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1 Quantum Rabi model

This is the joint work with Tomoyuki Shirai and a review of [8]. The quantum Rabi model
describes a two-level atom coupled to a single mode photon by the dipole interaction term.
The single photon is represented by the 1D harmonic oscillator. Suppose that the eigenvalues
of the two-level atom is {−4,4}. Here 4 > 0 is a constant. Let σx, σy and σz be the 2× 2
Pauli matrices:

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
.

Then the Hamiltonian of the two-level atom is represented by 4σz. On the other hand let a
and a† be the annihilation operator and the creation operator in L2(R), respectively. They
are given by

a =
1√
2

(
d

dx
+ x

)
, a† =

1√
2

(
− d

dx
+ x

)
.

They satisfy the canonical commutation relation [a, a†] = 1l, and a∗ = a†, where a∗ denotes
the adjoint of a. The harmonic oscillator is given by a†a, i.e.,

a†a = −1

2

d2

dx2
+

1

2
x2 − 1

2
.

The harmonic oscillator a†a is self-adjoint on D( d2

dx2 ) ∩ D(x2) and the spectrum of a†a is
spec(a†a) = N ∪ {0}. The quantum Rabi Hamiltonian is defined as a self-adjoint operator
on the tensor product Hilbert space C2 ⊗ L2(R) by

K = 4σz ⊗ 1l + 1l⊗ a†a+ gσx ⊗ (a+ a†).

Here g ∈ R stands for a coupling constant. It can be seen that K has the parity symmetry:

[K, σz ⊗ (−1l)a
†a] = 0.
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The parity symmetry is also referred to as Z2-symmetry. We discuss measures associated
with the ground state of the quantum Rabi Hamiltonian. The quantum Rabi model can be
regarded as the one mode version of the spin-boson model in quantum field theory. In [5]
the path measure associated with the ground state of the spin-boson model is discussed. In
this note we also show the existence of the measure Π∞ associated with the ground state Φg

of the quantum Rabi Hamiltonian. Then under some condition we can see that

(Φg,OΦg) = EΠ∞ [fO]

for some observable O with a function fO.

2 Probabilistic preparation

2.1 Unitary transformations

In this section we define a self-adjoint operators L. Let σ = (σx, σy, σz). The rotation group
in R3 has an adjoint representation on su(2). Let n ∈ R3 be a unit vector and θ ∈ [0, 2π).
Thus e(i/2)θn·σ(x · σ)e−(i/2)θn·σ = Rx · σ, where R denotes the 3 × 3 matrix representing the
rotation around n by an angle θ. In particular for n = (0, 1, 0) and θ = π/2, we have
UσxU

−1 = σz and UσzU
−1 = −σx, where

U = ei
π
4
σy . (2.1)

Then

UKU−1 =

(
−1

2
d2

dx2 +
1
2
x2 −

√
2gx− 1

2
−4

−4 −1
2

d2

dx2 +
1
2
x2 +

√
2gx− 1

2

)
.

Let us define the unitary operator Sg. Let p = −i d
dx

and F denotes the Fourier transform
on L2(R). Then Sg is defined by

Sg =

(
F 0
0 F

)(
0 ei

√
2gp

e−i
√
2gp 0

)
. (2.2)

Let φg be the normalized ground state of a†a, i.e., a†aφg = 0 and it is explicitly given by

φg(x) = π−1/4e−|x|2/2.

Since φg is strictly positive, we can define the unitary operator Uφg : L2(R) → L2(R, φ2
gdx)

by

Uφgf = φ−1
g f. (2.3)

We set the probability measure φ2
g(x)dx on R by dµ, i.e.,

dµ(x) =
1√
π
e−|x|2dx.
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Define
H = C2 ⊗ L2(R, dµ).

Let U = UφgU . We define the self-adjoint operator L by

L = UKU−1 = −4σx ⊗ 1l + gσz ⊗ (b† + b) + 1l⊗ b†b

=

(
−1

2
d2

dx2 + x d
dx

0

0 −1
2

d2

dx2 + x d
dx

)
−
(
−
√
2gx 4
4

√
2gx

)
. (2.4)

Here b and b† are the annihilation operator and the creation operator in L2(R, dµ), which
are defined by φ−1

g a♯φg = b♯. It is actually given by

b = a+
x√
2
, b† = a† − x√

2
.

2.2 Ornstein-Uhrenbeck process

Let (Xt)t≥0 be the Ornstein-Uhrenbeck process on a probability space

(X ,BX ,P
x).

We see that Px(X0 = x) = 1 and∫
R
Ex
P [Xt] dµ(x) = 0,

∫
R
Ex
P [XtXs] dµ(x) =

1

2
e−|t−s|.

Here Ex
P [· · · ] denotes the expectation with respect to the probability measure Px. Let h = b†b.

The generator of Xt is given by −h and

(ϕ, e−thψ)L2(R,dµ) =

∫
R
Ex
P

[
ϕ(X0)ψ(Xt)

]
dµ(x). (2.5)

It is well known that the Ornstein-Uhrenbeck process can be represented by 1D-Brownian
motion. Let (Bt)t≥0 be 1D-Brownian motion starting from x at t = 0 on a probability

space (X ,BX ,W0). The distributions of Xs under P
x and e−s

(
x+ 1√

2
Be2s−1

)
under W0 are

identical. We denote this as

Xs
d
= e−s

(
x+

1√
2
Be2s−1

)
s ≥ 0. (2.6)

We can compute the density function κt of Xt as

Ex
P[f(Xt)] =

∫
R
f(y)κt(y, x)dy,

where

κt(y, x) =
1√

π(1− e−2t)
exp

(
−|y − e−tx|2

1− e−2t

)
. (2.7)
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The Mehler kernel Mt is defined by

Mt(x, y) =
φg(x)

φg(y)
κt(y, x) =

1√
π(1− e−2t)

exp

(
−1

2

(1 + e−2t)(x2 + y2)− 4xye−t

1− e−2t

)
.

For the later use we extend the Ornstein-Uhrenbeck process (Xt)t≥0 to the Ornstein-

Uhrenbeck process (X̂t)t∈R on the whole real line on the probability space (X̄ ,BX̄ , P̄
x). Here

X̄ = X × X , BX̄ = BX × BX and P̄x = Px ⊗ Px. Define for w = (w1, w2) ∈ X × X

X̂t(w) =

{
Xt(w1), t ≥ 0,
X−t(w2), t < 0.

(2.8)

Then X̂t and X̂−s for any s, t > 0 are independent. We also see that

(ϕ, e−thψ)L2(R,dµ) =

∫
R
EP̄x

[
ϕ(X̂0)ψ(X̂t)

]
dµ(x) =

∫
R
EP̄x

[
ϕ(X̂−s)ψ(X̂t−s)

]
dµ(x) (2.9)

for any 0 ≤ s ≤ t.

2.3 Spin process

In order to show the spin part by a path measure we introduce a Poisson process. Let (Nt)t≥0

be a Poisson process on a probability space

(Y ,BY ,Π)

with the unit intensity, i.e.,

EΠ

[
1l{Nt=n}

]
=
tn

n!
e−t, n ≥ 0.

