LOCALIZATION OF A RENORMALIZED HAMILTONIAN IN QFT BY A PATH MEASURE

FUMIO HIROSHIMA

Classification AMS 2020:81T16, 81T10

Keywords: ground state, renormalization, localization, Feynman-Kac formula

1. RENORMALIZED NELSON HAMILTONIAN

In this talk we discuss the ground state of the renormalized Nelson Hamiltonian introduced by E. Nelson in 1964 [8] to consider the removal of cutoffs. The renormalized Nelson Hamiltonian describes a linear interaction between non-relativistic matters and spinless scalar mesons, where the non-relativistic matter is governed by Schrödinger operators. Firstly the Nelson Hamiltonian is defined by imposing ultraviolet cutoff functions and it can be realized as a self-adjoint operator acting in a Hilbert space given by

$$\mathcal{H} = L^2(\mathbb{R}^3) \otimes \mathcal{F},$$

where \mathcal{F} denotes a boson Fock space over $L^2(\mathbb{R}^3)$. Secondly subtracting a renormalization term from the Nelson Hamiltonian, we can define the renormalized Nelson Hamiltonian H_{ren} , which has no cutoff functions. A crucial point is that H_{ren} is defined through a quadratic form and it can not be possible to see an explicit form of H_{ren} as an operator. Let

$$H_{\Lambda} = H_p \otimes 1 + 1 \otimes H_f + gH_i, \quad g \in \mathbb{R},$$

where $H_p = -\frac{1}{2}\Delta + V$ denotes a Schrödinger operator in $L^2(\mathbb{R}^3)$, $H_f = \int \omega(k)a^{\dagger}(k)a(k)dk$ the free field Hamiltonian in \mathcal{F} and H_i the interaction term defined by

$$H_i = \frac{1}{\sqrt{2}} \int \left(a^{\dagger}(k) e^{-ikx} \frac{\hat{\varphi}_{\kappa,\Lambda}(k)}{\sqrt{\omega(k)}} + a(k) e^{ikx} \frac{\hat{\varphi}_{\kappa,\Lambda}(k)}{\sqrt{\omega(k)}} \right) dk$$

Here $\omega(k) = |k|$ denotes the dispersion relation and $\hat{\varphi}_{\kappa,\Lambda}$ the cutoff function given by

$$\hat{\varphi}_{\kappa,\Lambda}(k) = \begin{cases} 0 & |k| < \kappa \\ 1 & \kappa \le |k| \le \Lambda \\ 0 & |k| > \Lambda. \end{cases}$$

Here we fix $\kappa > 0$. We introduce assumptions on V. We assume that V is 3-dimensional Kato-decomposable potential, i.e., $V = V_+ + V_-$ and V_+ is local Kato-class and V_- Kato-class. We refer to see [6] for Kato-class. According to [8], we introduce the renormalization term defined by

$$E_{\Lambda} = -\frac{g^2}{2} \int_{\mathbb{R}^d} \frac{|\hat{\varphi}_{\kappa,\Lambda}(k)|^2}{\omega(k)} \beta(k) dk,$$

Date: 2024/3/25.

where $\beta(k)$ describes a propagator given by $\beta(k) = \frac{1}{\omega(k) + \frac{|k|^2}{2}}$. We notice that $\lim_{\Lambda \to \infty} E_{\Lambda} = -\infty$. There exists a self-adjoint operator $H_{\rm ren}$ bounded below such that for any $T \ge 0$

(1.1)
$$\lim_{\kappa \to \infty} e^{-T(H_{\Lambda} - E_{\Lambda})} = e^{-TH_{\text{ren}}}$$

Nelson [8] proved the convergence in (1.1) in the strong sense, it is however shown that this convergence is in the uniform sense in [1]. (1.1) is also shown in [3, 7, 2]. Let $(B_t)_{t\geq 0}$ be 3-dimensional Brownian motion on a probability space $(\Omega, \mathcal{B}, \mathcal{W}^x)$, where $\mathcal{W}^x (B_0 = x) = 1$. Let

$$U(k) = \int_0^T \frac{e^{-s\omega(k)}}{\sqrt{\omega(k)}} \mathbb{1}_{|k| \ge \kappa} e^{-ikB_s} ds, \quad \tilde{U}(k) = \int_0^T \frac{e^{-|T-s|\omega(k)}}{\sqrt{\omega(k)}} \mathbb{1}_{|k| \ge \kappa} e^{ikB_s} ds$$

