
Journal of Math-for-Industry, Vol. 3 (2011A-1), pp. 1–6

A案 B案

D案 E案 F案

C案

The Spectrum of Non-Local Discrete Schrödinger Operators with a
δ-Potential

Fumio Hiroshima and József Lőrinczi
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Abstract. The behaviour of the spectral edges (embedded eigenvalues and resonances) is discussed
at the two ends of the continuous spectrum of non-local discrete Schrödinger operators with a
δ-potential. These operators arise by replacing the discrete Laplacian by a strictly increasing C1-
function of the discrete Laplacian. The dependence of the results on this function and the lattice
dimension are explicitly derived. It is found that while in the case of the discrete Schrödinger oper-
ator these behaviours are the same no matter which end of the continuous spectrum is considered,
an asymmetry occurs for the non-local cases. A classification with respect to the spectral edge
behaviour is also offered.
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1. Introduction

1.1. Non-local discrete Schrödinger operators
on lattice

The spectrum of discrete Schrödinger operators has been
widely studied for both combinatorial Laplacians and quan-
tum graphs; for some recent summaries see [C97, G01,
BCFK06, EKKST08, BK12, P12, KS13] and the refer-
ences therein. Specifically, eigenvalue behaviours of dis-
crete Schrödinger operators on l2(Zd) are discussed in e.g.
[EKW10, BS12, DKS05, HS99, HSSS12, HMO11]. How-
ever, for discrete non-local Schrödinger operators only few
results are known. Typical examples include discrete frac-
tional Schrödinger operators.

In this paper we define generalized discrete Schrödinger
operators which include discrete fractional Schrödinger op-
erators and others whose counterparts on L2(Rd) are cur-
rently much studied [BB00, BB09, LM12, K13]. In [HIL12]
we have introduced a class of generalized Schrödinger op-
erators whose kinetic term is given by so called Bernstein
functions of the Laplacian. These operators are non-local
and via a Feynman-Kac representation generate subordi-
nate Brownian motion killed at a rate given by the poten-
tial. Their discrete counterparts studied in this paper also
have a probabilistic interpretation in that they generate
continuous time random walks with jumps on Zd.

In the present paper we consider a class of Schrödinger
operators obtained as a strictly increasing C1-function of
the discrete Laplacian and a δ-potential. This includes, in
particular, Bernstein functions (see below) of the discrete
Laplacian. In the presence of a δ-potential the above prob-
abilistic picture then describes free motion with a “bump”

which can be interpreted as an impurity in space. Our
aim here is to investigate the spectrum of such operators,
specifically, embedded eigenvalues and resonances at the
edges of the continuous spectrum.

Let d ≥ 1 and L be the standard discrete Laplacian on
l2(Zd) defined by

Lψ(x) = − 1

2d

∑
|x−y|=1

(ψ(y) − ψ(x)). (1.1)

We give a remark on the definition of Laplacians for readers
convenience. In the previous paper [HSSS12] we define a
discrete Laplacian by L0ψ(x) = 1

2d

∑
|x−y|=1 ψ(y), and the

spectrum of L0 equals to the closed interval [−1, 1]. In
this paper we define the negative Laplacian by ψ(x) →
1
2d

∑
|x−y|=1(ψ(y) − ψ(x)), and flipping the signature, we

define the positive Laplacian (1.1). Thus the spectrum of
L is positive, i.e., σ(L) = [0, 2]. Hence we can consider
the Bernstein function of L. Also, let V (x) = vδx,0 be δ-
potential with mass v concentrated on x = 0, i.e., V ψ(x) =
0 for x ̸= 0 and V ψ(x) = vψ(x). Then the operator

h = L+ vδx,0, v ∈ R (1.2)

is the discrete Schrödinger operator with δ-potential. In or-
der to define a non-local version of h, we use Fourier trans-
form on l2(Zd). Let Td = [−π, π]d be the d-dimensional
torus, and set

H = L2(Td). (1.3)

The scalar product on H is denoted by (f, g) =∫
Td f̄(θ)g(θ)dθ. The Fourier transform F : l2(Zd) → H

is then defined by Fψ(θ) =
∑

n∈Zd ψ(n)e−in·θ for θ =

1
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(θ1, . . . , θd) ∈ Td. Then the discrete Laplacian L trans-
forms as

FLF−1 = L(θ), (1.4)

where

L(θ) =
1

d

d∑
j=1

(cos θj + 1), (1.5)

i.e., the right hand side above is a multiplication operator
on H . In this paper we use a non-local discrete Laplacian
Ψ(L) defined for a suitable function Ψ by applying Fourier
transform.

