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1 Nelson model

This is the joint work with Oliver Matte. In [[[l] we discuss the pointwise spatial decay
of the ground state of the renormalized Nelson model [T4, 9, [3]. In this article we review
only the standard Nelson model. Let ®, be the ground state of the Nelson Hamiltonian.
An upper bound of the spatial decay of || P, (z)||# has been already shown in [I0]. In this
article the lower bound is shown in terms of an Agmon type metric.

We apply stochastic methods to measure the spatial exponential localization. This
type of arguments have been done for Schrodinger type operators in a large number of
papers, e.g., [, 2, B, B, B, 4, 5, 16].

1.1 Quantum mechanical matters

The particle Hamiltonian is defined by the 3-dimensional Schrédinger operator with ex-
ternal potential V:

1
which acts in L*(R?). We introduce the Kato-decomposable class [2, Section 4] and [6].
Definition 1.1 Let V : R? — R.

(1) V is a Kato-class potential if and only if lir% sup / |ka(z —y)V (y)| dy = 0 holds
"V 2eRrd JB,(z)
with function kg depending on the dimension d:

/ﬁ:d(x) = —10g|33|, d= )



The set of Kato-class potentials is denoted by IKC(R?).
(2) V € Kioe(R?) if and only if 15V € K(RY) for any compact set K C RY.

(3) V' is Kato-decomposable if and only if V =V, — V_ with V,(x) = max{V(z),0}
and V_(z) = max{—V (x),0} satisfy that Vy € Kioc(R?) and V_ € K(RY). The set
of Kato-decomposable potentials is denoted by KCq.

The self-adjoint operator of the form H, = —%A + V' with Kato-decomposable potential
V' is defined through a Feynman-Kac formula. Let (B;)i>o be 3-dimensional Brownian
motion on a probability space (27, B,W?), which starts from z € R® at t = 0. The
expectation value with respect to the probability measure W* is denoted by E*|[...]. In
particular we set E for E? for notational simplicity. Let V be bounded. Then H, is
self-adjoint on D(A) and we have

(e Mog)romsy = [ Brle BV ONTF B g(Bold.
R

Replacing V' on the right-hand side above with Kato-decomposable potentials, one can
also see that the right-hand side is finite for any f, g € L?(R?) and, by Riesz representation
theorem, one defines a strongly continuous one-parameter semigroup S;, ¢ > 0 such that

(1 Sig)izge = [ Bole BV N Br)g(Blda,

By the Stone theorem for semigroups, there exists the self-adjoint operator H,, such that
Sy = e e for t > 0. This is the definition of H, with Kato-decomposable potentials V.

1.2 Nelson Hamiltonian

Let us define the quantum field part. Let F be the boson Fock space over L*(R?) defined

by
F =P Fo
n=0

with n particle subspace F,y = L2,,,,(R*") forn > 1 and F(g) = C. Then ® € F is denoted
by ® = @2 ,®™. The vector Q = 1&0®0D- - - € F is called the Fock vacuum. Let a'(g)
and a(g) be the creation operator and the annihilation operator smeared by g € L?(R?),
respectively, acting in F. They satisfy that a(g)* = a'(g), [a(g),a’(f)] = (4, f)r2®s) and
[a(g),a(f)] = 0 = [a'(g),al(f)]. Let w(k) = |k| be the relativistic energy of a single
massless boson with momentum k& € R3. The free field Hamiltonian H; acting in F is
given by
Hf = dF(W),



where

(dD(W)D)™ (ky,. .. k) = (wa) O (ky, .. ky), m>1,

j=1

The total Hilbert space H for the Nelson model is defined by
H=L*R®F.

Now let us define the Nelson Hamiltonian with a cutoff ¢. Let .#4(R?) be the set of
real-valued Schwarz distributions on R?® and ¢ the Fourier transform of ¢ in the sense of
distribution.

Assumption 1.2 Let ¢ € %4(R?). We suppose that ¢ € Li (R?), ¢(k) = ¢(—k) and
¢/Vw,pjw € L*(R).

Throughout this paper we assume Assumption I2. Let ¢ = (¢/y/w) ", where f denotes
the inverse Fourier transform of f. The linear interaction Hj is defined by

®
H; = Hy(x)dx

R3

with the action:
(H®)(z) = ¢(z)®(z) a.c.x € R®

Here for each z € R3 ¢(z) is given by

b(x) = % {aT (%e—i’”) +a (%ek> } |

Here p(k) = $(—Fk). Then the Nelson Hamiltonian with ultraviolet cutoff ¢ and Kato-
decomposable potential V' is defined by

H=H,®1+1® H;+ H.