Both integrals are finite for arbitrary $\kappa \geq 0$ and $\mathbb{R}^d \ni k \neq 0$. Furthermore we can see that $U, \tilde{U} \in L^2(\mathbb{R}^3)$ almost surely. Hence both $a^{\dagger}(U)$ and a(U) are well-defined closed operators almost surely. Let $A = e^{a^{\dagger}(U)}e^{-\frac{T}{2}H_f}$ and $\tilde{A} = e^{-\frac{T}{2}H_f}e^{a(\tilde{U})}$. Let $F, G \in \mathcal{H}$. Then we have

$$\left(F, e^{-TH_{\text{ren}}}G\right)_{\mathcal{H}} = \int_{\mathbb{R}^d} dx \mathbb{E}^x \left[e^{-\int_0^T V(B_s) ds} e^{\frac{g^2}{2}S} \left(F(B_0), A\tilde{A}G(B_T)\right)_{\mathcal{F}} \right],$$

where phase factor S is given by

$$S = 2\int_0^T \left(\int_0^t \nabla \varphi_0(B_s - B_t, s - t)ds\right) dB_t - 2\int_0^T \varphi_0(B_s - B_T, s - T)ds$$

with $\varphi_0(X,t) = \int_{\mathbb{R}^d} \frac{e^{-ikX}e^{-|t|\omega(k)}}{2\omega(k)}\beta(k)dk$. This is shown by [3, 7].

2. LOCALIZATION OF THE GROUND STATE

In the case of $\Lambda < \infty$ it is shown that the ground state of H_{Λ} exists and it is unique up to multiple constants. Using Feynman- Kac type formula mentioned above we can also show that the ground state of $H_{\rm ren}$ exists.

Theorem 2.1. H_{ren} has the ground state and it is unique.

Proof. Outline of a proof is as follows. The uniqueness is proven in [7]. The existence of the ground state is due to [4]. Let $G \subset \mathbb{R}$ be a bounded and open subset. Let $\tau_G(x) = \inf\{t > 0 | B_t + x \notin G\}$ be the exit time from G. In particular when $x \notin G, \tau_G(x) = 0$. Define the quadratic form $Q_t : \mathcal{H} \times \mathcal{H} \to \mathbb{C}$ by

$$Q_t: \quad F \times G \mapsto \int_{\mathbb{R}^d} \mathbb{E}^x \left[\mathbb{1}_{\tau_G(x) \ge t} e^{\frac{g^2}{2}S} e^{-\int_0^t V(B_s) ds} \left(F(B_0), A\tilde{A}G(B_t) \right) \right] dx$$

Thus it can be seen that there exists a self-adjoint operator H_G bounded from below such that $(F, e^{-tH_G}G) = Q_t(F, G)$. The self-adjoint operator H_G can be regarded as a self-adjoint operator on $L^2(G) \otimes \mathcal{F}$. Under the identifications $F \cong L^2(Q)$ and $L^2(G) \otimes \mathcal{F} \cong L^2(G \times Q)$, it can be checked that e^{-tH_G} is hypercontractive. Hence H_G must have the ground state in $L^2(G \times Q)$, since the measure of $G \times Q$ is finite and e^{-tH_∞} is hypercontractive. Let φ_G be the unique ground state of H_G and we extend φ_G to the vector on $L^2(\mathbb{R}^3) \otimes \mathcal{F}$ by zero-extension, i.e., $\tilde{\varphi}_G(x, \phi) = \begin{cases} \varphi_G(x, \phi) & (x, \phi) \in G \times Q \\ 0 & (x, \phi) \notin G \times Q \end{cases}$. Let $\varphi_n = \tilde{\varphi}_{G_n}$ and $G_n \uparrow \mathbb{R}^d$. Then it can be seen that $\{\varphi_n\}$ is Cauchy and $\lim_{n \to \Lambda} \varphi_n$ exists for each $\Lambda < \infty$. The limit is denoted by φ_{Λ} . Suppose that $\Lambda \to \infty$. Hence it can be also shown that $\{\varphi_{\Lambda}\}$ is compact, which implies that $\{\varphi_{\Lambda}\}$ includes a convergent subsequence $\varphi_{\Lambda'}$. Then $\lim_{\Lambda' \to \infty} \varphi_{\Lambda'} = \varphi$ is the ground state of H_{ren} .

