\beta b^{\dagger} b} \psi) = \sum_{\alpha \in \mathbb{Z}_2} \int_{\mathbb{R}} \bar{\phi}(\alpha, X_0) \mathbb{E}_{\bar{\mathbf{P}}}^x [\psi(\alpha, X_\beta)] \mathrm{d}\mu(x),$$

we see that

$$(e^{-tL}\mathbb{1}, e^{-\beta b^{\dagger} b} e^{-tL}\mathbb{1}) = \sum_{\alpha \in \mathbb{Z}_2} \int_{\mathbb{R}} (e^{-tL}\mathbb{1})(\alpha, X_0) \mathbb{E}_{\bar{\mathbf{P}}}^x [(e^{-tL}\mathbb{1})(\alpha, X_\beta)] d\mu(x).$$

It is straightforward to compute $(e^{-tL}\mathbb{1})(\alpha, X_0)$ and $(e^{-tL}\mathbb{1})(\alpha, X_\beta)$. We have

$$\begin{split} (e^{-tL}\mathbbm{1})(\alpha,X_0) &= e^{\triangle t} \mathbb{E}_{\mathbf{Q}}^{\alpha} \mathbb{E}_{\mathbf{P}}^{x} \left[e^{-\sqrt{2}g \int_0^t \hat{T}_s X_s^x \mathrm{d}s} \right] \\ &= e^{\triangle t} \mathbb{E}_{\mathbf{Q}}^{\alpha} \left[e^{-\sqrt{2}g \int_0^t \hat{T}_s e^{-s} \mathrm{d}sx} \mathbb{E}_{\mathcal{W}}^0 \left[e^{-g \int_0^t \hat{T}_s e^{-s} B_{e^{2s}-1} \mathrm{d}s} \right] \right] \\ &= e^{\triangle t} \mathbb{E}_{\mathbf{Q}}^{\alpha} \left[e^{-\sqrt{2}g \int_0^t \hat{T}_s e^{-s} \mathrm{d}sx} e^{\frac{g^2}{2} \int_0^t \mathrm{d}s \int_0^t \mathrm{d}r \hat{T}_s \hat{T}_r e^{-(s+r)} (e^{2(s\wedge r)} - 1)} \right]. \end{split}$$

The computation of $\mathbb{E}_{\bar{P}}^{x}\left[(e^{-tL}\mathbb{1})(\alpha, X_{\beta})\right]$ is more complicated than that of $(e^{-tL}\mathbb{1})(\alpha, X_{0})$. We have

$$\mathbb{E}_{\bar{\mathbf{P}}}^{x}\left[(e^{-tL}\mathbb{1})(\alpha, X_{\beta})\right] = e^{\Delta t} \mathbb{E}_{\bar{\mathbf{P}}}^{x}\left[\mathbb{E}_{\mathbf{Q}}^{\alpha}\left[e^{-\sqrt{2}g\int_{0}^{t}\hat{T}_{s}e^{-s}\mathrm{d}sX_{\beta}}e^{\frac{g^{2}}{2}\int_{0}^{t}\mathrm{d}s\int_{0}^{t}\mathrm{d}r\hat{T}_{s}\hat{T}_{r}e^{-(s+r)}(e^{2(s\wedge r)}-1)}\right]\right]$$

Inserting (2.6) to X_{β} above again, we obtain that

$$= e^{\Delta t} \mathbb{E}_{\mathcal{W}}^{0} \left[\mathbb{E}_{\mathcal{Q}}^{\alpha} \left[e^{-\sqrt{2}g \int_{0}^{t} \hat{T}_{s} e^{-s} ds e^{-\beta} \left(x + \frac{1}{\sqrt{2}} B_{e^{2\beta}-1}\right) e^{\frac{g^{2}}{2} \int_{0}^{t} ds \int_{0}^{t} dr \hat{T}_{s} \hat{T}_{r} e^{-(s+r)} (e^{2(s\wedge r)} - 1)} \right] \right] \\= e^{\Delta t} \mathbb{E}_{\mathcal{Q}}^{\alpha} \left[e^{-\left(\sqrt{2}g \int_{0}^{t} \hat{T}_{s} e^{-s} ds\right) e^{-\beta} x} e^{\frac{g^{2}}{2} \int_{0}^{t} ds \int_{0}^{t} dr \hat{T}_{s} \hat{T}_{r} e^{-(s+r)} (1 - e^{-2\beta})} e^{\frac{g^{2}}{2} \int_{0}^{t} ds \int_{0}^{t} dr \hat{T}_{s} \hat{T}_{r} e^{-(s+r)} (e^{2(s\wedge r)} - 1)} \right] \\= e^{\Delta t} \mathbb{E}_{\mathcal{Q}}^{\alpha} \left[e^{-\left(\sqrt{2}g \int_{0}^{t} \hat{T}_{s-t} e^{-s} ds\right) e^{-\beta} x} e^{\frac{g^{2}}{2} \int_{0}^{t} ds \int_{0}^{t} dr \hat{T}_{s-t} \hat{T}_{r-t} e^{-(s+r)} (1 - e^{-2\beta})} e^{\frac{g^{2}}{2} \int_{0}^{t} ds \int_{0}^{t} dr \hat{T}_{s-t} \hat{T}_{r-t} e^{-(s+r)} (e^{2(s\wedge r)} - 1)} \right] \\$$

In the last line above we shift \hat{T}_s by t. Since \hat{T}_u for $0 \le u \le t$ and \hat{T}_{s-t} for $0 \le s \le t$ are independent, combining above computations, we have

$$(e^{-tL} \mathbb{1}, e^{-\beta b^{\dagger} b} e^{-tL} \mathbb{1})$$

$$= \sum_{\alpha \in \mathbb{Z}_{2}} e^{2\Delta t} \int_{\mathbb{R}} \frac{e^{-x^{2}}}{\sqrt{\pi}} \mathbb{E}_{Q}^{\alpha} \left[e^{-\left(\sqrt{2}g \int_{0}^{t} \hat{T}_{s} e^{-s} ds\right) x} e^{-\left(\sqrt{2}g \int_{0}^{t} \hat{T}_{s-t} e^{-s} ds\right) e^{-\beta} x} e^{\frac{g^{2}}{2} \int_{0}^{t} ds \int_{0}^{t} dr \hat{T}_{s} \hat{T}_{r} e^{-(s+r)} (e^{2(s\wedge r)} - 1)} \right] \\ \times e^{\frac{g^{2}}{2} \int_{0}^{t} ds \int_{0}^{t} dr \hat{T}_{s-t} \hat{T}_{r-t} e^{-(s+r)} (1 - e^{-2\beta}) e^{\frac{g^{2}}{2} \int_{0}^{t} ds \int_{0}^{t} dr \hat{T}_{s-t} \hat{T}_{r-t} e^{-(s+r)} (e^{2(s\wedge r)} - 1)} \right] dx.$$
(3.9)

Terms dependent on x on the exponent above can be computed as

$$- x^{2} - \sqrt{2}g \left(e^{-\beta} \int_{0}^{t} \hat{T}_{s-t} e^{-s} ds + \int_{0}^{t} \hat{T}_{s} e^{-s} ds \right) x$$

$$= -\left(x + \frac{g}{\sqrt{2}} \int_{0}^{t} \hat{T}_{s} e^{-s} ds + \frac{g}{\sqrt{2}} e^{-\beta} \int_{0}^{t} \hat{T}_{s-t} e^{-s} ds \right)^{2} + \frac{g^{2}}{2} \left(\int_{0}^{t} \hat{T}_{s} e^{-s} ds + e^{-\beta} \int_{0}^{t} \hat{T}_{s-t} e^{-s} ds \right)^{2}.$$