Definition 1. For a given Ψ ∈ C1((0,∞)) such that
dΨ(x)/dx > 0, x ∈ (0,∞), we define the non-local discrete
Laplacian Ψ (L) by

Ψ(L) = F−1Ψ (L(θ)) F . (1.6)

Also, we call

h = Ψ(L) + vδx,0, v ∈ R, (1.7)

non-local discrete Schrödinger operator with δ-potential.

An example of such a function is Ψ(u) = uα/2, 0 < α <
2, which describes a discrete Laplacian of fractional order
α/2. Other specific choices will be given in Example 1
below.

Under Fourier transform (1.7) is mapped into

Hv = FhF−1 = Ψ (L(θ)) + v(Ω, ·)Ω, (1.8)

where Ω = (2π)−d/21l ∈ H .
Since σ(L) = [0, 2] and Ψ is strictly increasing, it is

immediate that σ(Ψ(L)) = Ψ([0, 2]) = [Ψ(0),Ψ(2)]. In
what follows we consider the spectrum of Hv instead of
h. Note that the map Φ 7→ v(Ω,Φ)Ω is a rank-one op-
erator, and thus the continuous spectrum of the rank-one
perturbation Hv of L is [Ψ(0),Ψ(2)], for every v ∈ R. See
e.g.,[Aro57, SW86] for rank-one perturbation.

1.2. Ψ(∗)-resonances and Ψ(∗)-modes

As it will be seen below, for a sufficiently large value of
−v > 0 there exists an eigenvalue E−(v) of Hv strictly
smaller than Ψ(0). Suppose that E−(v) ↑ Ψ(0) as v ↑ v0
with some v0 ̸= 0. If Ψ(0) is an eigenvalue of Hv0 , we call
the eigenvector associated with Ψ(0) a Ψ(0)-mode. If Ψ(0)
is not an eigenvalue of Hv0 , we call it a Ψ(0)-resonance.
Similarly, for a sufficiently large v > 0 it will be seen that
there exists an eigenvalue E+(v) strictly larger than Ψ(2).
Suppose that E+(v) ↓ Ψ(2) as v ↓ v2 with some v2 ̸= 0.
If Ψ(2) is an eigenvalue of Hv2 , we call the eigenvector
associated with Ψ(2) a Ψ(2)-mode, and a Ψ(2)-resonance
whenever Ψ(2) is not an eigenvalue of Hv2 .

For the discrete Schrödinger operator L+V these modes
and resonances were studied in e.g. [HSSS12], in particular,
their dependence on the dimension d. For d = 1, 2, there is
no 0-mode, 2-mode, 0-resonance or 2-resonance, for d = 3, 4
there are 0 and 2-resonances, and for d ≥ 5 there are 0 and

2-mode 2-res. 0-mode 0-res.

d = 1 no no no no

d = 2 no no no no

d = 3 no yes no yes

d = 4 no yes no yes

d ≥ 5 yes no yes no

Table 1: Modes and resonances of L+ V

2-modes. This shows that the eigenvalue behaviour at both
edges (0 and 2) is the same. See Table 1.

As it will be seen below, for the case of the fractional
Laplacian we have the remarkable fact that the edge be-
haviours are in general different at the two sides. See Table
2 and note that σ(

√
L) = [0,

√
2].

√
2-mode

√
2-res. 0-mode 0-res.

d = 1 no no no no

d = 2 no no no yes

d = 3 no yes yes no

d = 4 no yes yes no

d ≥ 5 yes no yes no

Table 2: Modes and resonances of
√
L+ V

2. Eigenvalues

2.1. A criterion for determining the eigenvalues

Consider the eigenvalue equation

HvΦ = EΦ

or, equivalently,

(E − Ψ(L(θ)))Φ = v(Ω,Φ)Ω. (2.1)

We introduce functions:

I(x) =

∫
Td

dθ

|x− Ψ(L(θ))|2
, (2.2)

J(x) =

∫
Td

dθ

x− Ψ(L(θ))
. (2.3)

The following result gives an integral test to spot the eigen-
values of Hv.

Lemma 1. E is an eigenvalue of Hv for a given v if and
only if I(E) < ∞ and J(E) ̸= 0. Furthermore, if E is an
eigenvalue of Hv, then the coupling constant v satisfies

v = (2π)d/J(E). (2.4)

Proof. To show the necessity part, suppose that E is
an eigenvalue and Φ an associated eigenvector. Assum-
ing (Ω,Φ) = 0, we have HvΦ = Ψ(L(θ))Φ = EΦ. Since
Ψ(L(θ)) has no point spectrum, Ψ(L(θ))Φ = EΦ is a con-
tradiction. This gives (Ω,Φ) ̸= 0 and E − Ψ(L(θ)) ̸= 0 for
almost every θ ∈ Td with

Φ =
(Ω,Φ)

E − Ψ(L(θ))
∈ H .