Note that Nt is a nonnegative integer-valued random process, N0 = 0 and t 7→ Nt is not
decreasing. Furthermore t 7→ Nt is right continuous and its left limit exists (cádlág). Let

Z2 = {−1,+1}.

Then for u ∈ L2(Z2),

‖u‖2L2(Z2)
=
∑
α∈Z2

|u(α)|2.

Introducing the norm on C2 by (u, v)C2 =
∑2

i=1 ūivi, we identify C2 ∼= L2(Z2) by C2 3 u =(
u1
u2

)
∼= u(α) with u(+1) = u1 and u(−1) = u2. Note that

(u, v)C2 = (u, v)L2(Z2).

Under this identification σx, σy and σz are represented as the operators Ux, Uy and Uz, re-
spectively on L2(Z2) by

Uxu(α) = u(−α), Uyu(α) = −iαu(−α), Uzu(α) = αu(α), u ∈ L2(Z2). (2.10)



5

We define
St = (−1)Ntα, α ∈ Z2.

Here (St)t≥0 is a dichotomous process which is referred to as a spin process in this note. Let
σF = 1

2
(σz+ iσy)(σz− iσy) = −σx+1l be the fermionic harmonic oscillator. Then it is known

that for u, v ∈ C2, (u, e−tσF v)C2 =
∑

α∈Z2
EΠ[u(S0)v(St)]. Hence

(u, etσxv)C2 = et
∑
α∈Z2

EΠ[u(S0)v(St)]. (2.11)

We also extend the Poisson process (Nt)t≥0 to the Poisson process (N̂t)t∈R on the whole real
line on a probability space (Ȳ ,BȲ , Π̄), where Ȳ = Y × Y , BȲ = BY × BY and Π̄ = Π ⊗ Π.
Let (N̄t)t≥0 be a Poisson process on (Y ,BY ,Π) such that t 7→ N̄t is left continuous and its
right limit exists (càglàd). Define for w = (w1, w2) ∈ Y × Y ,

N̂t(w) =

{
Nt(w1), t ≥ 0,
N̄−t(w2), t < 0.

Then R 3 t 7→ N̂t is a càdlàg path. Note that N̂t is independent of N̂−s for any s, t > 0. We
define

Ŝt = (−1)N̂tα, α ∈ Z2.

By the shift invariance of Ŝs [9, Proposition 3.44] we can see that for u, v ∈ C2,

(u, etσxv)C2 = et
∑
α∈Z2

EΠ̄[u(Ŝ0)v(Ŝt)] = et
∑
α∈Z2

EΠ̄[u(Ŝ−s)v(Ŝt−s)]

for any 0 ≤ s ≤ t.

3 Path measure associated with the ground state

In this section we construct the path measure associated with the ground state of the quan-
tum Rabi model. We recall that L = −4σx ⊗ 1l + 1l ⊗ b†b + gσz ⊗ (b + b†). Let Φg be the
ground state of L such that

LΦg = EΦg

with E = inf spec(L). It is shown that Φg > 0 in [4] under the identification (3.1). Hence
(1l,Φg)H 6= 0. Then

Φg = lim
t→∞

e−tL1l

‖e−tL1l‖H
.

Let us set
〈O〉 = (Φg,OΦg)H

for a bounded operator O. Then we have

〈O〉 = lim
t→∞

(e−tL1l,Oe−tL1l)H
‖e−tL1l‖2H

.
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The right-hand side can be represented in terms of Feynman-Kac formula, and under some
condition we can also see that

〈O〉 = EΠ∞ [fO]

with some probability measure Π∞ and a function fO. The probability measure Π∞ is
referred to as the path measure associated with the ground state Φg. The similar results are
investigated in models in quantum field theory [10, 1, 5, 6, 7], but as far as we know there
is no example in quantum mechanics.

3.1 Feynman-Kac formula

Combining (2.5) and (2.11) we can represent (ϕ, e−tHψ) by a path measure. Let

qs = (Ss, Xs) s ≥ 0

be the (Z2 × R)-valued random process on the probability space (X ⊗ Y ,BX ⊗ BY ,P
x ⊗ Π).

We introduce the identification:

H ∼= L2(Z2 × R) (3.1)

by (
ϕ+(x)
ϕ−(x)

)
∼= ϕ(α, x) = δ+1αϕ+(x) + δ−1αϕ−(x), (α, x) ∈ Z2 × R. (3.2)

Here δαβ =

{
1 α = β
0 α 6= β

. We use identification (3.1) without notices unless no confusion

arises. Let W : Z2 × R → R be defined by

W (α, x) =
√
2αx.

Thus W (qs−) =
√
2Ss−Xs. The Poisson integral

∫ t+

0
W (qs−)dNs is a random process on the

probability space (X ⊗ Y ,BX ⊗ BY ,P
x ⊗ Π), which is defined by(∫ t+

0

W (qs−)dNs

)
(w1, w2) =

n∑
j=1

W (qsj(w1, w2)) =
√
2

n∑
j=1

Ssj−(w1)Xsj(w2).

Here {sj} is the set of jump points such that Nsj−(w1) 6= Nsj+(w1) for 0 ≤ sj ≤ t. Let

E [. . .] =
1

2

∑
α∈Z2

∫
R
Ex
PEΠ [. . .] dµ(x).

Lemma 3.1 Let ϕ, ψ ∈ H. Then under the identification (3.2), it follows that

(ϕ, e−tLψ) = 2etE
[
ϕ(q0)ψ(qt)4Nte−g

∫ t
0 W (qs)ds

]
. (3.3)
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Proof: We refer the reader to [8]. ■
Lemma 3.1 can be extended to the path integral representations of Euclidean Green

functions. Let h = −∆/2 and (Bt)t≥0 be 1D Brownian motion on (X ,BX ,Wx). Suppose that
0 < t0 < t1 < . . . < tn. Let C

{t0,t1,...,tn}(A0×· · ·×An) = {ω ∈ X | ω(tj) ∈ Aj, j = 0, 1, . . . , n}
be a cylinder set. Then it is known that

Wx(C{t0,t1,...,tn}(A0 × · · · × An)) = Ex

[(
n∏

j=0

1lAj
(Btj)

)]
.

We know furthermore that for f, g ∈ L2(R),∫
R
Ex

[(
n∏

j=0

1lAj
(Btj)

)
f̄(B0)g(Bt)

]
dx = (f, e−t0h1lA0e

−(t1−t0)h · · · e−(tn−tn−1)h1lAne
−(t−tn)hg).

Lemma 3.2 Let fj = fj(α, x) be bounded function on Z2 × R for j = 0, 1, . . . , n. Suppose
that 0 < t0 < t1 < . . . < tn. Then

(ϕ, e−t0Lf0e
−(t1−t0)Lf1e

−(t2−t1)L · · · e−(tn−tn−1)Lfne
−(t−tn)Lψ)

= 2etE

[
ϕ̄(q0)ψ(qt)

(
n∏

j=0

fj(qtj)

)
e−g

∫ t
0 W (qs)ds

]
.

