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1 Nelson model

This is the joint work with Oliver Matte. In [11] we discuss the pointwise spatial decay
of the ground state of the renormalized Nelson model [14, 9, 13]. In this article we review
only the standard Nelson model. Let Φg be the ground state of the Nelson Hamiltonian.
An upper bound of the spatial decay of ∥Φg(x)∥F has been already shown in [10]. In this
article the lower bound is shown in terms of an Agmon type metric.

We apply stochastic methods to measure the spatial exponential localization. This
type of arguments have been done for Schrödinger type operators in a large number of
papers, e.g., [1, 2, 3, 6, 5, 4, 15, 16].

1.1 Quantum mechanical matters

The particle Hamiltonian is defined by the 3-dimensional Schrödinger operator with ex-
ternal potential V :

Hp = −1

2
∆ + V,

which acts in L2(R3). We introduce the Kato-decomposable class [2, Section 4] and [6].

Definition 1.1 Let V : Rd → R.

(1) V is a Kato-class potential if and only if lim
r→0

sup
x∈Rd

∫
Br(x)

|κd(x−y)V (y)| dy = 0 holds

with function κd depending on the dimension d:

κd(x) =


|x|, d = 1,

− log |x|, d = 2,

|x|2−d, d ≥ 3.
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The set of Kato-class potentials is denoted by K(Rd).

(2) V ∈ Kloc(Rd) if and only if 1lKV ∈ K(Rd) for any compact set K ⊂ Rd.

(3) V is Kato-decomposable if and only if V = V+ − V− with V+(x) = max{V (x), 0}
and V−(x) = max{−V (x), 0} satisfy that V+ ∈ Kloc(Rd) and V− ∈ K(Rd). The set
of Kato-decomposable potentials is denoted by Kd.

The self-adjoint operator of the form Hp = −1
2
∆+ V with Kato-decomposable potential

V is defined through a Feynman-Kac formula. Let (Bt)t≥0 be 3-dimensional Brownian
motion on a probability space (X ,B,Wx), which starts from x ∈ R3 at t = 0. The
expectation value with respect to the probability measure Wx is denoted by Ex[. . .]. In
particular we set E for E0 for notational simplicity. Let V be bounded. Then Hp is
self-adjoint on D(∆) and we have

(f, e−tHpg)L2(R3) =

∫
R3

Ex[e−
∫ t
0 V (Bs)dsf(B0)g(Bt)]dx.

Replacing V on the right-hand side above with Kato-decomposable potentials, one can
also see that the right-hand side is finite for any f, g ∈ L2(R3) and, by Riesz representation
theorem, one defines a strongly continuous one-parameter semigroup St, t ≥ 0 such that

(f, Stg)L2(R3) =

∫
R3

Ex[e−
∫ t
0 V (Bs)dsf(B0)g(Bt)]dx.

By the Stone theorem for semigroups, there exists the self-adjoint operator Hp such that
St = e−tHp for t ≥ 0. This is the definition of Hp with Kato-decomposable potentials V .

1.2 Nelson Hamiltonian

Let us define the quantum field part. Let F be the boson Fock space over L2(R3) defined
by

F =
∞⊕
n=0

F(n)

with n particle subspace F(n) = L2
sym(R3n) for n ≥ 1 and F(0) = C. Then Φ ∈ F is denoted

by Φ = ⊕∞
n=0Φ

(n). The vector Ω = 1⊕0⊕0⊕· · · ∈ F is called the Fock vacuum. Let a†(g)
and a(g) be the creation operator and the annihilation operator smeared by g ∈ L2(R3),
respectively, acting in F . They satisfy that a(g)∗ = a†(ḡ), [a(g), a†(f)] = (ḡ, f)L2(R3) and
[a(g), a(f)] = 0 = [a†(g), a†(f)]. Let ω(k) = |k| be the relativistic energy of a single
massless boson with momentum k ∈ R3. The free field Hamiltonian Hf acting in F is
given by

Hf = dΓ(ω),

2



where

(dΓ(ω)Φ)(n) (k1, . . . , kn) =

(
n∑

j=1

ω(kj)

)
Φ(n)(k1, . . . , kn), n ≥ 1,

dΓ(ω)Ω = 0.