The first term on the right-hand side can be integrated with respect to dx as

$$\frac{1}{\sqrt{\pi}} \int_{\mathbb{R}} e^{-\left(x + \frac{g}{\sqrt{2}} \int_{0}^{t} \hat{T}_{s} e^{-s} \mathrm{d}s + \frac{g}{\sqrt{2}} e^{-\beta} \int_{0}^{t} \hat{T}_{s-t} e^{-s} \mathrm{d}s\right)^{2}} \mathrm{d}x = 1.$$

The second term on the right-hand side can be computed as

$$\left(\int_0^t \hat{T}_s e^{-s} ds + e^{-\beta} \int_0^t \hat{T}_{s-t} e^{-s} ds \right)^2$$

$$= \int_0^t \int_0^t \hat{T}_s \hat{T}_r e^{-(s+r)} ds dr + 2e^{-\beta} \int_0^t \int_0^t \hat{T}_{s-t} \hat{T}_r e^{-(s+r)} ds dr + e^{-2\beta} \int_0^t \int_0^t \hat{T}_{s-t} \hat{T}_{r-t} e^{-(s+r)} ds dr.$$

$$(3.10)$$

Terms independent of x on (3.9) are

$$\int_{0}^{t} \mathrm{d}s \int_{0}^{t} \hat{T}_{s} \hat{T}_{r} e^{-(s+r)} (e^{2(s\wedge r)} - 1) \mathrm{d}r + \int_{0}^{t} \mathrm{d}s \int_{0}^{t} \hat{T}_{s-t} \hat{T}_{r-t} e^{-(s+r)} (1 - e^{-2\beta}) \mathrm{d}r + \int_{0}^{t} \mathrm{d}s \int_{0}^{t} \hat{T}_{s-t} \hat{T}_{r-t} e^{-(s+r)} (e^{2(s\wedge r)} - 1) \mathrm{d}r.$$
(3.11)

Then the sum of (3.10) and (3.11) is

$$(3.10) + (3.11) = \int_0^t \mathrm{d}s \int_0^t \hat{T}_{s-t} \hat{T}_{r-t} e^{-|s-r|} \mathrm{d}r + \int_0^t \mathrm{d}s \int_0^t \hat{T}_s \hat{T}_r e^{-|s-r|} \mathrm{d}r + 2e^{-\beta} \int_0^t \int_0^t \hat{T}_{s-t} \hat{T}_r e^{-(s+r)} \mathrm{d}s \mathrm{d}r \\ = \int_{-t}^0 \mathrm{d}s \int_{-t}^0 \hat{T}_s \hat{T}_r e^{-|s-r|} \mathrm{d}r + \int_0^t \mathrm{d}s \int_0^t \hat{T}_s \hat{T}_r e^{-|s-r|} \mathrm{d}r + 2e^{-\beta} \int_{-t}^0 \int_0^t \hat{T}_s \hat{T}_r e^{-|s-r|} \mathrm{d}s \mathrm{d}r.$$

By the trick $\int_{-t}^{t} \int_{-t}^{t} = \int_{-t}^{0} \int_{-t}^{0} + \int_{0}^{t} \int_{0}^{t} + 2 \int_{-t}^{0} \int_{0}^{t}$, we see that

$$(3.10) + (3.11) = \int_{-t}^{t} \mathrm{d}s \int_{-t}^{t} \hat{T}_{s} \hat{T}_{r} e^{-|s-r|} \mathrm{d}r - 2(1 - e^{-\beta}) \int_{-t}^{0} \int_{0}^{t} \hat{T}_{s} \hat{T}_{r} e^{-|s-r|} \mathrm{d}s \mathrm{d}r.$$

Then the lemma follows.

Define the probability measure Π_T on $(\mathcal{D}, \mathcal{B}_{\mathcal{D}})$ by

$$\Pi_T(A) = \frac{1}{Z_T} \frac{1}{2} e^{2T\Delta} \sum_{\alpha \in \mathbb{Z}_2} \mathbb{E}_Q^{\alpha} \left[\mathbb{1}_A e^{\frac{g^2}{2} \int_{-T}^T \mathrm{d}t \int_{-T}^T \mathrm{d}s W_{\Delta}(t,s)} \right], \quad A \in \mathcal{B}_{\mathcal{D}},$$
(3.12)

where $Z_T = \frac{1}{2}e^{2T\triangle}\sum_{\alpha\in\mathbb{Z}_2}\mathbb{E}_Q^{\alpha}\left[e^{\frac{g^2}{2}\int_{-T}^{T}dt\int_{-T}^{T}dsW_{\triangle}(t,s)}\right]$ is the normalizing constant. Note that pair interaction $W_{\triangle}(t,s)$ is independent of σ and hence one can replace $\sum_{\alpha\in\mathbb{Z}_2}\mathbb{E}_Q^{\alpha}$ with $2\mathbb{E}_Q^{\alpha}$ in (3.12). We also notice that $1 = \|\Phi_g\|_{\mathcal{H}}^2 = \sum_{\alpha\in\mathbb{Z}_2}\int_{\mathbb{R}}|\Phi_g(\alpha,x)|^2d\mu(x), 2 = \|\mathbf{1}\|_{\mathcal{H}}^2 = \sum_{\alpha\in\mathbb{Z}_2}\int_{\mathbb{R}}d\mu(x)$ and $2Z_T = \|e^{-TL}\mathbf{1}\|^2$. Let $A_j \in \mathcal{B}(\mathbb{R})$ for $j = 0, 1, \ldots, n$ and $\Lambda = \{t_0, t_1, \ldots, t_n\} \subset [-T, T]$. The cylinder set is defined by

defined by

$$C_T^{\Lambda}(A_0 \times \cdots \times A_n) = \{ \omega \in \mathcal{D}_T \mid \omega(t_j) \in A_j, j = 0, 1, \dots, n \}$$

Recall that the family of cylinder sets is denoted by \mathcal{A}_T . We also note that $\boldsymbol{\sigma}(\mathcal{A}_T) = \mathcal{B}_T$. Let

$$m_t(A) = e^{2Et} e^{2\Delta t} \sum_{\alpha \in \mathbb{Z}_2} \int_{\mathbb{R}} \mathbb{E}_{\mathbf{Q}}^{\alpha} \mathbb{E}_{\bar{\mathbf{P}}}^x \left[\mathbbm{1}_A \Phi_{\mathbf{g}}(\hat{q}_{-t}^{\Delta}) \Phi_{\mathbf{g}}(\hat{q}_t^{\Delta}) e^{-g \int_{-t}^t W(\hat{q}_s^{\Delta}) \mathrm{d}s} \right] \mathrm{d}\mu(x).$$
(3.13)

Since $\overset{\circ}{\mathcal{B}}$ is a finitely additive family of sets, we define the finitely additive set function ν on $(\mathcal{D}, \overset{\circ}{\mathcal{B}})$ by $\nu(A) = m_t(A)$ for $A \in \pi_t^{-1}(\mathcal{B}_t)$.

Lemma 3.8 ν is well defined, i.e., $m_t(A) = m_s(A)$ for $A \in \pi_t^{-1}(\mathcal{B}_t) \subset \pi_s^{-1}(\mathcal{B}_s)$.

