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1 Pauli-Fierz model

In this paper we are concerned with the so-called semi-relativistic Pauli-Fierz model in
quantum electrodynamics, which is abbreviated as SRPF model. SRPF model is a rela-
tivistic version of the so-called Pauli-Fierz midel which has been studied so far. Before
explaining SRPF model we should review results obtained for the Pauli-Fierz model.

The Pauli-Fierz Hamiltonian is defined by

HPF =
1

2
(px − A(x))2 + V +Hrad. (1.1)

Below we give definitions of notations appeared in (1.1). OperatorHPF is a linear operator
defined on the Hilbert space H given by the tensor product of Hilbert spaces:

H = L2(R3)⊗F ,

where F denotes the boson Fock space over one particle state space L2(R3 × {1, 2}) =
W ,i.e,

F = ⊕∞
n=0 [⊗n

sW ]

with symmetric n-fold tensor product ⊗n
s , px = (−i∇1,−i∇2,−i∇3) denotes the momen-

tum operator for the matter (= electron) and V : R3 → R an external potential. Hrad is
a self-adjoint operator acting on F ,which denotes the free field Hamiltonian defined by
the second quantization of the multiplication operator by |k| = ω(k), i.e.,

Hrad = dΓ(ω).

Finally in order to define the quantized radiation field Aµ(x), we introduce the annihilation
operator and the creation operator. For f ∈ W , let a†(f) : F → F be the creation
operator defined by (

a†(f)Φ
)(n+1)

=
√
n+ 1Sn+1

(
f ⊗ Φ(n)

)
,

where Sn+1 is the symetrizer on ⊗n+1W . Then the annihilation operator a(f) is given by
the adjoint of a†(f̄):

a(f) = (a†(f̄))∗.

1



It is satisfied that [a(f), a†(g)] = (f̄ , g). Then for each x ∈ R3, quantized radiation field
Aµ(x) is given by

Aµ(x) = a†(fµ
x ) + a(f̃µ

x ),

where fµ
x (k, j) =

φ̂(k)√
ω(k)

ejµ(k)e
−ikx, f̃µ

x (k, j) =
φ̂(−k)√

ω(k)
ejµ(k)e

ikx and (e1(k), e2(k), k/|k|) is a

right-hand system in R3 for each k ∈ R3. Suppose that ˜̂φ = φ̂ = ¯̂φ and
√
ωφ̂, φ̂/

√
ω, φ̂/ω ∈

L2(R3) throughout this paper. Let V be relatively bounded with respect to −∆ with a
relative bound strictly smaller than one. Then HPF is self-aidjoint on D(−∆) ∩D(Hrad)
and bounded from below. Moreover it is essentially self-adjoint on any core of −∆+Hrad.
The spectral properties of HPF have been studied in the last two decades, in particular
special attentions have been payed for studying the so-called ground state. In general,
eigenvectors associated with the bottom of the spectrum of self-adjoint operator K is
called the ground state of K. We note that the existence of ground states does not
necessarily hold true. Under some condition it is proven that HPF has the unique ground
state. This fact is not trivial due to the zero spectral gap, i.e., the bottom of the spectrum
of HPF is the edge of the continuous spectrum.

2 Semi-relativistic Pauli-Fierz model and Feynman-

Kac formula

As is seen above HPF can be regarded as the minimal coupling of the decoupled Hamil-
tonian −1

2
∆+ V +Hrad by A(x). The SRPF Hamiltonian is defined by the Schrödinger

operator −1
2
∆ + V replaced by the semi-relativistic Schrödinger operator

√
−∆+M2.

We give the definition of SRPF Hamiltonian. It is however not straightforward to define
SRPF Hamiltonian as a self-adjoint operator due to non-local kinetic term. The lemma
below is a key fact to define SRPF Hamiltonian.

Lemma 2.1 ([5]) Suppose that ω3/2φ̂, φ̂/
√
ω ∈ L2(R3). Then (px − A(x))2 + M2 is

essentially self-adjoint on D(∆) ∩ C∞(N), where N denotes the number operator and
C∞(N) = ∩∞

k=1D(Nk).