The total Hilbert space H for the Nelson model is defined by

H = L2(R3)⊗F .

Now let us define the Nelson Hamiltonian with a cutoff φ̂. Let S ′
R(R3) be the set of

real-valued Schwarz distributions on R3 and φ̂ the Fourier transform of φ in the sense of
distribution.

Assumption 1.2 Let φ ∈ S ′
R(R3). We suppose that φ̂ ∈ L1

loc(R3), φ̂(k) = φ̂(−k) and
φ̂/

√
ω, φ̂/ω ∈ L2(R3).

Throughout this paper we assume Assumption 1.2. Let φ̃ = (φ̂/
√
ω) ,̌ where f̌ denotes

the inverse Fourier transform of f . The linear interaction HI is defined by

HI =

∫ ⊕

R3

HI(x)dx

with the action:
(HIΦ)(x) = ϕ(x)Φ(x) a.e.x ∈ R3.

Here for each x ∈ R3 ϕ(x) is given by

ϕ(x) =
1√
2

{
a†
(

φ̂√
ω
e−ik·x

)
+ a

(
˜̂φ√
ω
eik·x

)}
.

Here ˜̂φ(k) = φ̂(−k). Then the Nelson Hamiltonian with ultraviolet cutoff φ̂ and Kato-
decomposable potential V is defined by

H = Hp ⊗ 1l + 1l⊗Hf +HI.

Under Assumption 1.2, H is symmetric and HI is infinitesimally small with respect to
1l⊗Hf . Then H is self-adjoint on D(Hp ⊗ 1l) ∩D(1l⊗Hf).

1.3 FKF for e−tH

Let us define the bounded operator J[0,t] by

J[0,t] = e
1
2
W ea†(U)e−tHfea(Ũ),
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where {. . .} denotes the operator closure and

U(k) = −
∫ t

0

e−|s|ω(k)φ̂(k)√
2ω(k)

e−ik·Bsds, Ũ(k) = −
∫ t

0

e−|s−t|ω(k)φ̂(−k)√
2ω(k)

eik·Bsds.

The exponent W is given by

W =
1

2

∫ t

0

ds

∫ t

0

dr

∫
R3

e−|s−r|ω(k)|φ̂(k)|2

ω(k)
e−ik·(Bs−Br)dk.

Note that ea
♯(f) =

∑∞
n=0 a

♯(f)n/n! is an unbounded operator. On e can see that ∥J[0,t]∥ ≤
Cφ̂(t), where

Cφ̂(t) =


2 exp

{
t

2
∥φ̂/ω∥2 + 2t(t ∨ 1)(∥φ̂/

√
ω∥2 + ∥φ̂/ω∥2)

}
φ̂/ω3/2 ̸∈ L2(R3),

2 exp

{
t

(
3

2
∥φ̂/ω∥2 + ∥φ̂/ω3/2∥2 ∨ ∥φ̂/

√
ω∥2
)}

φ̂/ω3/2 ∈ L2(R3).

In particular we have

|(Ψ, J[0,t]Φ)F | ≤ Cφ̂(t)∥Ψ∥F∥Φ∥F . (1.1)

It is important to see that J[0,t] depends on w ∈ X but the right-hand sides of (1.1) are
independent of w ∈ X . Let V ∈ K3 and suppose Assumption 1.2. Then we have FKF:

(F, e−tHG)H =

∫
R3

Ex[e−
∫ t
0 V (Bs)ds(F (B0), J[0,t]G(Bt))F ]dx.

We refer to e.g., [13, 10].

1.4 Ground state

The next proposition guarantees the existence and the uniqueness of the ground state of
the Nelson Hamiltonian H.