Fumio Hiroshima and József Lőrinczi 3

Thus I(E) <∞ follows, and (Ω,Φ) ̸= 0 implies J(E) ̸= 0.
For the sufficiency part, suppose now that I(E) < ∞

and J(E) ̸= 0 hold. Define the L2(Zd)-function

Φ =
c

E − Ψ(L(θ))

with a chosen c. It is straightforward to see that Φ satisfies
HvΦ = EΦ whenever for v

c

(
1 − v

(2π)d
J(E)

)
= 0 (2.5)

holds. By J(E) ̸= 0 it follows that there exists v such that
(2.5) is satisfied, hence E is an eigenvalue of Hv.

In order to investigate Ψ(∗)-resonances and Ψ(∗)-modes
we use Lemma 1 and estimate the two integrals I(E) and
J(E) at the two ends E = Ψ(∗) of the interval [Ψ(0),Ψ(2)].

2.2. The location of eigenvalues

Lemma 2. Let E ∈ R \ [Ψ(0),Ψ(2)]. Then there exists
v ̸= 0 such that E is an eigenvalue of Hv.

Proof. In this case it is easily seen that I(E) < ∞
and J(E) ̸= 0. Then E is an eigenvalue and v is given by
(2.4).

Lemma 3. Let σp(Hv) be the point spectrum of Hv. Then
σp(Hv) ∩ (Ψ(0),Ψ(2)) = ∅, for every v ̸= 0.

Proof. Due to monotonicity of Ψ, there is a unique
x ∈ (0, 2) such that Ψ(E) = Ψ(x). Thus

|E − Ψ(L(θ))| ≤ C

∣∣∣∣∣∣1d
d∑

j=1

(cos θj + 1 − x)

∣∣∣∣∣∣
with some C > 0. Hence

I(E) ≥
∫
Td

1

|C 1
d

∑d
j=1(cos θj + 1 − x)|2

dθ.

It is directly seen that the right hand side diverges, and
thus the lemma follows.

Next consider the cases E = Ψ(2) and E = Ψ(0). For a
systematic discussion of the eigenvalue behaviour of Hv we
introduce the following concept.

Definition 2. We say that Ψ is of (a, b)-type whenever

lim
x→0+

Ψ(x) − Ψ(0)

xa
̸= 0, (2.6)

lim
x→0

Ψ(2) − Ψ(2 − x)

xb
̸= 0. (2.7)

Lemma 4. Let Ψ be of (a, b)-type. Then we have the fol-
lowing behaviour.

(1) J(E) ̸= 0 for both E = Ψ(0) and E = Ψ(2).

(2) For E = Ψ(2) we have that I(E) < ∞ if and only if
d > 4b, and J(E) <∞ if and only if d > 2b.

(3) For E = Ψ(0) we have that I(E) < ∞ if and only if
d > 4a, and J(E) <∞ if and only if d > 2a.

Proof. Since Ψ is strictly increasing, the first statement
follows directly.

Let Ψ be of (a, b)-type. Then we have at θ ≈ (0, . . . , 0),

Ψ(2) − Ψ(L(θ)) ≈

 1

2d

n∑
j=1

θ2j

a

and at θ ≈ (π, . . . , π),

Ψ(L(θ)) − Ψ(0) ≈

 1

2d

n∑
j=1

(θj − π)2

b

.

Hence

I(Ψ(2)) ≈
∫
Td

1(∑n
j=1 θ

2
j

)2a dθ ≈
∫ 1

0

rd−1

r4a
dr,

and similarly

J(Ψ(2)) ≈
∫
Td

1

(
∑n

j=1 θ
2
j )b

dθ ≈
∫ 1

0

rd−1

r2b
dr.

Thus the lemma follows for E = Ψ(2). For the case of
E = Ψ(0) the proof is similar.

From these lemmas we can derive the spectral edge be-
haviour of Hv. The next theorem is the main result in this
paper.

Theorem 1. Assume that Ψ is of (a, b)-type. Let

v2 = (2π)d/J(Ψ(2)) > 0 (2.8)

v0 = (2π)d/J(Ψ(0)) < 0. (2.9)

The spectral edge behaviour of Hv is as follows.