Proof: Notice that $m_t \circ \pi_t^{-1}$ and $m_s \circ \pi_t^{-1}$ are probability measures on $(\mathcal{D}_t, \mathcal{B}_t)$. We compute finite dimensional distributions of $m_t \circ \pi_t^{-1}$ and $m_s \circ \pi_t^{-1}$. Let $\Lambda = \{t_0, t_1, \ldots, t_n\} \subset [-t, t] \subset [-s, s]$. Since $e^{-r\bar{L}}\Phi_g = \Phi_g$ for any $r \geq 0$, we have by (4.4),

$$\begin{split} m_{t} &\circ \pi_{t}^{-1} (C_{t}^{\Lambda}(A_{0} \times \dots \times A_{n})) \\ &= e^{2Et} e^{2\Delta t} \sum_{\alpha \in \mathbb{Z}_{2}} \int_{\mathbb{R}} \mathbb{E}_{\mathbf{Q}}^{\alpha} \mathbb{E}_{\mathbf{\bar{P}}}^{x} \left[\left(\prod_{j=0}^{n} \mathbb{1}_{A_{j}}(\hat{T}_{t_{j}}) \right) \Phi_{\mathbf{g}}(\hat{q}_{-t}^{\Delta}) \Phi_{\mathbf{g}}(\hat{q}_{t}^{\Delta}) e^{-g \int_{-t}^{t} W(\hat{q}_{s}^{\Delta}) ds} \right] \mathrm{d}\mu(x) \\ &= (e^{-(t_{0}+t)\bar{L}} \Phi_{\mathbf{g}}, \mathbb{1}_{A_{0}} e^{-(t_{1}-t_{0})\bar{L}} \mathbb{1}_{A_{1}} \cdots e^{-(t_{n}-t_{n-1})\bar{L}} \mathbb{1}_{A_{n}} e^{-(t-t_{n})\bar{L}} \Phi_{\mathbf{g}}) \\ &= (\Phi_{\mathbf{g}}, \mathbb{1}_{A_{0}} e^{-(t_{1}-t_{0})\bar{L}} \mathbb{1}_{A_{1}} \cdots e^{-(t_{n}-t_{n-1})\bar{L}} \mathbb{1}_{A_{n}} \Phi_{\mathbf{g}}) \\ &= (e^{-(t_{0}+s)\bar{L}} \Phi_{\mathbf{g}}, \mathbb{1}_{A_{0}} e^{-(t_{1}-t_{0})\bar{L}} \mathbb{1}_{A_{1}} \cdots e^{-(t_{n}-t_{n-1})\bar{L}} \mathbb{1}_{A_{n}} e^{-(s-t_{n})\bar{L}} \Phi_{\mathbf{g}}) \\ &= m_{s} \circ \pi_{t}^{-1} (C_{t}^{\Lambda}(A_{0} \times \cdots \times A_{n})). \end{split}$$

It is straightforward to see that the Kolmogorov consistency condition also holds true:

$$m_t \circ \pi_t^{-1} \left(C_t^{\{\Lambda, s_1, \dots, s_m\}} \left(A_0 \times \dots \times A_n \times \prod^m \mathbb{R} \right) \right) = m_t \circ \pi_t^{-1} (C_t^{\Lambda} (A_0 \times \dots \times A_n)).$$

Let $\pi_{\Lambda} : [-t, t]^{\mathbb{R}} \to \mathbb{R}^{\Lambda}$ be the projection such that for $\omega \in [-t, t]^{\mathbb{R}}$, $\pi_{\Lambda}\omega = (\omega(t_0), \ldots, \omega(t_n))$. Thus by the Kolmogorov extension theorem there exists a unique probability measure \bar{m}_t on $([-t, t]^{\mathbb{R}}, \boldsymbol{\sigma}(\mathcal{A}_t))$ such that

$$\bar{m}_t(\pi_\Lambda^{-1}(A_0 \times \dots \times A_n)) = m_t \circ \pi_t^{-1}(C_t^\Lambda(A_0 \times \dots \times A_n))$$
(3.14)

for all $\Lambda \subset [-t,t]$ with $\#\Lambda < \infty$ and $A_j \in \mathcal{B}(\mathbb{R})$. Since the extension is unique, $m_t \circ \pi_t^{-1} = \bar{m}_t$. Similarly there exists a unique probability measure \bar{m}_s on $([-t,t]^{\mathbb{R}}, \boldsymbol{\sigma}(\mathcal{A}_t))$ such that $m_s \circ \pi_t^{-1} = \bar{m}_s$. Then $m_s \circ \pi_t^{-1} = m_t \circ \pi_t^{-1}$ on \mathcal{B}_t , which implies the lemma.

The first task is to extend ν to a probability measure by the Hopf extension theorem.

Lemma 3.9 ν can be uniquely extended to a probability measure Π_{∞} on $(\mathcal{D}, \mathcal{B}_{\mathcal{D}})$.

Proof: Suppose that $E_n \in \overset{\circ}{\mathcal{B}}$ such that $E_n \supset E_{n+1} \supset \ldots$ and $\lim_{n\to\infty} \nu(E_n) = \alpha > 0$. It is enough to show that $\bigcap_n E_n \neq \emptyset$ by the Hopf extension theorem. Let $E_n = \pi_{T_n}^{-1}(E'_n)$ with $E'_n \in \mathcal{B}_{T_n}$. We can assume that $T_n < T_{n+1} < \to \infty$. Let $\mu_T = \nu \circ \pi_T^{-1}$ be a probability measure on \mathcal{D}_T . Since \mathcal{D}_T is a Polish space, μ_T is regular, i.e., for $A \in \mathcal{B}_T$ and $\epsilon > 0$ there exist a compact set K and an open set O in \mathcal{D}_T such that $K \subset A \subset O$ and $\mu_T(O \setminus K) < \epsilon$. There exists a compact set $K'_n \subset \mathcal{D}_{T_n}$ such that $\mu_{T_n}(E'_n \setminus K'_n) < \alpha/2^n$. Let $K_n = \pi_{T_n}^{-1}(K'_n)$, $D_n = \bigcap_{j=1}^n K_j$ and $D = \bigcap_{n=1}^\infty D_n$. Since $D \subset \bigcap_n E_n$, it is enough to show that $D \neq \emptyset$. We

$$\alpha - \nu(D_n) \leq \nu(E_n) - \nu(D_n) \leq \nu(E_n \setminus D_n)$$

= $\nu(\bigcup_{j=1}^n E_n \setminus K_j) = \nu(\pi_{T_n}^{-1} \bigcup_{j=1}^n E'_n \setminus K'_j) = \mu_{T_n}(\bigcup_{j=1}^n E'_n \setminus K'_j)$
= $\sum_{j=1}^n \mu_{T_n}(E'_n \setminus K'_j) \leq \sum_{j=1}^n \mu_{T_n}(E'_j \setminus K'_j) \leq \sum_{j=1}^n \alpha/2^j.$

Then $0 < \nu(D_n)$ and we see that $D_n \neq \emptyset$. Let $f_n \in D_n$, i.e., $f_n \in \bigcap_{j=1}^n K_j$. Thus

 $f_n \in K_\ell$ for any $n \ge \ell$.