Proof: Denote the natural filtrations of (Nt)t≥0 and (Xt)t≥0 by Ns = σ(Nr, 0 ≤ r ≤ s) and
Ms = σ(Xr, 0 ≤ r ≤ s), respectively. The Markov properties of (Nt)t≥0 and (Xt)t≥0 yield
that (

e−sLfe−tLϕ
)
(α, x)

= es+tEΠE
x
P

[
e−g

∫ s
0 W (qr)drf(qs)E

Ss
Π EXs

P

[
e−g

∫ t
0 W (qr)drϕ(qt)

]]
= es+tEΠE

x
P

[
e−g

∫ s
0 W (qr)drf(qs)EΠE

x
P

[
e−g

∫ t
0 W (qr+s)drϕ(qt+s)

∣∣∣Ns × Ms

]]
= es+tEΠE

x
P

[
e−g

∫ s
0 W (qr)drf(qs)e

−g
∫ t
0 W (qr+s)drϕ(qt+s)

]
= es+tEΠE

x
P

[
e−g

∫ s+t
0 W (qr)drf(qs)ϕ(qt+s)

]
.

Repeating these procedures we have the lemma. ■

3.2 Probability measure Π∞ associated with the ground state

We set Ts = S△s and q
△
s = (Ts, Xs). We assume that 4 > 0 in what follows.

Lemma 3.3 Let ϕ, ψ ∈ H. Then

(ϕ, e−tLψ) = e△t
∑
α∈Z2

∫
R
EΠE

x
P

[
ϕ(q△0 )ψ(q

△
t )e

−g
∫ t
0 W (q△s )ds

]
dµ(x). (3.4)
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Proof: Since
1

4
L = −σx ⊗ 1l + 1l⊗ 1

4
b†b+

g

4
σz ⊗ (b† + b),

the Feynman-Kac formula (3.3) yields that

(ϕ, e−tLϕ) = (ϕ, e−△t 1
△Lϕ) = e△t

∑
α∈Z2

∫
R
EΠE

x
P

[
ϕ(S0, X0)ψ(S△t, Xt)e

− g
△

∫△t
0

√
2SsXs/△ds

]
dµ(x).

By the change of variable s to 4s in g
△

∫ △t

0

√
2SsXs/△ds, we see (3.4). ■

For the later use we have a technical lemma below.

Lemma 3.4 We have

Ex
P

[
e−g

∫ t
0 W (q̂△s )ds

]
= e−g(

∫ t
0 e−s(−1)

N△sds)xe
g2

4

∫ (1−e−2t)/2
0 |∫ t

y (−1)
N△sds|2dy.

In particular

Ex
P

[
e−g

∫ t
0 W (q̂△s )ds

]
≤ e|g|(1−e−t)xe

g2

4

∫ (1−e−2t)/2
0 |t−y|2dy.

Proof: We have

Ex
P

[
e−g

∫ t
0 W (q̂△s )ds

]
= E0

W

[
e
−g

∫ t
0 e−s(x+ 1√

2
Be2s−1)(−1)

N△sds
]

= e−g(
∫ t
0 e−s(−1)

N△sds)xE0
W

[
e−g

∫ t
0 B(1−e−2s)/2(−1)

N△sds
]

= e−g(
∫ t
0 e−s(−1)

N△sds)xe
g2

4 ‖
∫ t
0 1l(1−e−2s)/2(·)(−1)

N△sds‖2

L2(R) .

Then the lemma is proven. ■
Now we extend (Tt)t≥0 to the process on the whole real line. Let

T̂t = (−1)N̂△tα t ∈ R.

We can realize (T̂t)t∈R as a coordinate process as usual. Let D = D(R) be the space of càdlàg
paths on R. There exists a topology d◦ on D such that (D, d◦) is a separable and complete
metric space (e.g. [3, Section 3.5] and [2, Section 16]). Let BD be the Borel sigma-field of
D. Thus

T̂• : (Ȳ ,BȲ , Π̄) → (D,BD)

is an D-valued random variable. We denote its image measure on (D,BD) by Qα, i.e.,
Qα(A) = Π̄(T̂−1

• (A)) for A ∈ BD, and the coordinate process on (D,BD) by the same symbol
(T̂t)t≥0, i.e., T̂t(ω) = ω(t) for ω ∈ D. Let πΛ : D → RΛ be the projection defined by
πΛ(ω) = (ω(t0), . . . , ω(tn)) for ω ∈ D and Λ = {t0, . . . , tn}. Then

A = {π−1
Λ (E) |Λ ⊂ R,#Λ <∞, E ∈ B(RΛ)}

is the family of cylinder sets. It is known that the sigma-field generated by cylinder sets
coincides with BD. Moreover let DT = D([−T, T ]) be the space of càdlàg paths on [−T, T ]
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and πT : D → DT be the projection defined by πTω = ωd[−T,T ]. Let BT be the Borel sigma-
field of DT . Let πΛ : DT → RΛ be the projection defined by πΛ(ω) = (ω(t0), . . . , ω(tn)) for
ω ∈ DT and Λ = {t0, . . . , tn}. Note that we use the same notation π as the projection from
D to RΛ. Then

AT = {π−1
Λ (E) |Λ ⊂ [−T, T ],#Λ <∞, E ∈ B(RΛ)}

is the family of cylinder sets. We set

◦
B=

⋃
s≥0

π−1
s (Bs),

◦
BT=

⋃
0≤s≤T

π−1
s (Bs).

It is also seen that the sigma-field generated by
◦
B (resp.

◦
BT ) coincides with BD (resp. BT ).

Together with them we have

BD = σ(A) = σ(
◦
B), BT = σ(AT ) = σ(

◦
BT ). (3.5)

Hence (3.3) can be reformulated in terms of the coordinate process (T̂t)t≥0 on (D,BD,Q
α)

instead of (Ȳ ,BȲ , Π̄) as

(ϕ, e−tLψ) = e△t
∑
α∈Z2

∫
R
Eα
QE

x
P̄

[
ϕ(q̂△0 )e

−g
∫ t
0 W (q̂△s )dsψ(q̂△t )

]
dµ(x). (3.6)

Here
q̂△s = (T̂s, X̂s) s ∈ R,

where X̂t is the Ornstein-Uhlenbeck process on the whole real line. The advantage of (3.4)
is that 4Nt disappears. 4Nt is not shift invariant but T̂s in (3.4) is shift invariant. Then∑

α∈Z2

∫
R
Eα
QE

x
P̄

[
ϕ(q̂△0 )e

−g
∫ t
0 W (q̂△s )dsψ(q̂△t )

]
dµ(x)

=
∑
α∈Z2

∫
R
Eα
QE

x
P̄

[
ϕ(q̂△−r)e

−g
∫ t
0 W (q̂△s−r)dsψ(q̂△t−r)

]
dµ(x)

for any 0 ≤ r ≤ t. Let

W△(t, s) = T̂tT̂se
−|t−s|. (3.7)

Lemma 3.5 We have

(1l, e−tL1l) = 2e△tEα
Q

[
exp

(
g2

2

∫ t

0

ds

∫ t

0

drW△(s, r)

)]
.