Proposition 1.3 Suppose that φ̂/ω3/2 ∈ L2(R3) and V ∈ K3. Assume that the binding
condition holds true. Then the ground state of H exists and it is unique.

Proof: See [8, (3) and Theorem 3.1] for the binding condition and [17, 7] for the existence
of the ground state. 2

Example 1.4 Let V be such that lim|x|→∞ V (x) = ∞. Then V satisfies the binding
condition, and then the ground state of H exists and unique.
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Let Φb be a bound state of H such that HΦb = EbΦb. Let Ψ ∈ F and t ≥ 0. Since
e−tHΦb = e−tEbΦb, we have

(Ψ,Φb(x))F = Ex[e−
∫ t
0 (V (Bs)−Eb)ds(Ψ, J[0,T ]Φb(Bt))F ] a.e.x ∈ R3. (1.2)

Let Φg be the ground state of H such that HΦg = EgΦg, where Eg denotes the infimum
of the spectrum of H. We set

ℓΩ(x) = Ex[e−
∫ t
0 (V (Bs)−Eg)ds(Ω, J[0,T ]Φg(Bt))F ].

Lemma 1.5 Let V ∈ K3. Then ℓΩ(x) is continuous in x and ℓΩ(x) > 0 for all x ∈ R3.

Proof: The continuity is shown in [12, 11] and the positivity in [13, 11]. 2

By Lemma 1.5 and (1.2), ℓΩ can be regarded as the continuous version of (Ω,Φg(·))F .

2 Pointwise bounds

By using an Agmon metric type argument [1, 5], we can estimate the lower bound of
∥Φg(x)∥F .

2.1 Geodesic distance for V

Assumption 2.1 Suppose that V is continuous, V (x) ≥ ε for all x ∈ R3 with some
ε > 0 and lim|x|→∞ V (x) = ∞.

Suppose Assumption 2.1. Let us set W = Vsup. W is also continuous and satisfies that
W (x) ≥ ε for all x ∈ R3 and lim|x|→∞ W (x) = ∞. We fix T > 0. We estimate ∥Φg(x)∥F
from below in terms of the exponent of an Agmon type metric. We define two C1-path
spaces:

C∗ = {q ∈ C1([0, T ];R3) | q(0) = x, q(T ) = 0},
C = {γ ∈ C1([0, T ];R3) | γ(0) = 0, γ(T ) = x}.

Let

A (q, T ) =

∫ T

0

(
W (q(s)) +

1

2
|q̇(s)|2

)
ds, q ∈ C∗,

L (γ, T ) =

∫ T

0

√
2W (γ(s))|γ̇(s)|ds, γ ∈ C.

We set γq(s) = q(T − s) for q ∈ C∗ and qγ(s) = γ(T − s) for γ ∈ C. Then γq ∈ C,
qγ ∈ C∗ and L (γq, T ) ≤ A (q, T ) and L (γ, T ) ≤ A (qγ, T ) follow for any q ∈ C∗ and
γ ∈ C by the arithmetic and geometric inequality: 2ab ≤ a2 + b2. We are interested in
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the existence of a minimizer γ∗ of L (γ, T ). We shall approximate W by a C∞-function.
For b > 0 there exists Y ∈ C∞(R3) such that

(1− b)W (x) ≤ Y (x) ≤ (1 + b)W (x).

For x, y ∈ R3 we define the geodesic distance for W by

ϱ(x, y) = inf {L (γ, T )| γ ∈ C1([0, T ];R3), γ(0) = x, γ(T ) = y
}
.

ϱ defines a metric on R3. Set Wb =
1

1−b
Y . Then W (x) ≤ Wb(x). Let

Lb(γ, T ) =

∫ T

0

√
2Wb(γ(s))|γ̇(s)|ds.

Then Wb ≥ ε/(1− b) > 0, Wb ∈ C∞(R3) and lim|x|→∞ Wb(x) = ∞. Let

ϱb(x, y) = inf
{
Lb(γ, T ) | γ ∈ C1([0, T ];R3), γ(0) = x, γ(T ) = y

}
.