Let $\ell = 1$. Then $\pi_{T_1}(f_n) \in K'_1$ for any $n \geq 1$. Taking a subsequence n', we see that $\lim_{n'\to\infty} \pi_{T_1}(f_{n'}) = h_1 \in K'_1$ exists. Let $\ell = 2$. Then $\pi_{T_2}(f_{n'}) \in K'_2$ for any $n' \geq 2$. Take a subsequence n'' of n' again, then $\lim_{n''\to\infty} \pi_{T_2}(f_{n''}) = h_2 \in K'_2$ exists. Proceeding this procedure, we can obtain a subsequence $\{m\}$ that $\lim_{m\to\infty} \pi_{T_\ell}(f_m) = h_\ell \in K'_\ell$ exists for any ℓ . Let $g_\ell = \pi_{T_\ell}^{-1}(h_\ell) \in L_\ell$. Define $g \in \mathcal{D}$ by $g(x) = g_\ell(x)$ for $x \in [-T_\ell, T_\ell]$. By the construction this is well defined, i.e., $g_\ell(x) = g_{\ell+1}(x)$ for $x \in [-T_\ell, T_\ell]$. We see that $g \in D$ and $D \neq \emptyset$.

For probability measures Π_T and Π_{∞} on $(\mathcal{D}, \mathcal{B}_{\mathcal{D}})$ in order to show that $\Pi_T(A) \to \Pi_{\infty}(A)$ for every $A \in \overset{\circ}{\mathcal{B}}$, we define the finitely additive set function ρ_T on $(\mathcal{D}_T, \overset{\circ}{\mathcal{B}}_T)$. Let $\mathbb{1}_T = e^{-T\bar{L}}\mathbb{1}$ for $t \geq 0$. Then $s - \lim_{T \to \infty} \mathbb{1}_T = \Phi_g$ and $\|\mathbb{1}_T\|^2 = 2e^{2TE}Z_T$. The finitely additive set function ρ_T on $(\mathcal{D}_T, \overset{\circ}{\mathcal{B}}_T)$ is defined by

$$\rho_T(A) = e^{2Et} e^{2t\Delta} \frac{1}{\|\mathbb{1}_T\|^2} \sum_{\alpha \in \mathbb{Z}_2} \int_{\mathbb{R}} \mathbb{E}_{\mathbf{Q}}^{\alpha} \mathbb{E}_{\mathbf{P}}^{x} \left[\mathbb{1}_A \mathbb{1}_{T-t}(\hat{q}_{-t}^{\Delta}) \mathbb{1}_{T-t}(\hat{q}_{t}^{\Delta}) e^{-g \int_{-t}^{t} W(\hat{q}_s^{\Delta}) \mathrm{d}s} \right] \mathrm{d}\mu(x)$$
(3.15)

for $A \in \pi_t^{-1}(\mathcal{B}_t)$ but $t \leq T$. The right-hand side of (3.15) is denoted by $M_{T,t}(A)$.

Lemma 3.10 ρ_T is well defined, i.e., $M_{T,t}(A) = M_{T,s}(A)$ for $A \in \pi_t^{-1}(\mathcal{B}_t) \subset \pi_s^{-1}(\mathcal{B}_r)$.

Proof: This is shown in a similar manner to Lemma 3.8. Let

$$M_{T,t}(A) = e^{2Et} e^{2t\Delta} \sum_{\alpha \in \mathbb{Z}_2} \int_{\mathbb{R}} \mathbb{E}_{\mathbf{Q}}^{\alpha} \mathbb{E}_{\bar{\mathbf{P}}}^{x} \left[\mathbbm{1}_A \mathbbm{1}_{T-t}(\hat{q}_{-t}^{\Delta}) \mathbbm{1}_{T-t}(\hat{q}_{t}^{\Delta}) e^{-g \int_{-t}^{t} W(\hat{q}_{s}^{\Delta}) \mathrm{d}s} \right] \mathrm{d}\mu(x)$$

Then $M_{T,t} \circ \pi_t^{-1}$ and $M_{T,s} \circ \pi_t^{-1}$ are probability measures on $(\mathcal{D}_t, \mathcal{B}_t)$. Let $\Lambda = \{t_0, t_1, \ldots, t_n\} \subset [-t, t] \subset [-s, s]$. We have by (4.4),

$$\begin{split} M_{T,t} \circ \pi_t^{-1} (C_t^{\Lambda}(A_0 \times \dots \times A_n)) \\ &= e^{2Et} e^{2\Delta t} \sum_{\alpha \in \mathbb{Z}_2} \int_{\mathbb{R}} \mathbb{E}_Q^{\alpha} \mathbb{E}_{\bar{P}}^x \left[\left(\prod_{j=0}^n \mathbb{1}_{A_j}(\hat{T}_{t_j}) \right) \mathbb{1}_{T-t}(\hat{q}_{-t}^{\Delta}) \mathbb{1}_{T-t}(\hat{q}_t^{\Delta}) e^{-g \int_{-t}^t W(\hat{q}_r^{\Delta}) dr} \right] d\mu(x) \\ &= (e^{-(t_0+t)\bar{L}} \mathbb{1}_{T-t}, \mathbb{1}_{A_0} e^{-(t_1-t_0)\bar{L}} \mathbb{1}_{A_1} \cdots e^{-(t_n-t_{n-1})\bar{L}} \mathbb{1}_{A_n} e^{-(t-t_n)\bar{L}} \mathbb{1}_{T-t}) \\ &= (e^{-(t_0+s)\bar{L}} \mathbb{1}_{T-s}, \mathbb{1}_{A_0} e^{-(t_1-t_0)\bar{L}} \mathbb{1}_{A_1} \cdots e^{-(t_n-t_{n-1})\bar{L}} \mathbb{1}_{A_n} e^{-(s-t_n)\bar{L}} \mathbb{1}_{T-s}) \\ &= M_{T,s} \circ \pi_t^{-1} (C_t^{\Lambda}(A_0 \times \dots \times A_n)). \end{split}$$

It is straightforward to see that the Kolmogorov consistency condition also holds true:

$$M_{T,t} \circ \pi_t^{-1} \left(C_t^{\{\Lambda, s_1, \dots, s_m\}} \left(A_0 \times \dots \times A_n \times \prod^m \mathbb{R} \right) \right) = M_{T,t} \circ \pi_t^{-1} (C_t^{\Lambda} (A_0 \times \dots \times A_n)).$$

Thus by the Kolmogorov extension theorem there exists a unique probability measure $\overline{M}_{T,t}$ on $([-t,t]^{\mathbb{R}}, \boldsymbol{\sigma}(\mathcal{A}_t))$ such that

$$\bar{M}_{T,t}(\pi_{\Lambda}^{-1}(A_0 \times \dots \times A_n)) = M_{T,t} \circ \pi_t^{-1}(C_t^{\Lambda}(A_0 \times \dots \times A_n))$$
(3.16)

for all $\Lambda \subset [-T, T]$ with $\#\Lambda < \infty$ and $A_j \in \mathcal{B}(\mathbb{R})$. Since the extension is unique, $M_{T,t} \circ \pi_t^{-1} = \overline{M}_{T,t}$. Similarly there exists a unique probability measure $\overline{M}_{T,s}$ on $([-t,t]^{\mathbb{R}}, \sigma(\mathcal{A}_t))$ such that $M_{T,s} \circ \pi_t^{-1} = \overline{M}_{T,s}$. Then $M_{T,s} \circ \pi_t^{-1} = M_{T,t} \circ \pi_t^{-1}$ on \mathcal{B}_t , which implies the lemma.