Proof: By the Feynman-Kac formula given by (3.4) and inserting (2.6), we can see that

(1l, e−tL1l) = e△t
∑
α∈Z2

Eα
Q

[
Ex
P̄

[
e−g

∫ t
0 T̂se−sBe2s−1ds

] ∫
R
e−(

√
2g

∫ t
0 T̂se−sds)xdµ(x)

]
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Since

Ex
P̄

[
e−g

∫ t
0 T̂se−sBe2s−1ds

]
= exp

(
g2

2

∫ t

0

ds

∫ t

0

drT̂sT̂re
−(s+r)(e2(s∧r) − 1)

)
∫
R
e−(

√
2g

∫ t
0 T̂se−sds)xdµ(x) = exp

{
g2

2

(∫ t

0

T̂se
−sds

)2
}
,

we obtain that

(1l, e−tL1l) = e△t
∑
α∈Z2

Eα
Q

[
exp

(
g2

2

∫ t

0

ds

∫ t

0

drT̂sT̂re
−|s−r|

)]
.

Hence the lemma follows. ■

Remark 3.6 (1) Since W△(s, r) is independent of α, Eα
Q

[
exp

(
g2

2

∫ t

0
ds
∫ t

0
drW△(s, r)

)]
is

also independent of σ.
(2) By the shift invariance of T̂s we can also see that

Eα
Q

[
exp

(
g2

2

∫ t

0

ds

∫ t

0

drW△(s, r)

)]
= Eα

Q

[
exp

(
g2

2

∫ t−u

−u

ds

∫ t−u

−u

drW△(s, r)

)]
for any 0 ≤ u ≤ t. Thus we see that

(e−tL1l, e−tL1l) = 2e2△tEα
Q

[
exp

(
g2

2

∫ 2t

0

ds

∫ 2t

0

drW△(s, r)

)]
= 2e2△tEα

Q

[
exp

(
g2

2

∫ t

−t

ds

∫ t

−t

drW△(s, r)

)]
. (3.8)

We can also compute (e−tL1l, e−βb†be−tL1l) for β > 0.

Lemma 3.7 Let β > 0. Then

(e−tL1l, e−βb†be−tL1l)

= 2e2△tEα
Q

[
exp

(
g2

2

∫ t

−t

∫ t

−t

W△(s, r)dsdr − g2(1− e−β)

∫ 0

−t

∫ t

0

W△(s, r)dsdr

)]
.

Proof: Since

(ϕ, e−βb†bψ) =
∑
α∈Z2

∫
R
ϕ̄(α,X0)E

x
P̄[ψ(α,Xβ)]dµ(x),

we see that

(e−tL1l, e−βb†be−tL1l) =
∑
α∈Z2

∫
R
(e−tL1l)(α,X0)E

x
P̄[(e

−tL1l)(α,Xβ)]dµ(x).
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It is straightforward to compute (e−tL1l)(α,X0) and (e−tL1l)(α,Xβ). We have

(e−tL1l)(α,X0) = e△tEα
QE

x
P̄

[
e−

√
2g

∫ t
0 T̂sXx

s ds
]

= e△tEα
Q

[
e−

√
2g

∫ t
0 T̂se−sdsxE0

W

[
e−g

∫ t
0 T̂se−sBe2s−1ds

]]
= e△tEα

Q

[
e−

√
2g

∫ t
0 T̂se−sdsxe

g2

2

∫ t
0 ds

∫ t
0 drT̂sT̂re−(s+r)(e2(s∧r)−1)

]
.

The computation of Ex
P̄

[
(e−tL1l)(α,Xβ)

]
is more complicated than that of (e−tL1l)(α,X0).

We have

Ex
P̄

[
(e−tL1l)(α,Xβ)

]
= e△tEx

P̄

[
Eα
Q

[
e−

√
2g

∫ t
0 T̂se−sdsXβe

g2

2

∫ t
0 ds

∫ t
0 drT̂sT̂re−(s+r)(e2(s∧r)−1)

]]
.

Inserting (2.6) to Xβ above again, we obtain that

= e△tE0
W

[
Eα
Q

[
e
−
√
2g

∫ t
0 T̂se−sdse−β

(
x+ 1√

2
B

e2β−1

)
e

g2

2

∫ t
0 ds

∫ t
0 drT̂sT̂re−(s+r)(e2(s∧r)−1)

]]
= e△tEα

Q

[
e−(

√
2g

∫ t
0 T̂se−sds)e−βxe

g2

2

∫ t
0 ds

∫ t
0 drT̂sT̂re−(s+r)(1−e−2β)e

g2

2

∫ t
0 ds

∫ t
0 drT̂sT̂re−(s+r)(e2(s∧r)−1)

]
= e△tEα

Q

[
e−(

√
2g

∫ t
0 T̂s−te−sds)e−βxe

g2

2

∫ t
0 ds

∫ t
0 drT̂s−tT̂r−te−(s+r)(1−e−2β)e

g2

2

∫ t
0 ds

∫ t
0 drT̂s−tT̂r−te−(s+r)(e2(s∧r)−1)

]
.

In the last line above we shift T̂s by t. Since T̂u for 0 ≤ u ≤ t and T̂s−t for 0 ≤ s ≤ t are
independent, combining above computations, we have

(e−tL1l, e−βb†be−tL1l)

=
∑
α∈Z2

e2△t

∫
R

e−x2

√
π

Eα
Q

[
e−(

√
2g

∫ t
0 T̂se−sds)xe−(

√
2g

∫ t
0 T̂s−te−sds)e−βxe

g2

2

∫ t
0 ds

∫ t
0 drT̂sT̂re−(s+r)(e2(s∧r)−1)

×e
g2

2

∫ t
0 ds

∫ t
0 drT̂s−tT̂r−te−(s+r)(1−e−2β)e

g2

2

∫ t
0 ds

∫ t
0 drT̂s−tT̂r−te−(s+r)(e2(s∧r)−1)

]
dx. (3.9)

Terms dependent on x on the exponent above can be computed as

− x2 −
√
2g

(
e−β

∫ t

0

T̂s−te
−sds+

∫ t

0

T̂se
−sds

)
x

= −
(
x+

g√
2

∫ t

0

T̂se
−sds+

g√
2
e−β

∫ t

0

T̂s−te
−sds

)2

+
g2

2

(∫ t

0

T̂se
−sds+ e−β

∫ t

0

T̂s−te
−sds

)2

.