ϱb(0, X) = infx∈X ϱb(0, x) is the distance from 0 to X. We can see that ϱb is geodesi-
cally complete. The geodesic completeness implies that there exists a length minimizing
geodesic connecting any two points by Hopf-Rinow theorem. Then there exists a mini-
mizer γ∗ ∈ C∞([0, T ];R3) of Lb(γ). We define

Ab(q, S) =

∫ S

0

(
Wb(q(s)) +

1

2
|q̇(s)|2

)
ds.

We shall connect two minima:

inf
{
Lb(γ, T ) | γ(0) = 0, γ(T ) = 0, γ ∈ C∞([0, T ];R3)

}
,

inf{Ab(q, S) | S > 0, q(0) = x, q(s) = 0, q ∈ C∞([0, S];R3)}.

Lb(γ, T ) =
∫ T

0

√
2Wb(γ(s))|γ̇(s)|ds is invariant under re-parametrization: γ → γ ◦ ϕ

by any smooth bijection ϕ : [0, T ] → [0, T ]. On the other hand in general Ab(q, S) is not
invariant. From this property one can construct a bijection ϕ such that√

2Wb(γ ◦ ϕ(s))| ˙γ ◦ ϕ(s)| = Wb(γ ◦ ϕ(s)) + 1

2
| ˙γ ◦ ϕ(s)|2.

Then we have the lemma.

Lemma 2.2 There exists minimizer (q∗, S∗) ∈ C∞([0, T ];R3) × (0,∞) of Ab(q, S) and
it holds that Lb(γ

∗, T ) = Ab(q
∗, S∗). Moreover let γ∗(s) = q∗(S∗ − s). Then

Lb(γ
∗, T ) =

∫ S∗

0

√
2Wb(γ∗(s))|γ̇∗(s)|ds = Ab(q

∗, S∗). (2.1)
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2.2 Exponential decay

Let K ⊂ R3 be a compact set. Since ℓΩ(·) is continuous and strictly positive on K, we
can set χK = infy∈K ℓΩ(y) > 0. Let Φ∞ = sup

y∈R3

∥Φg(y)∥F .

Lemma 2.3 Let T > 0. Then there exists τ > 0 such that for any q ∈ C∗,

ℓΩ(x) ≥ χKe
−

∫ T
0 (Vsup(q(s))+

1
2

∫ T
0 |q̇(s)|2)dse−Tτe

T (Eg− ∥φ̂/ω∥Φ∞√
2χK

)
. (2.2)

Proof: By Jensen’s inequality, we have

ℓΩ(x) = E
[
e−

∫ T
0 (V (Bs+x)−Eg)ds(Ω, e−ϕE(

∫ T
0 jsφ̃(·−Bs)ds)JtΦg(BT + x))F

]
≥ E

[
e−

∫ T
0 (V (Bs+x)−Eg)dsℓΩ(BT + x)e

− ∥φ̂/ω∥Φ∞√
2ℓΩ(BT+x)

]
.

Let q ∈ C∗ and we define ξ by

ξ = e−
∫ T
0 q̇(s)·dBs− 1

2

∫ T
0 |q̇(s)|2ds.

Thus E[ξ] = 1. By the Girsanov theorem, we see that

E
[
e−

∫ T
0 (V (Bs+x)−Eg)dsℓΩ(BT + x)e

− ∥φ̂/ω∥Φ∞√
2ℓΩ(BT+x)

]
= E

[
ξe−

∫ T
0 (V (Bs+q(s))−Eg)dsℓΩ(BT )e

−T
∥φ̂/ω∥Φ∞√
2ℓΩ(BT )

]
.

Let M = {|Bs| ≤ 1, 0 ≤ s ≤ T} and K be the unit closed ball. Thus ℓΩ(BT ) ≥ χK on M
and

ℓΩ(x) ≥ χKe
−

∫ T
0 Vsup(q(s))dse

T (Eg− ∥φ̂/ω∥Φ∞√
2χK

)E [ξ1lM ] .