We shall show that $\rho_T = \Pi_T$ on $\overset{\circ}{\mathcal{B}}_T$ for any T > 0.

Lemma 3.11 We have $\rho_T = \Pi_T$ on $\overset{\circ}{\mathcal{B}}_T$.

Proof: Let $t \leq T$. It is enough to show that $\Pi_T(A) = \rho_T(A)$ for $A \in \pi_t^{-1}(\mathcal{B}_t)$. Let $\Lambda = \{t_0, t_1, ..., t_n\} \subset [-t, t] \subset [-T, T]$ and $A_0 \times \cdots \times A_n \in \mathcal{B}(\mathbb{R}^\Lambda)$. We have

$$\Pi_T \circ \pi_t^{-1}(C_t^{\Lambda}(A_0 \times \dots \times A_n)) = \frac{1}{Z_T} e^{2T\triangle} \frac{1}{2} \sum_{\alpha \in \mathbb{Z}_2} \mathbb{E}_Q^{\alpha} \left[\left(\prod_{j=0}^n \mathbb{1}_{A_j}(\hat{T}_{t_j}) \right) e^{\frac{g^2}{2} \int_{-T}^T \mathrm{d}t \int_{-T}^T \mathrm{d}s W_{\triangle}(t,s)} \right],$$
(3.17)

$$\rho_{T} \circ \pi_{t}^{-1} (C_{t}^{\Lambda}(A_{0} \times \dots \times A_{n}))$$

$$= e^{2Et} e^{2\Delta t} \frac{1}{\|\mathbb{1}_{T}\|^{2}} \sum_{\alpha \in \mathbb{Z}_{2}} \int_{\mathbb{R}} \mathbb{E}_{Q}^{\alpha} \mathbb{E}_{P}^{x} \left[\left(\prod_{j=0}^{n} \mathbb{1}_{A_{j}}(\hat{T}_{t_{j}}) \right) \mathbb{1}_{T-t}(\hat{q}_{-t}^{\Delta}) \mathbb{1}_{T-t}(\hat{q}_{t}^{\Delta}) e^{-g \int_{-t}^{t} W(\hat{q}_{s}^{\Delta}) \mathrm{d}s} \right] \mathrm{d}\mu(x).$$

$$(3.18)$$

By (4.4) we see that

$$(3.17) = \frac{1}{\|\mathbb{1}_{T}\|^{2}} (\mathbb{1}, e^{-(t_{0}+T)L} \mathbb{1}_{A_{0}} e^{-(t_{1}-t_{0})L} \mathbb{1}_{A_{1}} \cdots \mathbb{1}_{A_{n}} e^{-(T-t_{n})L} \mathbb{1})$$

$$= \frac{e^{2Et}}{\|\mathbb{1}_{T}\|^{2}} (\mathbb{1}_{T-t}, e^{-(t_{0}+t)L} \mathbb{1}_{A_{0}} e^{-(t_{1}-t_{0})L} \mathbb{1}_{A_{1}} \cdots \mathbb{1}_{A_{n}} e^{-(t-t_{n})L} \mathbb{1}_{T-t}) = (3.18).$$

Then we have

$$\Pi_T \circ \pi_t^{-1}(C_t^{\Lambda}(A_0 \times \dots \times A_n)) = \rho_T \circ \pi_t^{-1}(C_t^{\Lambda}(A_0 \times \dots \times A_n)).$$
(3.19)

Since both sides of (3.19) satisfy the Kolmogorov consistency condition, there exists a unique probability measure μ on $(\mathcal{D}_T, \mathcal{B}_t)$ such that

$$\mu(\pi_{\Lambda}^{-1}(A_0 \times \cdots \times A_n)) = \Pi_T \circ \pi_t^{-1}(C_t^{\Lambda}(A_0 \times \cdots \times A_n)) = \rho_T \circ \pi_t^{-1}(C_t^{\Lambda}(A_0 \times \cdots \times A_n)).$$

 $\Pi_{T} \circ \pi_{t}^{-1} \text{ and } \rho_{T} \circ \pi_{t}^{-1} \text{ are probability measures on } (\mathcal{D}_{t}, \mathcal{B}_{t}), \text{ and } \Pi_{T} \circ \pi_{t}^{-1}(C_{t}^{\Lambda}(A_{0} \times \cdots \times A_{n})) = \Pi_{T} \circ \pi_{t}^{-1}(\pi_{\Lambda}^{-1}(A_{0} \times \cdots \times A_{n})) = \rho_{T} \circ \pi_{t}^{-1}(C_{t}^{\Lambda}(A_{0} \times \cdots \times A_{n})) = \rho_{T} \circ \pi_{t}^{-1}(\pi_{\Lambda}^{-1}(A_{0} \times \cdots \times A_{n})).$ Since the extension is unique, $\Pi_{T} \circ \pi_{t}^{-1} = \mu = \rho_{T} \circ \pi_{t}^{-1}$ on $(\mathcal{D}_{t}, \mathcal{B}_{t})$ follows.

The following proposition is shown for spin boson model in [5, Theorem 3.8] and for relativistic Pauli-Fierz model in [6, Lemma 7.6], and the proof for the quantum Rabi Hamiltonian is a minor modification of [5, 6].

Proposition 3.12 There exists a probability measure Π_{∞} on $(\mathcal{D}, \mathcal{B}_{\mathcal{D}})$ such that

$$\lim_{T \to \infty} \Pi_T(A) = \Pi_\infty(A) \quad A \in \overset{\circ}{\mathcal{B}}.$$

Proof: By $s - \lim_{T \to \infty} \mathbb{1}_T = \Phi_g$ we obtain that $s - \lim_{T \to \infty} \mathbb{1}_{T-t} = \Phi_g$ and $\lim_{T \to \infty} \|\mathbb{1}_T\| = 1$. Then for each $\alpha \in \mathbb{Z}_2$, $(\mathbb{1}_{T-t}/\|\mathbb{1}_T\|)(\cdot, \sigma) \to \varphi_g(\cdot, \sigma)$ as $T \to \infty$ in $L^2(\mathbb{R}, d\mu)$. Let $\Phi_g^T = \frac{\mathbb{1}_{T-t}}{\|\mathbb{1}_T\|}$. Note that $\Phi_g, \Phi_g^T \in L^\infty(\mathbb{Z}_2 \times \mathbb{R})$. Let $A \in \pi_t^{-1}(\mathcal{B}_t)$. Then $\Pi_T(A) = \rho_T(A)$ by Lemma 3.11 and $\nu(A) = \Pi_\infty(A)$ by Lemma 3.8. We have

$$\Pi_{T}(A) - \Pi_{\infty}(A) = \rho_{T}(A) - \nu(A)$$

$$= e^{2Et} e^{2\Delta t} \sum_{\alpha \in \mathbb{Z}_{2}} \mathbb{E}_{Q}^{\alpha} \left[\mathbb{1}_{A} \int_{\mathbb{R}} \mathbb{E}_{\bar{P}}^{x} \left[\left(\Phi_{g}(\hat{q}_{-t}^{\bigtriangleup}) \Phi_{g}(\hat{q}_{t}^{\bigtriangleup}) - \Phi_{g}^{T}(\hat{q}_{-t}^{\bigtriangleup}) \Phi_{g}^{T}(\hat{q}_{t}^{\bigtriangleup}) \right) e^{-g \int_{-t}^{t} W(\hat{q}_{s}^{\bigtriangleup}) ds} \right] d\mu(x) \right].$$