We denote the closure of (px −A(x))2 +M2⌈D(∆)∩C∞(N) by simply the same notation
(px − A(x))2 +M2, which is self-adjoint. Hence we can define the self-adjoint operator

T =
√

(px − A(x))2 +M2

by the spectral resolution of (px − A(x))2 +M2.

Definition 2.2 Suppose that ω3/2φ̂, φ̂/
√
ω ∈ L2(R3). Then HSRPF is defined by

HSRPF = T +̇ Hf +̇ V,

where +̇ denotes the quadratic form sum. From now on we write H for HSRPF for nota-
tional convenience.
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In order to construct a functional integral representation (Feynman-Kac type formula)
we prepare probabilistic notations. Let (Bt)t∈R be 3-dimensional Brownian motion on
a probability space (Ωp, Bp, P

x) and (Tt)t≥0 be a subordinator defined on a probability
space (Ων , Bν , ν) such that

E
[
e−uTt

]
= e−t(

√
2u+M2−M)foru ≥ 0.

We are concerned with HSRPF by means of a functional integral. Let f, g ∈ L2(Rd) and
Xt = BTt for t ≥ 0. Then it is well known that∫

R3

dxEx,0
P×ν

[
f(X0)g(Xt)

]
= (f, e−thg),

where h denotes the semi-relativistic Schrödinger operator:

h =
√
−∆+M2 −M.

Furthermore we can see that∫
R3

dxEx,0
P×ν

[
f(X0)g(Xt)e

−
∫ Tt
0 V (Bs)ds

]
=

(
f, e−t(h+V )g

)
Let us consider the field part. Let (Q,µ) be a probability space and (ϕ(f), f ∈ ⊕3L2(R3))
a Gaussian random variable indexed by f ∈ ⊕3L2(R3) such that the mean is zero and the
covariance is given by

Eµ [ϕ(f)ϕ(g)] =
1

2
(f̂ , Dĝ),

where D = D(k) =
(
δµν − kµkν

|k|2

)
1≤µ,v≤3

is 3×3matrix. Also we define a probability space

(QE, µE) and the Gaussian random variable (ϕE(f), f ∈ ⊕3L2(R4)) such that the mean
is zero and the covariance is given by

EµE
[ϕE(f)ϕE(g)] =

1

2
(f̂ , D ⊗ 1lĝ).

It is well-known that F ∼= L2(Q, dµ) and Aµ(x) ∼= ϕ (⊕3
ν=1δµνφ̃(· − x)), where φ̃ =

(φ̃/
√
ω)∨. Moreover there exists a family of isometries (Jt)t∈R such that Jt : L

2(Q) →
L2(QE) with

J∗
t Js = e−|t−s|Hrad ,

where Hrad denotes the free field Hamiltonian in L2(Q), which is unitary equivalent to
Hrad in F . Then we define

H̃ =

√(
px − Ã(x)

)2

+M2 +̇ V +̇ Hrad

in L2(R3) ⊗ L2(Q), where Ãµ(x) = ϕ (⊕3
ν=1δµνφ̃(· − x)). It is seen that H ∼= H̃. Under

this identification we consider H̃ instead of H in what follows.
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Theorem 2.3 ([7]) It follows that

(F, e−tH̃G) =

∫
R3

dxEx,0
P×v

[(
J0F (B0), e

−iϕE(Kt)JtG(BTt)
)
e−

∫ Tt
0 V (Bs)ds

]
,

where

Kt = ⊕3
µ=1

∫ Tt

0

jT ∗
s
φ̃(· −Bs)ds

with T ∗
s = inf{t ≥ 0|Tt = s}, and jt : L

2(R3) → L2(R4) is defined by

ĵtf(k0k) =
e−itk0

√
π

√
ω(k)√

ω(k)2 + |k0|2
f̂(k), (k, k0) ∈ R3 × R.

A crucial point of the functional integral representation is that an interaction term is put
together as e−iϕE(Kt). The immediate corollary is to specify the domain of H̃.

Theorem 2.4 ([7, 2]) Suppose that ω3/2φ̂, φ̂/
√
ω ∈ L2(R3) and V is relatively bounded

with respect to
√
−∆ with a relative bound strictly smaller than one. Then H̃ is self-

adjoint on D(
√
−∆) ∩D(Hrad).