Under Assumption 2, H is symmetric and Hp is infinitesimally small with respect to
1® H¢. Then H is self-adjoint on D(H, ® 1) N D(1® Hy).

1.3 FKF for e 4

Let us define the bounded operator Jyp 4 by

J[O,t] = G%WGQT(U)Q—tHf ea(U) ’



where {...} denotes the operator closure and

t —|s|lw(k) » k ) B t —|s—tlw(k), » —k
€ 90( ) flk-Bst’ U(k) — € 90( )

0 V2l 0 (k)

The exponent W is given by

1 t t —|s—r|w(k) |~ k 2 )
W= —/ ds/ dr/ ‘ PRI ik -0y
2Jo Sy e w(k)

Note that () = $°°° af(f)"/n! is an unbounded operator. On e can see that 1Jp4] <
Cy(t), where

U(k) = — e Ba s,

zexp { Slp1l? + 210V DoV + 16/6lP) | 9 & L2E),

Col(t) =
3. . R R
zexp {t (SI0lP + 1o/ VIGIVEIR) | ol € LR,

In particular we have
(W, @) 7l < Co() [ W] (2] (1.1)

It is important to see that Jjo, depends on w € 2" but the right-hand sides of (IT) are
independent of w € 2. Let V € K3 and suppose Assumption 2. Then we have FKF:

(F,e™™G)y :/ Ele™ Jo VPN (F(By), Jjoy G (B)) #lda
R3

We refer to e.g., [I3, 10].

1.4 Ground state

The next proposition guarantees the existence and the uniqueness of the ground state of
the Nelson Hamiltonian H.

Proposition 1.3 Suppose that ¢/w?? € L*(R®) and V € K3. Assume that the binding
condition holds true. Then the ground state of H exists and it is unique.

Proof: See [, (3) and Theorem 3.1] for the binding condition and [I7, [7] for the existence
of the ground state. O

Example 1.4 Let V be such that limg o V() = oo. Then V satisfies the binding
condition, and then the ground state of H exists and unique.



Let ®, be a bound state of H such that H®, = E,®y. Let W € F and ¢t > 0. Since
e tHP, = e Prdy | we have

(U, ®p(2)) 7 = E*[e” VBB (g J0 0 (By)) 5] aex € R, (1.2)

Let ®, be the ground state of H such that H®, = E,®,, where E, denotes the infimum
of the spectrum of H. We set

lo(w) = E7[e~ o VBI=EI(Q 310 10, (By)) 7).
Lemma 1.5 Let V € K3. Then lo(x) is continuous in x and lo(x) > 0 for all x € R3.

Proof: The continuity is shown in [I2, 1] and the positivity in [I3, IT]. O

By Lemma 3 and (I2), g can be regarded as the continuous version of (€2, ®4(+)) £

2 Pointwise bounds

By using an Agmon metric type argument [, 5], we can estimate the lower bound of
[Pg ()]l

2.1 Geodesic distance for V

Assumption 2.1 Suppose that V is continuous, V(x) > € for all z € R® with some
€ >0 and limy| o V() = 00.

Suppose Assumption 1. Let us set W = V,,. W is also continuous and satisfies that
W(x) > ¢ for all z € R? and limjy_,oo W (z) = 00. We fix T' > 0. We estimate ||P,(z)]|#
from below in terms of the exponent of an Agmon type metric. We define two C!'-path
spaces:
C*={qe C'([0,T|;R%) | q(0) = x,q(T) = 0},
¢ = {7 € C}(0, T R?) | 7(0) = 0,(

Let
w01 = [ (W) + k) ds. aec
[ VATl v ec

We set v4(s) = q(T — s) for ¢ € C* and q7(s) = y(T — s) for v € C. Then 14 € C,
q" € C* and Z (v, T) < (q,T) and Z(v,T) < «(q",T) follow for any q € C* and
v € C by the arithmetic and geometric inequality: 2ab < a? + b*>. We are interested in

L(y,T) =



the existence of a minimizer v* of .Z(y,T"). We shall approximate W by a C'*°-function.
For b > 0 there exists Y € C*°(R3) such that

(1—-b)W(z) <Y(z) <(1+b)W(x).
For z,y € R?® we define the geodesic distance for W by
o(z,y) = inf {L(y,T)|y € C'([0, T R?),7(0) = z,9(T) = y} .

o defines a metric on R?. Set W, = -5Y. Then W(z) < Wy(z). Let

T
~ [ VARG s
0
Then Wy, > ¢/(1 —b) > 0, W, € C°°(R?) and lim;_o Wj(z) = oo. Let

oo(z,y) = inf {ZL(7,T) | v € C'([0,T]; R?), 4(0) = z,%(T) = y}.