Then

$$\begin{split} &\int_{\mathbb{R}} \mathbb{E}_{\bar{\mathbf{P}}}^{x} \left[\left| \Phi_{g}(\hat{q}_{-t}^{\bigtriangleup}) \Phi_{g}(\hat{q}_{t}^{\bigtriangleup}) - \Phi_{g}^{T}(\hat{q}_{-t}^{\bigtriangleup}) \Phi_{g}^{T}(\hat{q}_{t}^{\bigtriangleup}) \right| e^{-g \int_{-t}^{t} W(\hat{q}_{s}^{\bigtriangleup}) \mathrm{d}s} \right] \mathrm{d}\mu(x) \\ &\leq \int_{\mathbb{R}} \mathbb{E}_{\bar{\mathbf{P}}}^{x} \left[\left| \Phi_{g}(\hat{q}_{-t}^{\bigtriangleup}) - \Phi_{g}^{T}(\hat{q}_{-t}^{\bigtriangleup}) \right| \Phi_{g}(\hat{q}_{t}^{\bigtriangleup}) \right| e^{-g \int_{-t}^{t} W(\hat{q}_{s}^{\bigtriangleup}) \mathrm{d}s} \right] \mathrm{d}\mu(x) \\ &+ \int_{\mathbb{R}} \mathbb{E}_{\bar{\mathbf{P}}}^{x} \left[\left| \Phi_{g}^{T}(\hat{q}_{-t}^{\bigtriangleup}) \right| \left| \Phi_{g}(\hat{q}_{t}^{\bigtriangleup}) - \Phi_{g}^{T}(\hat{q}_{t}^{\bigtriangleup}) \right| e^{-g \int_{-t}^{t} W(\hat{q}_{s}^{\bigtriangleup}) \mathrm{d}s} \right] \mathrm{d}\mu(x). \end{split}$$

We estimate $\int_{\mathbb{R}} \mathbb{E}_{\overline{\mathbf{P}}}^{x} \left[\left| \Phi_{g}(\hat{q}_{-t}^{\bigtriangleup}) - \Phi_{g}^{T}(\hat{q}_{-t}^{\bigtriangleup}) \right| \Phi_{g}(\hat{q}_{t}^{\bigtriangleup}) \right| e^{-g \int_{-t}^{t} W(\hat{q}_{s}^{\bigtriangleup}) ds} \right] d\mu(x)$. By the shift invariance we have

$$\int_{\mathbb{R}} \mathbb{E}_{\bar{P}}^{x} \left[\left| \left(\Phi_{g}(\hat{q}_{-t}^{\bigtriangleup}) - \Phi_{g}^{T}(\hat{q}_{-t}^{\bigtriangleup}) \right) \Phi_{g}(\hat{q}_{t}^{\bigtriangleup}) \right| e^{-g \int_{-t}^{t} W(\hat{q}_{s}^{\bigtriangleup}) \mathrm{d}s} \right] \mathrm{d}\mu(x)$$
$$= \int_{\mathbb{R}} \left| \Phi_{g}(\hat{q}_{0}^{\bigtriangleup}) - \Phi_{g}^{T}(\hat{q}_{0}^{\bigtriangleup}) \right| \mathbb{E}_{\bar{P}}^{x} \left[\left| \Phi_{g}(\hat{q}_{2t}^{\bigtriangleup}) \right| e^{-g \int_{0}^{2t} W(\hat{q}_{s}^{\bigtriangleup}) \mathrm{d}s} \right] \mathrm{d}\mu(x).$$

By the Schwarz inequality we also have

$$\leq \left(\int_{\mathbb{R}} |\Phi_{\mathrm{g}}(\hat{q}_{0}^{\bigtriangleup}) - \Phi_{\mathrm{g}}^{T}(\hat{q}_{0}^{\bigtriangleup})|^{2} \mathrm{d}\mu(x)\right)^{1/2} \left(\int_{\mathbb{R}} \mathbb{E}_{\bar{\mathrm{P}}}^{x} \left[\left|\Phi_{\mathrm{g}}(\hat{q}_{2t}^{\bigtriangleup})\right|^{2}\right] \mathrm{d}\mu(x)\right)^{1/2} \left(\mathbb{E}_{\bar{\mathrm{P}}}^{x} \left[e^{-2g\int_{0}^{2t} W(\hat{q}_{s}^{\bigtriangleup}) \mathrm{d}s}\right]\right)^{1/2}.$$

Since by Lemma 3.4,

$$\mathbb{E}_{\bar{\mathbf{P}}}^{x} \left[e^{-2g \int_{0}^{2t} W(\hat{q}_{s}^{\bigtriangleup}) \mathrm{d}s} \right] \leq e^{|g|(1-e^{-2t})|x|} e^{g^{2} \int_{0}^{(1-e^{-4t})/2} |2t-y|^{2} \mathrm{d}y},$$

we have

$$\begin{split} &\int_{\mathbb{R}} \mathbb{E}_{\overline{\mathbf{P}}}^{x} \left[\left| \left(\Phi_{\mathbf{g}}(\hat{q}_{-t}^{\bigtriangleup}) - \Phi_{\mathbf{g}}^{T}(\hat{q}_{-t}^{\bigtriangleup}) \right) \Phi_{\mathbf{g}}(\hat{q}_{t}^{\bigtriangleup}) \right| e^{-g \int_{-t}^{t} W(\hat{q}_{s}^{\bigtriangleup}) \mathrm{d}s} \right] \mathrm{d}\mu(x) \\ &\leq C \left(\int_{\mathbb{R}} |\Phi_{\mathbf{g}}(\hat{q}_{0}^{\bigtriangleup}) - \Phi_{\mathbf{g}}^{T}(\hat{q}_{0}^{\bigtriangleup})|^{2} \mathrm{d}\mu(x) \right)^{1/2} \left(\int_{\mathbb{R}} e^{|g|(1-e^{-2t})|x|} \mathrm{d}\mu(x) \right)^{1/2}. \end{split}$$

Here we employed that $\Phi_{g} \in L^{\infty}(\mathbb{Z}_{2} \times \mathbb{R})$. Since $\int_{\mathbb{R}} |\Phi_{g}(\hat{q}_{0}^{\bigtriangleup}) - \Phi_{g}^{T}(\hat{q}_{0}^{\bigtriangleup})|^{2} d\mu(x) \to 0$ as $T \to \infty$,

$$\int_{\mathbb{R}} \mathbb{E}_{\bar{\mathbf{P}}}^{x} \left[\left| \Phi_{\mathbf{g}}(\hat{q}_{-t}^{\bigtriangleup}) - \Phi_{\mathbf{g}}^{T}(\hat{q}_{-t}^{\bigtriangleup}) \right| \Phi_{\mathbf{g}}(\hat{q}_{t}^{\bigtriangleup}) \right| e^{-g \int_{-t}^{t} W(\hat{q}_{s}^{\bigtriangleup}) \mathrm{d}s} \right] \mathrm{d}\mu(x) \to 0$$

as $T \to \infty$. Similarly we can also show that

$$\int_{\mathbb{R}} \mathbb{E}_{\bar{\mathbf{P}}}^{x} \left[\left| \Phi_{\mathbf{g}}^{T}(\hat{q}_{-t}^{\bigtriangleup}) \right| \left| \Phi_{\mathbf{g}}(\hat{q}_{t}^{\bigtriangleup}) - \Phi_{\mathbf{g}}^{T}(\hat{q}_{t}^{\bigtriangleup}) \right| e^{-g \int_{-t}^{t} W(\hat{q}_{s}^{\bigtriangleup}) \mathrm{d}s} \right] \mathrm{d}\mu(x) \to 0$$

as $T \to \infty$. Then the proof is complete.