The first term on the right-hand side can be integrated with respect to dx as

1√
π

∫
R
e
−
(
x+ g√

2

∫ t
0 T̂se−sds+ g√

2
e−β

∫ t
0 T̂s−te−sds

)2

dx = 1.
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The second term on the right-hand side can be computed as(∫ t

0

T̂se
−sds+ e−β

∫ t

0

T̂s−te
−sds

)2

=

∫ t

0

∫ t

0

T̂sT̂re
−(s+r)dsdr + 2e−β

∫ t

0

∫ t

0

T̂s−tT̂re
−(s+r)dsdr + e−2β

∫ t

0

∫ t

0

T̂s−tT̂r−te
−(s+r)dsdr.

(3.10)

Terms independent of x on (3.9) are∫ t

0

ds

∫ t

0

T̂sT̂re
−(s+r)(e2(s∧r) − 1)dr +

∫ t

0

ds

∫ t

0

T̂s−tT̂r−te
−(s+r)(1− e−2β)dr

+

∫ t

0

ds

∫ t

0

T̂s−tT̂r−te
−(s+r)(e2(s∧r) − 1)dr. (3.11)

Then the sum of (3.10) and (3.11) is

(3.10) + (3.11)

=

∫ t

0

ds

∫ t

0

T̂s−tT̂r−te
−|s−r|dr +

∫ t

0

ds

∫ t

0

T̂sT̂re
−|s−r|dr + 2e−β

∫ t

0

∫ t

0

T̂s−tT̂re
−(s+r)dsdr

=

∫ 0

−t

ds

∫ 0

−t

T̂sT̂re
−|s−r|dr +

∫ t

0

ds

∫ t

0

T̂sT̂re
−|s−r|dr + 2e−β

∫ 0

−t

∫ t

0

T̂sT̂re
−|s−r|dsdr.

By the trick
∫ t

−t

∫ t

−t
=
∫ 0

−t

∫ 0

−t
+
∫ t

0

∫ t

0
+2
∫ 0

−t

∫ t

0
, we see that

(3.10) + (3.11) =

∫ t

−t

ds

∫ t

−t

T̂sT̂re
−|s−r|dr − 2(1− e−β)

∫ 0

−t

∫ t

0

T̂sT̂re
−|s−r|dsdr.

Then the lemma follows. ■
Define the probability measure ΠT on (D,BD) by

ΠT (A) =
1

ZT

1

2
e2T△

∑
α∈Z2

Eα
Q

[
1lAe

g2

2

∫ T
−T dt

∫ T
−T dsW△(t,s)

]
, A ∈ BD, (3.12)

where ZT = 1
2
e2T△∑

α∈Z2
Eα
Q

[
e

g2

2

∫ T
−T dt

∫ T
−T dsW△(t,s)

]
is the normalizing constant. Note that

pair interaction W△(t, s) is independent of σ and hence one can replace
∑

α∈Z2
Eα
Q with

2Eα
Q in (3.12). We also notice that 1 = ‖Φg‖2H =

∑
α∈Z2

∫
R |Φg(α, x)|2dµ(x), 2 = ‖1l‖2H =∑

α∈Z2

∫
R dµ(x) and 2ZT = ‖e−TL1l‖2.

Let Aj ∈ B(R) for j = 0, 1, . . . , n and Λ = {t0, t1, . . . , tn} ⊂ [−T, T ]. The cylinder set is
defined by

CΛ
T (A0 × · · · × An) = {ω ∈ DT | ω(tj) ∈ Aj, j = 0, 1, . . . , n}.

Recall that the family of cylinder sets is denoted by AT . We also note that σ(AT ) = BT .
Let

mt(A) = e2Ete2△t
∑
α∈Z2

∫
R
Eα
QE

x
P̄

[
1lAΦg(q̂

△
−t)Φg(q̂

△
t )e

−g
∫ t
−t W (q̂△s )ds

]
dµ(x). (3.13)
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Since
◦
B is a finitely additive family of sets, we define the finitely additive set function ν on

(D,
◦
B) by ν(A) = mt(A) for A ∈ π−1

t (Bt).

Lemma 3.8 ν is well defined, i.e., mt(A) = ms(A) for A ∈ π−1
t (Bt) ⊂ π−1

s (Bs).

Proof: Notice that mt ◦ π−1
t and ms ◦ π−1

t are probability measures on (Dt,Bt). We compute
finite dimensional distributions of mt ◦π−1

t and ms ◦π−1
t . Let Λ = {t0, t1, . . . , tn} ⊂ [−t, t] ⊂

[−s, s]. Since e−rL̄Φg = Φg for any r ≥ 0, we have by (4.4),

mt ◦ π−1
t (CΛ

t (A0 × · · · × An))

= e2Ete2△t
∑
α∈Z2

∫
R
Eα
QE

x
P̄

[(
n∏

j=0

1lAj
(T̂tj)

)
Φg(q̂

△
−t)Φg(q̂

△
t )e

−g
∫ t
−t W (q̂△s )ds

]
dµ(x)

= (e−(t0+t)L̄Φg, 1lA0e
−(t1−t0)L̄1lA1 · · · e−(tn−tn−1)L̄1lAne

−(t−tn)L̄Φg)

= (Φg, 1lA0e
−(t1−t0)L̄1lA1 · · · e−(tn−tn−1)L̄1lAnΦg)

= (e−(t0+s)L̄Φg, 1lA0e
−(t1−t0)L̄1lA1 · · · e−(tn−tn−1)L̄1lAne

−(s−tn)L̄Φg)

= ms ◦ π−1
t (CΛ

t (A0 × · · · × An)).

It is straightforward to see that the Kolmogorov consistency condition also holds true:

mt ◦ π−1
t

(
C

{Λ,s1,...,sm}
t

(
A0 × · · · × An ×

m∏
R

))
= mt ◦ π−1

t (CΛ
t (A0 × · · · × An)).

Let πΛ : [−t, t]R → RΛ be the projection such that for ω ∈ [−t, t]R, πΛω = (ω(t0), . . . , ω(tn)).
Thus by the Kolmogorov extension theorem there exists a unique probability measure m̄t on
([−t, t]R,σ(At)) such that

m̄t(π
−1
Λ (A0 × · · · × An)) = mt ◦ π−1

t (CΛ
t (A0 × · · · × An)) (3.14)

for all Λ ⊂ [−t, t] with #Λ < ∞ and Aj ∈ B(R). Since the extension is unique, mt ◦ π−1
t =

m̄t. Similarly there exists a unique probability measure m̄s on ([−t, t]R,σ(At)) such that
ms ◦ π−1

t = m̄s. Then ms ◦ π−1
t = mt ◦ π−1

t on Bt, which implies the lemma. ■
The first task is to extend ν to a probability measure by the Hopf extension theorem.

Lemma 3.9 ν can be uniquely extended to a probability measure Π∞ on (D,BD).