(1) Suppose that v > 0. Then the following cases occur:

(i) Let d ≤ 2b. Then for all v > 0 there exists an
eigenvalue E > Ψ(2).

(ii) Let 2b < d ≤ 4b. Then for v > v2 there exists an
eigenvalue E > Ψ(2), while for v ≤ v2 there is no
eigenvalue.

(iii) Let 4b < d. Then for v > v2 there exists an
eigenvalue E > Ψ(2), for v = v2 the value E =
Ψ(2) is an eigenvalue, while v < v2 there is no
eigenvalue.

(2) Suppose that v < 0. Then the following cases occur:

(i) Let d ≤ 2a. Then for all v < 0 there exists an
eigenvalue E < Ψ(0).

(ii) Let 2a < d ≤ 4a. Then for v < v0 there exists
an eigenvalue E < Ψ(0), while for v ≥ v0 there
is no eigenvalue.

(iii) Let 4a < d. Then for v < v0 there exists an
eigenvalue E < Ψ(0), for v = v0 the value E =
Ψ(0) is an eigenvalue, while for v > v0 there is
no eigenvalue.
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Proof. Consider the case v > 0 and let d ≤ 2b. Then
for all E > Ψ(2) we have I(E) < ∞ and J(E) ̸= 0. Thus
there exists v such that E is an eigenvalue of Hv.

Let 2b < d ≤ 4b. Then for all E > Ψ(2) we have that
I(E) < ∞ and J(E) ̸= 0. Thus E is an eigenvalue of Hv.
Since J(E) < ∞, it follows that E ↓ Ψ(2) as v ↓ v2 > 0.
However, E = Ψ(2) is not an eigenvalue since I(E) = ∞.

Let d > 4b. Then for all E > Ψ(2) we have I(E) < ∞
and J(E) ̸= 0. Thus E is an eigenvalue of Hv. Since
J(E) < ∞, we obtain E ↓ Ψ(2) as v ↓ v2 > 0. Since
I(E) < ∞, we have that E = Ψ(2) is also an eigenvalue.
The cases for v < 0 can be dealt with similarly.

Remark 1. Note that in general −v0 ̸= v2.

Remark 2. From the above it is seen that the spectral
edge behaviour of Hv depends on the dimension d as well
as on the parameters a and b, and the result is different
according to which edge is considered. For a summary see
Table 3.

v > 0 Ψ(2)-mode Ψ(2)-res.

d ≤ 2b no no

2b < d ≤ 4b no yea

4b < d yes no

v < 0 Ψ(0)-mode Ψ(0)-res.

d ≤ 2a no no

2a < d ≤ 4a no yes

4a < d yes no

Table 3: Ψ(0) and Ψ(2)-modes and resonances

It is worthwhile to see the implications more closely for
some specific choices of function Ψ.

Example 1. (1) Discrete Schrödinger operator: Let
Ψ(u) = u. Then Ψ is of (1, 1)-type and Hv = L + V .
See Table 1.

(2) Fractional discrete Schrödinger operator : Let Ψ(u) =
uα/2 for 0 < α < 2. Then Ψ is of (α/2, 1)-type and
Hv = Lα/2 + V .

(3) Relativistic fractional discrete Schrödinger operator :
Let Ψ(u) = (u + m2/α)α/2 − m for 0 < α < 2 and
m > 0. Then Ψ is of (1, 1)-type.

(4) Discrete jump-diffusion operator : Let Ψ(u) = u +
buα/2 with 0 < α < 2. Then Ψ is of (α/2, 1)-type.

(5) Rotationally symmetric geometric discrete α-stable op-
erator : Let Ψ(u) = log(1 + uα/2) for 0 < α < 2. Then
Ψ is of (α/2, 1)-type.

(6) Higher order discrete Laplacian: Let Ψ(u) = uβ for
β > 1. Then Ψ is of (β, 1)-type.

(7) Bernstein functions of the discrete Laplacian: Let Ψ
be a Bernstein function with vanishing right limits,
i.e., Ψ : R+ → R+ which can be represented in the

form Ψ(u) = bu +

∫ ∞

0

(1 − e−uy)ν(dy), where b ≥ 0

and ν is a Lévy measure with mass on (0,∞) satisfying∫ ∞

0

(1∧y)ν(dy) <∞. Then it follows that Ψ′(2) = b+∫ ∞

0

ye−2yν(dy) ̸= 0. Furthermore, since Ψ is concave,

we have a = α/2 with some α ≥ 2. Hence Ψ is of
(α/2, 1)-type with some 0 ≤ α ≤ 2. Note that the
first five examples above are specific cases of Bernstein
functions.