Proof We show the outline of the proof. Using the functional integral representation
we can show that

e−tH̃D(
√
−∆) ∩D(Hrad) ⊂ D(

√
−∆) ∩D(Hrad)

which yields that H̃0 is essentially self-adjoint on D(
√
−∆)∩D(Hrad). Next we can show

the bound
∥
√
−∆F∥+ ∥HradF∥ ≤ C∥H̃0F∥, (2.1)

where H̃0 is H̃ with V replaced by 0. From (2.1) it follows that H̃0 is self-adjoint on
D(

√
−∆) ∩D(Hrad). Furthermore we can see that V is relatively bounded with respect

to H̃0. Hence H̃ is self-also adjoint on D(
√
−∆) ∩D(Hrad) by the Kato-Rellich theorem.

3 Existence and uniqueness of ground state

In this section we review the existence and the uniqueness of the ground state of H̃. Let
us assume that M > 0. In this case the existence of ground state has been shown in e.g.,
[8, 9] for M > 0 and m ≥ 0. Now we suppose that M = 0. In this case Hamiltonian
under consideration is of the form.

|px − A(x)|+ V +Hrad.

Hence the kinetic term is not smooth function of 1
2
(px −A(x))2, which is a serious disad-

vantage to show the existence of the ground state. In [2] it is shown that

σ(H) = {E} ∪ [E +m,∞)
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under the assumption ω(k) =
√
|k|2 +m2. The most singular case is m = M = 0, but

the existence of the ground state is established in [3].

Theorem 3.1 ([3]) Suppose that ω3/2φ̂, φ̂/
√
ω ∈ L2(R3), lim

|x|→∞
V (x) = ∞ and ∥∇V ∥∞ <

∞. Then H̃ has the ground state.

Proof We introduce an artificial boson mass m > 0. In this case the existence of
normalized ground state Ψm is established. It is enough to show that the weak limit of
Ψm,

w − lim
m→0

Ψm = Ψ0,

is non-zero. In order to avoid infrared divergence we introduce H̃R which is defined by
H̃ with φ̃(· − x) replaced by φ̃(· − x) − φ̃(·). Note that H̃R

∼= H̃. By an application of
asymptotic annihilation operator:

a∞(f) = lim
t→∞

eitH̃Re−itHrada(f)eitHrade−itH̃R

we can see that a∞(f)Ψm = 0. By the Cook method argument, we then have

a(f)Ψm = −
∫
R3

f(k)
(
H̃R − E + ω(k)

)−1

cj(k)⟨x⟩2Ψmdk,

where cj(k) is a bounded operator for each k ∈ R3, and ⟨x⟩ =
√

|x|2 + 1. Let N be the
number operator in F . From this formula we can see that

1. ∥NΨm∥ ≤ C∥⟨x⟩2Ψm∥, where C is independent of m.

2. supm ∥Ψ(n)
m ∥W 1,P (Ω) < ∞ for 1 ≤ ∀p < 2 and any compact set Ω ⊂ R3n.

3. ∥e|x|Ψm∥ < ∞.

By (1) - (3) above, we can see that Φm strongly converges to Φ0. Thus Φ0 ̸= 0 follows.

Finally we show the uniqueness of ground state.

Corollary 3.2 ([6, 7]) Let t ≥ 0. Then ei
π
2
Ne−tH̃e−iπ

2
N is positivity improving. In par-

ticular when H̃ has a ground state, it is unique up to multiple constants.

4 Decay of bound states

In this section we discuss a martingale property of H̃, which can be applied to spatial
decay of bound states. Let h = −1

2
∆ + V be a Schrödinger operator with an external

potential V . Define

Xt(x) = etEe−
∫ t
0 V (Bs+x)dsf(Bt + x),
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where f denotes a bound state such that hf = Ef . Then it can be checked that (Xt(x))t≥0

is a martingale with respect to the natural filtration of Brownian motion. We would like
to extend this to quantum field theory. Define

Ht(x) = etEe−
∫ t
0 V (BTs+x)dse−iϕ(Kt(x))JtΦ(BTt + x)

where H̃Φ = EΦ.

Theorem 4.1 ([7]) Let V be relativistic Kato decomposable potential. Then there exists
a filtration (Mt)t≥0 such that (Ht(x))t≥0 is a martingale, i.e.,

E0,0EµE
[Ht(x)|Ms] = Hs(x) for t > s.