Proof: Suppose that En ∈
◦
B such that En ⊃ En+1 ⊃ . . . and limn→∞ ν(En) = α > 0. It is

enough to show that
⋂

nEn 6= ∅ by the Hopf extension theorem. Let En = π−1
Tn
(E ′

n) with
E ′

n ∈ BTn . We can assume that Tn < Tn+1 <→ ∞. Let µT = ν ◦ π−1
T be a probability

measure on DT . Since DT is a Polish space, µT is regular, i.e., for A ∈ BT and ϵ > 0 there
exist a compact set K and an open set O in DT such that K ⊂ A ⊂ O and µT (O \K) < ϵ.
There exists a compact set K ′

n ⊂ DTn such that µTn(E
′
n \K ′

n) < α/2n. Let Kn = π−1
Tn
(K ′

n),
Dn =

⋂n
j=1Kj and D =

⋂∞
n=1Dn. Since D ⊂

⋂
nEn, it is enough to show that D 6= ∅. We
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see that

α− ν(Dn) ≤ ν(En)− ν(Dn) ≤ ν(En \Dn)

= ν(∪n
j=1En \Kj) = ν(π−1

Tn
∪n

j=1 E
′
n \K ′

j) = µTn(∪n
j=1E

′
n \K ′

j)

=
n∑

j=1

µTn(E
′
n \K ′

j) ≤
n∑

j=1

µTn(E
′
j \K ′

j) ≤
n∑

j=1

α/2j.

Then 0 < ν(Dn) and we see that Dn 6= ∅. Let fn ∈ Dn, i.e., fn ∈
⋂n

j=1Kj. Thus

fn ∈ Kℓ for any n ≥ ℓ.

Let ℓ = 1. Then πT1(fn) ∈ K ′
1 for any n ≥ 1. Taking a subsequence n′, we see that

limn′→∞ πT1(fn′) = h1 ∈ K ′
1 exists. Let ℓ = 2. Then πT2(fn′) ∈ K ′

2 for any n′ ≥ 2. Take
a subsequence n′′ of n′ again, then limn′′→∞ πT2(fn′′) = h2 ∈ K ′

2 exists. Proceeding this
procedure, we can obtain a subsequence {m} that limm→∞ πTℓ

(fm) = hℓ ∈ K ′
ℓ exists for

any ℓ. Let gℓ = π−1
Tℓ
(hℓ) ∈ Lℓ. Define g ∈ D by g(x) = gℓ(x) for x ∈ [−Tℓ, Tℓ]. By the

construction this is well defined, i.e., gℓ(x) = gℓ+1(x) for x ∈ [−Tℓ, Tℓ]. We see that g ∈ D
and D 6= ∅. ■

For probability measures ΠT and Π∞ on (D,BD) in order to show that ΠT (A) → Π∞(A)

for every A ∈
◦
B, we define the finitely additive set function ρT on (DT ,

◦
BT ). Let 1lT = e−T L̄1l

for t ≥ 0. Then s- limT→∞ 1lT = Φg and ‖1lT‖2 = 2e2TEZT . The finitely additive set function

ρT on (DT ,
◦
BT ) is defined by

ρT (A) = e2Ete2t△
1

‖1lT‖2
∑
α∈Z2

∫
R
Eα
QE

x
P̄

[
1lA1lT−t(q̂

△
−t)1lT−t(q̂

△
t )e

−g
∫ t
−t W (q̂△s )ds

]
dµ(x) (3.15)

for A ∈ π−1
t (Bt) but t ≤ T . The right-hand side of (3.15) is denoted by MT,t(A).

Lemma 3.10 ρT is well defined, i.e, MT,t(A) =MT,s(A) for A ∈ π−1
t (Bt) ⊂ π−1

s (Br).

Proof: This is shown in a similar manner to Lemma 3.8. Let

MT,t(A) = e2Ete2t△
∑
α∈Z2

∫
R
Eα
QE

x
P̄

[
1lA1lT−t(q̂

△
−t)1lT−t(q̂

△
t )e

−g
∫ t
−t W (q̂△s )ds

]
dµ(x).

ThenMT,t◦π−1
t andMT,s◦π−1

t are probability measures on (Dt,Bt). Let Λ = {t0, t1, . . . , tn} ⊂
[−t, t] ⊂ [−s, s]. We have by (4.4),

MT,t ◦ π−1
t (CΛ

t (A0 × · · · × An))

= e2Ete2△t
∑
α∈Z2

∫
R
Eα
QE

x
P̄

[(
n∏

j=0

1lAj
(T̂tj)

)
1lT−t(q̂

△
−t)1lT−t(q̂

△
t )e

−g
∫ t
−t W (q̂△r )dr

]
dµ(x)

= (e−(t0+t)L̄1lT−t, 1lA0e
−(t1−t0)L̄1lA1 · · · e−(tn−tn−1)L̄1lAne

−(t−tn)L̄1lT−t)

= (e−(t0+s)L̄1lT−s, 1lA0e
−(t1−t0)L̄1lA1 · · · e−(tn−tn−1)L̄1lAne

−(s−tn)L̄1lT−s)

=MT,s ◦ π−1
t (CΛ

t (A0 × · · · × An)).
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It is straightforward to see that the Kolmogorov consistency condition also holds true:

MT,t ◦ π−1
t

(
C

{Λ,s1,...,sm}
t

(
A0 × · · · × An ×

m∏
R

))
=MT,t ◦ π−1

t (CΛ
t (A0 × · · · × An)).

Thus by the Kolmogorov extension theorem there exists a unique probability measure M̄T,t

on ([−t, t]R,σ(At)) such that

M̄T,t(π
−1
Λ (A0 × · · · × An)) =MT,t ◦ π−1

t (CΛ
t (A0 × · · · × An)) (3.16)

for all Λ ⊂ [−T, T ] with #Λ <∞ and Aj ∈ B(R). Since the extension is unique, MT,t◦π−1
t =

M̄T,t. Similarly there exists a unique probability measure M̄T,s on ([−t, t]R,σ(At)) such that
MT,s ◦ π−1

t = M̄T,s. Then MT,s ◦ π−1
t =MT,t ◦ π−1

t on Bt, which implies the lemma. ■

We shall show that ρT = ΠT on
◦
BT for any T > 0.

Lemma 3.11 We have ρT = ΠT on
◦
BT .

Proof: Let t ≤ T . It is enough to show that ΠT (A) = ρT (A) for A ∈ π−1
t (Bt). Let Λ =

{t0, t1, ..., tn} ⊂ [−t, t] ⊂ [−T, T ] and A0 × · · · × An ∈ B(RΛ). We have

ΠT ◦ π−1
t (CΛ

t (A0 × · · · × An)) =
1

ZT

e2T△1

2

∑
α∈Z2

Eα
Q

[(
n∏

j=0

1lAj
(T̂tj)

)
e

g2

2

∫ T
−T dt

∫ T
−T dsW△(t,s)

]
,

(3.17)

ρT ◦ π−1
t (CΛ

t (A0 × · · · × An))

= e2Ete2△t 1

‖1lT‖2
∑
α∈Z2

∫
R
Eα
QE

x
P̄

[(
n∏

j=0

1lAj
(T̂tj)

)
1lT−t(q̂

△
−t)1lT−t(q̂

△
t )e

−g
∫ t
−t W (q̂△s )ds

]
dµ(x).