The sequence of probability measures $(\Pi_T)_{T>0}$ is said to locally converge to the probability measure Π_{∞} whenever $\lim_{T\to\infty} \Pi_T(A) = \Pi_{\infty}(A)$ for all $A \in \pi_t^{-1}(\mathcal{B}_t)$ and for all $t \ge 0$.

Corollary 3.13 Let f be a \mathcal{B}_t -measurable and bounded function. Then

$$\lim_{T \to \infty} \mathbb{E}_{\Pi_T}[f] = \mathbb{E}_{\Pi_\infty}[f].$$

Proof: It is enough to show the corollary for a nonnegative function f. Since f is bounded and \mathcal{B}_t -measurable, there exists a sequence $\{f_n\}$ such that $\lim_{n\to\infty} \sup_{x\in\mathcal{D}} |f_n(x) - f(x)| = 0$. Here f_n is of the form $f_n = \sum_{j=1}^{m_n} a_j \mathbb{1}_{A_j}$ with $A_j \in \mathcal{B}_t$ and $a_j > 0$. Let $\epsilon > 0$ be arbitrary. We assume that $\sup_{x\in\mathcal{D}} |f_n(x) - f(x)| \leq \epsilon$. Then we see that

$$\begin{aligned} |\mathbb{E}_{\Pi_T}[f] - \mathbb{E}_{\Pi_\infty}[f]| &\leq \mathbb{E}_{\Pi_T}[|f - f_n|] + |\mathbb{E}_{\Pi_T}[f_n] - \mathbb{E}_{\Pi_\infty}[f_n]| + \mathbb{E}_{\Pi_\infty}[|f_n - f|] \\ &\leq 2\epsilon + |\mathbb{E}_{\Pi_T}[f_n] - \mathbb{E}_{\Pi_\infty}[f_n]| \end{aligned}$$

and from Proposition 3.12 it follows that $\lim_{T\to\infty} |\mathbb{E}_{\Pi_T}[f] - \mathbb{E}_{\Pi_\infty}[f]| \le 2\epsilon$. Then the corollary follows.

4 Expectations by Π_{∞}

In this section we give some examples of application of Π_{∞} . These examples are one mode versions of the spin boson model [10, 5]. Then we show only outlines of proofs.

4.1 Number operator $b^{\dagger}b$

Theorem 4.1 Let $\beta \in \mathbb{C}$. Then

$$\langle e^{\beta b^{\dagger} b} \rangle = \mathbb{E}_{\Pi_{\infty}} \left[e^{-g^2 (1 - e^{\beta}) \int_{-\infty}^0 \int_0^\infty W_{\triangle}(s, r) \mathrm{d}s \mathrm{d}r} \right], \tag{4.1}$$

$$\langle (b^{\dagger}b)^{m} \rangle = \sum_{l=1}^{m} a_{l}(m) g^{2l} \mathbb{E}_{\Pi_{\infty}} \left[\left(\int_{-\infty}^{0} \int_{0}^{\infty} W_{\Delta}(s,r) \mathrm{d}s \mathrm{d}r \right)^{l} \right].$$

$$(4.2)$$

Here $a_l(m) = \frac{(-1)^l}{l!} \sum_{s=1}^l (-1)^s {l \choose s}$ are the Stirling numbers. In particular $\langle (b^{\dagger}b)^m \rangle \leq e^{2g^2} - 1$ for any $m \geq 0$.

Simple but non trivial application is as follows. We know that $\langle \sigma_x \otimes (-1)^{b^{\dagger}b} \rangle < 0$ since the parity of $\Phi_{\rm g}$ is -1. As a corollary of Theorem 4.1 we can show that $\langle (-1)^{b^{\dagger}b} \rangle > 0$.

Corollary 4.2 We have

$$\langle (-1)^{b^{\dagger}b} \rangle = \mathbb{E}_{\Pi_{\infty}} \left[e^{-2g^2 \int_{-\infty}^{0} \int_{0}^{\infty} W_{\Delta}(s,r) \mathrm{d}s \mathrm{d}r} \right] > 0.$$

Proof: Put $\beta = i\pi$ in Theorem 4.1. Then the corollary follows.

4.2 Gaussian functions

We construct a path integral representation of $\langle e^{i\beta x} \rangle$.

Theorem 4.3 We have

$$\langle e^{i\beta x} \rangle = e^{-\beta^2/4} \mathbb{E}_{\Pi_{\infty}} \left[e^{i\beta K} \right]$$

where

$$K = -\frac{g}{\sqrt{2}} \int_{-\infty}^{\infty} \hat{T}_s e^{-|s|} \mathrm{d}s$$

Corollary 4.4 Let $\beta \in \mathbb{C}$ such that $|\beta| < 1$. Then

$$\langle e^{\beta x^2} \rangle = \frac{1}{\sqrt{1-\beta}} \mathbb{E}_{\Pi_{\infty}} \left[e^{\frac{\beta K^2}{1-\beta}} \right].$$
 (4.3)

In particular $\lim_{\beta \uparrow 1} \|e^{\beta x^2/2} \Phi_{g}\|^2 = \infty.$

Proof: By Theorem 4.2 we see that

$$\langle e^{-\beta^2 x^2/2} \rangle = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} (\Phi_{\rm g}, e^{ik\beta x} \Phi_{\rm g}) e^{-k^2/2} \mathrm{d}k = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} e^{-k^2\beta^2/4} \mathbb{E}_{\Pi_{\infty}} \left[e^{ik\beta K} \right] e^{-k^2/2} \mathrm{d}k$$
$$= \mathbb{E}_{\Pi_{\infty}} \left[\frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} e^{-k^2\beta^2/4} e^{ik\beta K} e^{-k^2/2} \mathrm{d}k \right] = \frac{1}{\sqrt{1+\beta^2/2}} \mathbb{E}_{\Pi_{\infty}} \left[e^{-\frac{\beta^2 K^2}{\beta^2+2}} \right].$$

By an analytic continuation we obtain (4.3) for $\beta \in \mathbb{C}$ such that $|\beta| < 1$. Then the corollary follows.

4.3 Spin σ_z

Let $\overline{L} = L - E$. Path integral representations of Euclidean Green functions by Lemma 3.2 can be rewritten as follows.