3. A classification of spectral edge
behaviour

The functions Ψ of the discrete Laplacian can be classified
according to the behaviour of the eigenvalues at the two
ends of the interval [Ψ(0),Ψ(2)].

Definition 3. We call Ψ normal type if Ψ is (1, 1)-type,
and fractional type if Ψ is (α/2, 1)-type with 0 < α < 2.

The two types show qualitatively different behaviour and
we discuss them separately.

3.1. Normal type

Let Ψ be of normal type. In this case the spectral edge
behaviour is the same as that of the discrete Schrödinger
operator L+ V . The following result has been obtained in
[HSSS12].

Proposition 1. Let Ψ be normal type. We have the fol-
lowing cases.

(1) Let d = 1 or 2. For every v > 0 there exists an eigen-
value E > Ψ(2), and for every v < 0 an eigenvalue
E < Ψ(0).

(2) Let d = 3 or 4. If v > 0, then there exists v2 > 0 such
that for all v > v2 an eigenvalue E > Ψ(2) exists, and
for v ≤ v2 no eigenvalue exists. If v < 0, then there
exists v0 < 0 such that for all v < v0 an eigenvalue
E < Ψ(0) exists, and for v < v0 no eigenvalue exists.

(3) Let d ≥ 5. If v > 0, then there exists v2 > 0 such
that for all v > v2 an eigenvalue E > Ψ(2) exists, for
v = v2 the value E = Ψ(2) is an eigenvalue, and for
v < v2 no eigenvalue exists. If v < 0, then there exists
v0 < 0 such that for all v < v0 an eigenvalue E < Ψ(0)
exists, for v = v0 the value E = Ψ(0) is an eigenvalue,
and for v > v0 no eigenvalue exists.

Thus the spectral edge behaviour for positive and nega-
tive v is qualitatively the same, and the details only depend
on the dimension d.

3.2. Fractional type

In the fractional type case (a, b) = (α/2, 1) we have the
following spectral edge behaviour.
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Theorem 2. Let Ψ be of fractional type. The following
cases occur.

(1) If v > 0, then the spectral edge behaviour is the same
as for normal type Ψ with v > 0.

(2) If v < 0, then we have the following cases:

(i) Let d ≤ α. Then for every v < 0 there exists an
eigenvalue E < 0.

(ii) Let α < d ≤ 2α. There exists v0 < 0 such that
for all v < v0 an eigenvalue E < 0 exists, while
for v ≤ v0 no eigenvalue exists.

(iii) Let d > 2α. There exists v0 < 0 such that for all
v < v0 an eigenvalue E < 0 exists, for v = v0 the
value E = 0 is an eigenvalue, and for v > v0 no
eigenvalue exists.

In the fractional case it is seen that the edge behaviour
for positive and negative v are in general different from
each other, in contrast with the normal type case.

3.2.1. The case of α = 1

For α = 1 the spectral edge behaviour of Hv =
√
L + V

is displayed for dimensions d = 1, ..., 4 and d ≥ 5 in Table
2. We have displayed the specific situations in Figures 1-
4 below, where ⊕ denotes a resonance, • an eigenvalue,
and × denotes a value which is not an eigenvalue. For
dimension d = 1, 5 the edge behaviours at 0 and

√
2 are

symmetric. See Figures 1 and 4. On the other hand for
dimensions d = 2, 3, 4 the edge behaviours at 0 and

√
2 are

again different. See Figures 2 and 3.

Figure 1: d = 1 Figure 2: d = 2

Figure 3: d = 3, 4 Figure 4: d ≥ 5

3.2.2. Massless and massive cases

Consider the Bernstein function Ψ(u) =
√
u+m2 − m

with m ≥ 0. This allows to define the relativistic dis-
crete Schrödinger operator

√
L+m2 − m + V . Then it

follows that Ψ(u) is (1, 1)-type for m > 0, and (1/2, 1)-
type for m = 0. In particular, the edge behaviours of√
L+m2 − m + V for m > 0 are symmetric, and the

edge behaviours of
√
L + V and

√
L+m2 − m + V are

different. More generally, consider the Bernstein function
Ψ(u) = (u + m2/α)α/2 −m, with 0 < α < 2 and m ≥ 0.
This defines the relativistic rotationally symmetric α-stable
operator (L+m2/α)α/2 −m. We conclude that Ψ(u) is of
(1, 1)-type for m > 0 but of (α/2, 1)-type for m = 0. Thus
the edge behaviours of (L+m2/α)α/2−m+V and (L)α/2+V
are different.
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