Let $\Phi_{\rm g}$ be the ground state.. We want to estimate $(\Phi_{\rm g}, O\Phi_{\rm g})$ for some self-adjoint operator O. Typical examples of O are $e^{+\beta N}$, $e^{+\beta\phi(f)^2}$.

Theorem 2.2. We have

(1): $\|e^{\beta N}\Phi_{g}\| < \infty$ for any $\beta > 0$; (2): $\|e^{\beta\phi(f)^{2}}\Phi_{g}\| < \infty$ for any $\beta < \frac{1}{\|f\|^{2}}$; (3): $\lim_{\beta\uparrow \frac{1}{\|f\|^{2}}} \|e^{\beta\phi(f)^{2}}\Phi_{g}\| = \infty$.

Proof. This is due to [4].

Furthermore we estimate the spatial decay of $\|\Phi_g(x)\|_{\mathcal{F}}$ as $|x| \to \infty$.

Theorem 2.3. Assume that V obeys the lower bound

$$V(x) \ge \frac{a^2}{2} |x|^{2n} - b, \quad |x| \ge R$$

for some a, b, n > 0 and R > 0 so that $a^2 R^{2n}/2 - b > 0$. Then for all $\varepsilon > 0$, $\delta > 0$,

$$C_{\varepsilon,\delta,1}e^{-\sqrt{\triangle(1,\varepsilon)}\frac{a}{n+1}|x|^{n+1}} \le \|\Phi_{\mathbf{b}}(x)\|_{\mathcal{F}} \le c_{\varepsilon}e^{-(1-\varepsilon)\frac{a}{n+1}|x|^{n+1}}$$

Here $\triangle(1, \varepsilon) > 1$ *is a constant.*

Proof. The lower bound follows from [5] and the upper bound from [4].

Acknowledgements: This work is financially supported by JSPS KAKENHI 20H01808. FH gratefully acknowledges the courtesy of the Institute of Mathematical Sciences, Singapore, which he visited in December 2023.

REFERENCES

- [1] J. Cannon. Quantum field theoretic properties of a model of Nelson: Domain and eigenvector stability for perturbed linear operators. *J. Funct. Anal.*, 8:101–152, 1971.
- [2] C. Gérard, F. Hiroshima, A. Panati, and A. Suzuki. Removal of UV cutoff for the Nelson model with variable coefficients. *Lett. Math. Phys.*, 101:305–322, 2012.
- [3] M. Gubinelli, F. Hiroshima, and J. Lörinczi. Ultraviolet renormalization of the Nelson Hamiltonian through functional integration. *J. Funct. Anal.*, 267:3125–3153, 2014.
- [4] F. Hiroshima and O. Matte. Ground states and their associated Gibbs measures in the renormalized nelson model. *Rev. Math.Phys.*, 33:2250002 (84 pages), 2021.
- [5] F. Hiroshima and O. Matte. Point-wise spatial decay of ground states of the renormalized Nelson model. preprint, 2024.
- [6] T. Kato. Schrödinger operators with singular potentials. Israel J. Math., 13:135–148, 1973.
- [7] O. Matte and J. Møller. Feynman-Kac formulas for the ultra-violet renormalized Nelson model. *Astérisque*, 404:vi+110, 2018.
- [8] E. Nelson. Interaction of nonrelativistic particles with a quantized scalar field. J. Math. Phys., 5:1990– 1997, 1964.

KYUSHU UNIVERSITY, MOTOOKA744, NISHIKU, FUKUOKA, JAPAN *E-mail address*: hiroshima@math.kyushu-u.ac.jp

 \square