By Jensen’s inequality again, we have

E [ξ1lM ] ≥ χKe
− 1

2

∫ T
0 |q̇(s)|2dsE[1lM ]e

E[1lM(−
∫T
0 q̇(s)·dBs)]

E[1lM ] = χKe
− 1

2

∫ T
0 |q̇(s)|2dsE[1lM ].

Note that E[1lM ] ≥ e−Tτ with some τ > 0 [5], where τ is the infimum of the spectrum of
−∆/2 on the unit ball with Dirichlet boundary condition. Thus (2.2) follows. 2

Theorem 2.4 ([11]) Let γ ∈ C and ε > 0. Then there exists R > 0 such that

χKe
−(1+ε)

∫ T
0

√
2Vsup(γ(s))|γ̇(s)|ds ≤ ∥Φg(x)∥F , |x| ≥ R.

Proof: By Lemma 2.2, there exists minimizer (q∗, S∗) ∈ C∞([0, T ];R3)×(0,∞) of Ab(q, S)
and γ∗ ∈ C∞([0, T ];R3) of Lb(γ, T ). It also holds that Lb(γ

∗, T ) = Ab(q
∗, S∗). It can be

shown that there exists Rδ,b such that

S∗ ≤ δ

∫ S∗

0

(
Wb(q

∗(s)) +
1

2

∫ T

0

|q̇∗(s)|2
)
ds
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for |x| ≥ Rδ,b. Hence putting T = S∗ and q = q∗ in Lemma 2.3, we have for |x| ≥ Rδ,b,

ℓΩ(x) ≥ χK exp {−(1 + δ)Ab(q
∗, S∗)} = χK exp {−(1 + δ)Lb(γ

∗, T )}

≥ χK exp

{
−(1 + δ)

√
1 + b

1− b
L (γ, T )

}
.

Choose δ and b such that 1 + ε = (1 + δ)
√

1+b
1−b

. Then the theorem follows. 2

Corollary 2.5 ([11]) (1) Suppose Assumption 2.1. Let ε > 0. Then there exists R such
that

χKe
−(1+ε)|x|

∫ T
0

√
2Vsup(sx)ds ≤ ∥Φb(x)∥F , |x| ≥ R.

(2) Assume that V obeys the lower bound

V (x) ≥ a2

2
|x|2n − b, |x| ≥ R

for some a, b, n > 0 and R > 0 so that a2R2n/2 − b > 0. Then for all ε > 0, there exist
cε > 0 and Cε > 0 such that

Cεe
−(1+ε) a

n+1
|x|n+1 ≤ ∥Φb(x)∥F ≤ cεe

−(1−ε) a
n+1

|x|n+1

.

Proof: (1) Put γ(s) = sx in Theorem 2.4. Then (1) follows. (2) The lower bound follows
from (1) and the upper bound from [10]. 2
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Ann. H. Poincaré, 1:443–459, 2000.

[8] M. Griesemer, E. Lieb, and M. Loss. Ground states in non-relativistic quantum
electrodynamics. Invent. Math., 145:557–595, 2001.

[9] M. Gubinelli, F. Hiroshima, and J. Lörinczi. Ultraviolet renormalization of the
Nelson Hamiltonian through functional integration. J. Funct. Anal., 267:3125–3153,
2014.

[10] F. Hiroshima and O. Matte. Ground states and their associated Gibbs measures in
the renormalized Nelson model. Rev. Math.Phys., 33:2250002 (84 pages), 2021.

[11] F. Hiroshima and O. Matte. Two-sided bounds on the point-wise spatial de-
cay of ground states in the renormalized Nelson model with confining potentials.
arXiv:2501.10704, preprint, 2024.

[12] O. Matte. Continuity properties of the semi-group and its integral kernel in non-
relativistic qed. Rev. Math. Phys., 28:1650011, 90 pp., 2016.

[13] O. Matte and J. Møller. Feynman-Kac formulas for the ultra-violet renormalized
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