(3.18)

By (4.4) we see that

(3.17) =
1

‖1lT‖2
(1l, e−(t0+T )L1lA0e

−(t1−t0)L1lA1 · · · 1lAne
−(T−tn)L1l)

=
e2Et

‖1lT‖2
(1lT−t, e

−(t0+t)L1lA0e
−(t1−t0)L1lA1 · · · 1lAne

−(t−tn)L1lT−t) = (3.18).

Then we have

ΠT ◦ π−1
t (CΛ

t (A0 × · · · × An)) = ρT ◦ π−1
t (CΛ

t (A0 × · · · × An)). (3.19)

Since both sides of (3.19) satisfy the Kolmogorov consistency condition, there exists a unique
probability measure µ on (DT ,Bt) such that

µ(π−1
Λ (A0 × · · · × An)) = ΠT ◦ π−1

t (CΛ
t (A0 × · · · × An)) = ρT ◦ π−1

t (CΛ
t (A0 × · · · × An)).
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ΠT ◦π−1
t and ρT ◦π−1

t are probability measures on (Dt,Bt), and ΠT ◦π−1
t (CΛ

t (A0×· · ·×An)) =
ΠT ◦π−1

t (π−1
Λ (A0×· · ·×An)) = ρT ◦π−1

t (CΛ
t (A0×· · ·×An)) = ρT ◦π−1

t (π−1
Λ (A0×· · ·×An)).

Since the extension is unique, ΠT ◦ π−1
t = µ = ρT ◦ π−1

t on (Dt,Bt) follows. ■
The following proposition is shown for spin boson model in [5, Theorem 3.8] and for rela-

tivistic Pauli-Fierz model in [6, Lemma 7.6], and the proof for the quantum Rabi Hamiltonian
is a minor modification of [5, 6].

Proposition 3.12 There exists a probability measure Π∞ on (D,BD) such that

lim
T→∞

ΠT (A) = Π∞(A) A ∈
◦
B .

Proof: By s- limT→∞ 1lT = Φg we obtain that s- limT→∞ 1lT−t = Φg and limT→∞ ‖1lT‖ = 1.

Then for each α ∈ Z2, (1lT−t/‖1lT‖)(·, σ) → φg(·, σ) as T → ∞ in L2(R, dµ). Let ΦT
g = 1lT−t

∥1lT ∥ .

Note that Φg,Φ
T
g ∈ L∞(Z2 × R). Let A ∈ π−1

t (Bt). Then ΠT (A) = ρT (A) by Lemma 3.11
and ν(A) = Π∞(A) by Lemma 3.8. We have

ΠT (A)− Π∞(A) = ρT (A)− ν(A)

= e2Ete2△t
∑
α∈Z2

Eα
Q

[
1lA

∫
R
Ex
P̄

[(
Φg(q̂

△
−t)Φg(q̂

△
t )− ΦT

g (q̂
△
−t)Φ

T
g (q̂

△
t )
)
e−g

∫ t
−t W (q̂△s )ds

]
dµ(x)

]
.

Then ∫
R
Ex
P̄

[∣∣∣Φg(q̂
△
−t)Φg(q̂

△
t )− ΦT

g (q̂
△
−t)Φ

T
g (q̂

△
t )
∣∣∣ e−g

∫ t
−t W (q̂△s )ds

]
dµ(x)

≤
∫
R
Ex
P̄

[∣∣∣Φg(q̂
△
−t)− ΦT

g (q̂
△
−t)|Φg(q̂

△
t )
∣∣∣ e−g

∫ t
−t W (q̂△s )ds

]
dµ(x)

+

∫
R
Ex
P̄

[
|ΦT

g (q̂
△
−t)|

∣∣∣Φg(q̂
△
t )− ΦT

g (q̂
△
t )
∣∣∣ e−g

∫ t
−t W (q̂△s )ds

]
dµ(x).

We estimate
∫
R Ex

P̄

[∣∣∣Φg(q̂
△
−t)− ΦT

g (q̂
△
−t)|Φg(q̂

△
t )
∣∣∣ e−g

∫ t
−t W (q̂△s )ds

]
dµ(x). By the shift invariance

we have ∫
R
Ex
P̄

[∣∣∣(Φg(q̂
△
−t)− ΦT

g (q̂
△
−t))Φg(q̂

△
t )
∣∣∣ e−g

∫ t
−t W (q̂△s )ds

]
dµ(x)

=

∫
R
|Φg(q̂

△
0 )− ΦT

g (q̂
△
0 )|Ex

P̄

[∣∣∣Φg(q̂
△
2t)
∣∣∣ e−g

∫ 2t
0 W (q̂△s )ds

]
dµ(x).

By the Schwarz inequality we also have

≤
(∫

R
|Φg(q̂

△
0 )− ΦT

g (q̂
△
0 )|2dµ(x)

)1/2(∫
R
Ex
P̄

[∣∣∣Φg(q̂
△
2t)
∣∣∣2] dµ(x))1/2(

Ex
P̄

[
e−2g

∫ 2t
0 W (q̂△s )ds

])1/2
.

Since by Lemma 3.4,

Ex
P̄

[
e−2g

∫ 2t
0 W (q̂△s )ds

]
≤ e|g|(1−e−2t)|x|eg

2
∫ (1−e−4t)/2
0 |2t−y|2dy,
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we have ∫
R
Ex
P̄

[∣∣∣(Φg(q̂
△
−t)− ΦT

g (q̂
△
−t))Φg(q̂

△
t )
∣∣∣ e−g

∫ t
−t W (q̂△s )ds

]
dµ(x)

≤ C

(∫
R
|Φg(q̂

△
0 )− ΦT

g (q̂
△
0 )|2dµ(x)

)1/2(∫
R
e|g|(1−e−2t)|x|dµ(x)

)1/2

.

Here we employed that Φg ∈ L∞(Z2×R). Since
∫
R |Φg(q̂

△
0 )−ΦT

g (q̂
△
0 )|2dµ(x) → 0 as T → ∞,∫

R
Ex
P̄

[∣∣∣Φg(q̂
△
−t)− ΦT

g (q̂
△
−t)|Φg(q̂

△
t )
∣∣∣ e−g

∫ t
−t W (q̂△s )ds

]
dµ(x) → 0

as T → ∞. Similarly we can also show that∫
R
Ex
P̄

[
|ΦT

g (q̂
△
−t)|

∣∣∣Φg(q̂
△
t )− ΦT

g (q̂
△
t )
∣∣∣ e−g

∫ t
−t W (q̂△s )ds

]
dµ(x) → 0

as T → ∞. Then the proof is complete. ■
The sequence of probability measures (ΠT )T>0 is said to locally converge to the probability

measure Π∞ whenever limT→∞ ΠT (A) = Π∞(A) for all A ∈ π−1
t (Bt) and for all t ≥ 0.

Corollary 3.13 Let f be a Bt-measurable and bounded function. Then

lim
T→∞

EΠT
[f ] = EΠ∞ [f ].