An application of the martingale property is to show the spatial decay of bound state Φ.

Corollary 4.2 Let τ be a stopping time with respect to (Mt)t≥0. Then

∥Φb(x)∥L2(Q) ≤ ∥Φb∥E0
[
e−

∫ t∧τ
0 (V (Zr+x)−E)dr

]
where Zt = BTt.

Proof By Theorem 4.1 we see that (J0Φ · Ht(x))t≥0 is an L2(QE)-valued martingale.
Hence (J0Φ ·Ht∧τ (x))t≥0 is also martingale which implies that

E0,0EµE
[J0Φ ·Ht(x)] = E0,0EµE

[J0Φ ·Ht∧τ (x)] .

We have

∥Φb(x)∥L2(Q) = sup
Φ∈L2(Q)
∥Φ∥=1

E0,0EµE
[J0Φ ·Ht(x)]

≤ sup
Φ∈L2(Q)
∥Φ∥=1

E0,0EµE
[J0Φ ·Ht∧τ (x)] ≤ ∥Φ∥E0

[
e−

∫ t∧τ
0 V (Zr+x)−Edr

]
.

2

Spatial decay properties can be derived immediately from the lemma above.

Corollary 4.3 ([7]) Let V be relativistic Kato decomposable.

1. Suppose that lim|x|→∞ V (x) + E < 0.
(m > 0) there exists constant C such that

∥Φb(x)∥ ≤ Ce−c|x|∥Φb∥,

(m = 0) there exists constant Csuch that

∥Φb(x)∥ ≤ C

1 + |x|4
∥Φb∥.
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2. Suppose that lim|x|→∞ V (x) = ∞. Then there exist constants c and C such that

∥Φb(x)∥ ≤ Ce−c|x|.

Proof (1)We take τR = inf {s||zs + x| < R} , which is a stopping time, and corollary
follows from Corollary 4.2. (2)We take τR = inf {s||zs| > R} which is also a stopping time
and the corollary follows from Corollary 4.2

5 Path measures associated with the ground state

For SRPF Hamiltonian we can consider the path measure associated with the ground
state. The path measure of this kind is useful to study ground state expectation with
respect to observables for the Nelson model and spin-boson model [1, 4] in scalar quantum
field theory. Unfortunately the path measure of SRPF Hamiltonian can not be applied
as those models do. In this section we only show the existence of the path measure for
SRPF Hamiltonian. Let ϕ ∈ L2(R3) be positive. Define the family of probability measures
µT , T > 0, by

µT (A) =
1

ZT

∫
R3

dxE0,0
P×ν

[
1lAϕ(B−Tt)ϕ(BTt)e

−
∫ t
−t V (BTs )dse−

1
2
ξ
]
,

where ξ = 1
2
(Kt, DKt) and A ∈ G . Here G = ∪s≥0F[−s,s] and F[−s,s] = σ (Zr : r ∈ [−s, s]).

Zr = BTr =

{
BTr r > 0

B−T−r r < 0.

ξ plays a role of a pair interaction in a Gibbs measure, but we do not mention it here.
Let X = Ωp × Ων .

Theorem 5.1 There exists a probability measure µ∞(A) on (X, σ(G )) such that

lim
T→∞

µT (A) = µ∞(A) ∀A ∈ G .

Proof The main idea of the proof is to show that

µT (A) = e2Es

∫
R3

dxE
[
1lA

(
ϕT−s(Z−s)

∥ϕ∥
, J[−s,s]

ϕT−s(Zs)

∥ϕT∥

)]
,

where ϕs = e−s(H̃−E)ϕ⊗ 1l and

J[−t,t] = J∗
−te

−
∫ t
−t V (zs)dse−iϕE(Kt)Jt.

Since H̃ has the ground state, we can see that ϕT−s

∥ϕT ∥ → esEΨg as T → ∞. Hence we have

lim
T→∞

µT (A) = e2Es

∫
R3

dxEx
[
1lA

(
Ψg(Z−s), J[−s,s]Ψg(Zs)

)]
and the right hand side above has the extension to the probability measure in (X, σ(G ))
2
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