0p(0, X)) = inf,ex 0p(0,2) is the distance from 0 to X. We can see that g, is geodesi-
cally complete. The geodesic completeness implies that there exists a length minimizing
geodesic connecting any two points by Hopf-Rinow theorem. Then there exists a mini-

mizer v* € C*([0,T]; R?) of Z(7). We define

s 1
(a0 $) = [ (Wilate) + 3la)F) as
0
We shall connect two minima:

inf {Z(7,T) | 7(0) = 0,%(T) = 0,7 € C([0,T];R*) } ,
inf{a%(q,5) | S > 0,q(0) = z,q(s) = 0,q € C([0, S|; R?)}.

Z(y, T fo V2Wi(7(s))|7(s)|ds is invariant under re-parametrization: v — 7 o ¢
by any smooth bijection ¢ : [ T] — [0,T]. On the other hand in general <%(q, S) is not

invariant. From this property one can construct a bijection ¢ such that

VA0 G5 6(s)] = Wity 6(5)) + 26 6(5).

Then we have the lemma.

Lemma 2.2 There exists minimizer (q*,S*) € C*([0,T];R3) x (0,00) of %(q,S) and
it holds that L,(v*,T) = < (q*, S*). Moreover let v.(s) = q*(S* — s). Then

2 \/2Wb Vi(8)) 7 (s)|ds = A (q", 57). (2.1)



2.2 Exponential decay

Let K C R3 be a compact set. Since lqo(+) is continuous and strictly positive on K, we

can set xx = inf ex lo(y) > 0. Let Oy = sup || Py (y)|| .
yER?

Lemma 2.3 Let T' > 0. Then there exists T > 0 such that for any q € C*,
lo(@) > yrce~ o (Vr@)+E I 1a(e) s =Tr T L) (2.2)
Proof: By Jensen’s inequality, we have
lo(z) = E [e— J§' (V(Bata)=E)ds (@ o=0e U 152(—B)4) J. & (By + )
>E { ~Jy (V(Beta)~Egdsg (B 4 :)z)e\/%%} ,
Let q € C* and we define ¢ by

5_ e fo (s)-dBs— 2f0 la( s)|2ds

Thus E[¢] = 1. By the Girsanov theorem, we see that

[¢/wl[®oo

Let M = {|B;s] <1,0 < s <T} and K be the unit closed ball. Thus lo(Br) > xx on M
and

Hw/wl\fboo)
V2x K

gﬂ(x> > XK€ Jo Vsup(Q(S))dseT(Eg

E [€1] -

By Jensen’s inequality again, we have

1 . ]E[IM(_ J5 Q(s)'st)] 1 .
E[€1y] > xxe 2 s PR, e B[] = yke 2 Jo )Py,

Note that E[ly,] > e~ 7 with some 7 > 0 [6], where 7 is the infimum of the spectrum of
—A/2 on the unit ball with Dirichlet boundary condition. Thus (22) follows. O

Theorem 2.4 ([I1]) Lety € C and £ > 0. Then there exists R > 0 such that
xre~ I V2V GEFOIs < 19 ()7, |2| > R.

Proof: By Lemma 272, there exists minimizer (q*, S*) € C°°([0, T]; R?) x (0, o) of <#(q, S)
and v* € C([0, T]; R3) of £ (v, T). Tt also holds that Z,(v*,T) = %(q*, S*). It can be
shown that there exists Rs; such that

s<o [0 (w5 [ o)

7



for |z| > Rsp. Hence putting 7' = S* and ¢ = ¢* in Lemma I3, we have for |z| > Ry,

la(r) = xx exp{—(1+0)(q",5%)} = xx exp{—(1+0)L(7", T)}

140
> X exp {—(1 +9) 1—:)3(%T)} :
Choose ¢ and b such that 1 +& = (14 6)y/12. Then the theorem follows. O

Corollary 2.5 ([I1]) (1) Suppose Assumption 2. Let € > 0. Then there exists R such
that

T
XKe—(1+6)|w\fo v/ 2Vsup (s)ds < ||®p(z)||7 |z| > R

(2) Assume that V' obeys the lower bound

2
Vi(e) 2 Slaf —b, |o|> R

for some a,b,n >0 and R > 0 so that a?R*"/2 —b > 0. Then for all € > 0, there erist
c. >0 and C. > 0 such that

Cee” Tl < |y (2)]| 7 < coe”TDREIT

Proof: (1) Put 7(s) = sz in Theorem 2. Then (1) follows. (2) The lower bound follows
from (1) and the upper bound from [I0]. O
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