Proof: It is enough to show the corollary for a nonnegative function f . Since f is bounded
and Bt-measurable, there exists a sequence {fn} such that limn→∞ supx∈D |fn(x)−f(x)| = 0.
Here fn is of the form fn =

∑mn

j=1 aj1lAj
with Aj ∈ Bt and aj > 0. Let ϵ > 0 be arbitrary.

We assume that supx∈D |fn(x)− f(x)| ≤ ϵ. Then we see that

|EΠT
[f ]− EΠ∞ [f ]| ≤ EΠT

[|f − fn|] + |EΠT
[fn]− EΠ∞ [fn]|+ EΠ∞ [|fn − f |]

≤ 2ϵ+ |EΠT
[fn]− EΠ∞ [fn]|

and from Proposition 3.12 it follows that limT→∞ |EΠT
[f ]−EΠ∞ [f ]| ≤ 2ϵ. Then the corollary

follows. ■

4 Expectations by Π∞

In this section we give some examples of application of Π∞. These examples are one mode
versions of the spin boson model [10, 5]. Then we show only outlines of proofs.

4.1 Number operator b†b

Theorem 4.1 Let β ∈ C. Then

〈eβb†b〉 = EΠ∞

[
e−g2(1−eβ)

∫ 0
−∞

∫∞
0 W△(s,r)dsdr

]
, (4.1)

〈(b†b)m〉 =
m∑
l=1

al(m)g2lEΠ∞

[(∫ 0

−∞

∫ ∞

0

W△(s, r)dsdr

)l
]
. (4.2)
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Here al(m) = (−1)l

l!

∑l
s=1(−1)s

(
l
s

)
are the Stirling numbers. In particular 〈(b†b)m〉 ≤ e2g

2 − 1
for any m ≥ 0.

Simple but non trivial application is as follows. We know that 〈σx ⊗ (−1l)b
†b〉 < 0 since the

parity of Φg is −1. As a corollary of Theorem 4.1 we can show that 〈(−1l)b
†b〉 > 0.

Corollary 4.2 We have

〈(−1l)b
†b〉 = EΠ∞

[
e−2g2

∫ 0
−∞

∫∞
0 W△(s,r)dsdr

]
> 0.

Proof: Put β = iπ in Theorem 4.1. Then the corollary follows. ■

4.2 Gaussian functions

We construct a path integral representation of 〈eiβx〉.

Theorem 4.3 We have
〈eiβx〉 = e−β2/4EΠ∞

[
eiβK

]
,

where

K = − g√
2

∫ ∞

−∞
T̂se

−|s|ds.

Corollary 4.4 Let β ∈ C such that |β| < 1. Then

〈eβx2〉 = 1√
1− β

EΠ∞

[
e

βK2

1−β

]
. (4.3)

In particular limβ↑1 ‖eβx
2/2Φg‖2 = ∞.

Proof: By Theorem 4.2 we see that

〈e−β2x2/2〉 = 1√
2π

∫
R
(Φg, e

ikβxΦg)e
−k2/2dk =

1√
2π

∫
R
e−k2β2/4EΠ∞

[
eikβK

]
e−k2/2dk

= EΠ∞

[
1√
2π

∫
R
e−k2β2/4eikβKe−k2/2dk

]
=

1√
1 + β2/2

EΠ∞

[
e
−β2K2

β2+2

]
.

By an analytic continuation we obtain (4.3) for β ∈ C such that |β| < 1. Then the corollary
follows. ■

4.3 Spin σz

Let L̄ = L − E. Path integral representations of Euclidean Green functions by Lemma 3.2
can be rewritten as follows.
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Corollary 4.5 (1) Suppose that ϕ, ψ ∈ H and fj = fj(α, x) ∈ L∞(Z2×R) for j = 0, 1, . . . , n,
and 0 < t0 < t1 < . . . < tn < t. Then

(ϕ, e−t0L̄f0e
−(t1−t0)L̄f1e

−(t2−t1)L̄ · · · e−(tn−tn−1)L̄fne
−(t−tn)L̄ψ)

= e△teEt
∑
α∈Z2

∫
R
Eα
QE

x
P̄

[
ϕ̄(q̂△0 )ψ(q̂

△
t )

(
n∏

j=0

fj(q̂
△
tj )

)
e−g

∫ t
0 W (q̂△s )ds

]
. (4.4)

(2) Suppose that gj = gj(α) ∈ L∞(Z2) for j = 0, 1, . . . , n and 0 < t0 < t1 < . . . < tn < t.
Then

(1l, e−t0L̄g0(σz)e
−(t1−t0)L̄g1(σz)e

−(t2−t1)L̄ · · · e−(tn−tn−1)L̄gn(σz)e
−(t−tn)L̄1l)

= e△teEt
∑
α∈Z2

Eα
Q

[(
n∏

j=0

gj(T̂tj)

)∫
R
Ex
P̄

[
e−g

∫ t
0 W (q̂△s )ds

]
dµ(x)

]
. (4.5)

Proof: (1) is a simple reworking of Lemma 3.2 and (2) is a special case of (1). ■
One can see that the integrand in (4.5) is

Ex
P

[
e−g

∫ t
0 W (q̂△s )ds

]
= e−g(

∫ t
0 e−s(−1)

N△sds)xe
g2

4

∫ (1−e−2t)/2
0 |∫ t

y (−1)
N△sds|2dy.

by Lemma 3.4.

Theorem 4.6 We have 〈σze−|t−s|L̄σz〉 = EΠ∞ [T̂tT̂s] for any t, s ∈ R.

Proof: By Lemma 4.5 and a limiting argument, we see that

(σzΦg, e
−tL̄σzΦg) = lim

T→∞

1

‖1lT−t/2‖2
(σz1lT−t/2, e

−tL̄σz1lT−t/2)

= lim
T→∞

e2ET e2T△

‖1lT−t/2‖2
∑
α∈Z2

Eα
Q

[
T̂−t/2T̂t/2e

g2

2

∫ T
−T dt

∫ T
−T dsW△(t,s)

]
.

Then we have

(σzΦg, e
−tL̄σzΦg) = lim

T→∞

‖1lT‖2

‖1lT−t/2‖2
e2ET e2T△

‖1lT‖2
∑
α∈Z2

Eα
Q

[
T̂−t/2T̂t/2e

g2

2

∫ T
−T dt

∫ T
−T dsW△(t,s)

]

= lim
T→∞

‖1lT‖2

‖1lT−t/2‖2

Eα
Q

[
T̂−t/2T̂t/2e

g2

2

∫ T
−T dt

∫ T
−T dsW△(t,s)

]
Eα
Q

[
e

g2

2

∫ T
−T dt

∫ T
−T dsW△(t,s)

] = EΠ∞ [T̂−t/2T̂t/2].

Hence for t > s,

(σzΦg, e
−(t−s)L̄σzΦg) = EΠ∞ [T̂−(t−s)/2T̂(t−s)/2] = EΠ∞ [T̂tT̂s]

by the shift invariance. ■
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