Corollary 4.5 (1) Suppose that $\phi, \psi \in \mathcal{H}$ and $f_j = f_j(\alpha, x) \in L^{\infty}(\mathbb{Z}_2 \times \mathbb{R})$ for j = 0, 1, ..., n, and $0 < t_0 < t_1 < ... < t_n < t$. Then

$$(\phi, e^{-t_0 \bar{L}} f_0 e^{-(t_1 - t_0) \bar{L}} f_1 e^{-(t_2 - t_1) \bar{L}} \cdots e^{-(t_n - t_{n-1}) \bar{L}} f_n e^{-(t - t_n) \bar{L}} \psi)$$

$$= e^{\Delta t} e^{Et} \sum_{\alpha \in \mathbb{Z}_2} \int_{\mathbb{R}} \mathbb{E}_Q^{\alpha} \mathbb{E}_{\bar{P}}^x \left[\bar{\phi}(\hat{q}_0^{\Delta}) \psi(\hat{q}_t^{\Delta}) \left(\prod_{j=0}^n f_j(\hat{q}_{t_j}^{\Delta}) \right) e^{-g \int_0^t W(\hat{q}_s^{\Delta}) \mathrm{d}s} \right].$$

$$(4.4)$$

(2) Suppose that $g_j = g_j(\alpha) \in L^{\infty}(\mathbb{Z}_2)$ for j = 0, 1, ..., n and $0 < t_0 < t_1 < ... < t_n < t$. Then

$$(1, e^{-t_0 \bar{L}} g_0(\sigma_z) e^{-(t_1 - t_0) \bar{L}} g_1(\sigma_z) e^{-(t_2 - t_1) \bar{L}} \cdots e^{-(t_n - t_{n-1}) \bar{L}} g_n(\sigma_z) e^{-(t - t_n) \bar{L}} 1)$$

$$= e^{\Delta t} e^{Et} \sum_{\alpha \in \mathbb{Z}_2} \mathbb{E}_{\mathbf{Q}}^{\alpha} \left[\left(\prod_{j=0}^n g_j(\hat{T}_{t_j}) \right) \int_{\mathbb{R}} \mathbb{E}_{\bar{\mathbf{P}}}^x \left[e^{-g \int_0^t W(\hat{q}_s^{\triangle}) \mathrm{d}s} \right] \mathrm{d}\mu(x) \right].$$

$$(4.5)$$

Proof: (1) is a simple reworking of Lemma 3.2 and (2) is a special case of (1).

One can see that the integrand in (4.5) is

$$\mathbb{E}_{\mathbf{P}}^{x} \left[e^{-g \int_{0}^{t} W(\hat{q}_{s}^{\triangle}) \mathrm{d}s} \right] = e^{-g \left(\int_{0}^{t} e^{-s} (-1)^{N_{\triangle s}} \mathrm{d}s \right) x} e^{\frac{g^{2}}{4} \int_{0}^{(1-e^{-2t})/2} \left| \int_{y}^{t} (-1)^{N_{\triangle s}} \mathrm{d}s \right|^{2} \mathrm{d}y}$$

by Lemma 3.4.

Theorem 4.6 We have $\langle \sigma_z e^{-|t-s|\bar{L}} \sigma_z \rangle = \mathbb{E}_{\Pi_{\infty}}[\hat{T}_t \hat{T}_s]$ for any $t, s \in \mathbb{R}$.

Proof: By Lemma 4.5 and a limiting argument, we see that

$$(\sigma_z \Phi_g, e^{-t\bar{L}} \sigma_z \Phi_g) = \lim_{T \to \infty} \frac{1}{\|\mathbbm{1}_{T-t/2}\|^2} (\sigma_z \mathbbm{1}_{T-t/2}, e^{-t\bar{L}} \sigma_z \mathbbm{1}_{T-t/2}) = \lim_{T \to \infty} \frac{e^{2ET} e^{2T\Delta}}{\|\mathbbm{1}_{T-t/2}\|^2} \sum_{\alpha \in \mathbb{Z}_2} \mathbb{E}_Q^{\alpha} \left[\hat{T}_{-t/2} \hat{T}_{t/2} e^{\frac{g^2}{2} \int_{-T}^T \mathrm{d}t \int_{-T}^T \mathrm{d}s W_{\Delta}(t,s)} \right].$$

Then we have

$$(\sigma_{z}\Phi_{g}, e^{-t\bar{L}}\sigma_{z}\Phi_{g}) = \lim_{T \to \infty} \frac{\|\mathbf{1}_{T}\|^{2}}{\|\mathbf{1}_{T-t/2}\|^{2}} \frac{e^{2ET}e^{2T\Delta}}{\|\mathbf{1}_{T}\|^{2}} \sum_{\alpha \in \mathbb{Z}_{2}} \mathbb{E}_{Q}^{\alpha} \left[\hat{T}_{-t/2}\hat{T}_{t/2}e^{\frac{g^{2}}{2}\int_{-T}^{T} dt \int_{-T}^{T} ds W_{\Delta}(t,s)} \right]$$

$$= \lim_{T \to \infty} \frac{\|\mathbf{1}_{T}\|^{2}}{\|\mathbf{1}_{T-t/2}\|^{2}} \frac{\mathbb{E}_{Q}^{\alpha} \left[\hat{T}_{-t/2}\hat{T}_{t/2}e^{\frac{g^{2}}{2}\int_{-T}^{T} dt \int_{-T}^{T} ds W_{\Delta}(t,s)} \right]}{\mathbb{E}_{Q}^{\alpha} \left[e^{\frac{g^{2}}{2}\int_{-T}^{T} dt \int_{-T}^{T} ds W_{\Delta}(t,s)} \right]} = \mathbb{E}_{\Pi_{\infty}} [\hat{T}_{-t/2}\hat{T}_{t/2}].$$

Hence for t > s,

$$(\sigma_z \Phi_g, e^{-(t-s)\bar{L}} \sigma_z \Phi_g) = \mathbb{E}_{\Pi_\infty} [\hat{T}_{-(t-s)/2} \hat{T}_{(t-s)/2}] = \mathbb{E}_{\Pi_\infty} [\hat{T}_t \hat{T}_s]$$

by the shift invariance.

Acknowledgments: This work was supported by the Research Institute for Mathematical Sciences, an International Joint Usage/Research Center located in Kyoto University. FH is also financially supported by JSPS KAKENHI Grant Numbers 20H01808, 20K20886, 23K20217 and 25H00595

References

- V. Betz, F. Hiroshima, J. Lőrinczi, R. A. Minlos, and H. Spohn. Ground state properties of the Nelson Hamiltonian - A Gibbs measure-based approach. *Rev. Math. Phys.*, 14:173–198, 2002.
- [2] P. Billingsley. Convergence of Probability Measures. Wiley Interscience, 1968.
- [3] S. N. Ethier and T. G. Kurtz. Markov Processes. Wiley Interscience, 1986.
- [4] M. Hirokawa and F. Hiroshima. Absence of energy level crossing for the ground state energy of the Rabi model. *Commun. Stochastic Anal.*, 8:551–560, 2014.
- [5] M. Hirokawa, F. Hiroshima, and J. Lőrinczi. Spin-boson model through a Poisson driven stochastic process. *Math. Zeitschrift*, 277:1165–1198, 2014.
- [6] F. Hiroshima. Functional integral approach to semi-relativistic Pauli-Fierz models. Adv. Math., 259:784–840, 2014.
- [7] F. Hiroshima and O. Matte. Ground states and their associated Gibbs measures in the renormalized nelson model. *Rev. Math. Phys.*, 33:2250002 (84 pages), 2021.
- [8] F. Hiroshima and Shirai T. Spectral zeta function and ground state of quantum rabi model. *Journal of Functional Analysis*, 289(3):110901, 2025.
- [9] J. Lőrinczi, F. Hiroshima, and V. Betz. Feynman-Kac type theorems and its applications, volume 1 (2nd ed). De Gruyter, 2020.
- [10] H. Spohn. Ground state(s) of the spin-boson Hamiltonian. Commun. Math. Phys., 123:277–304, 1989.