On deriving classical potentials from interactions of particles and quantized fields

Fumio Hiroshima

Department of Mathematics, Hokkaido University, Sapporo 060 Japan

EMAIL: f-hirosh@math.hokudai.ac.jp, FAX: 0117273705, CLASSIFICATION: Quantum Mechanics

The aim of this talk is to consider a scaling limit of a Hamiltonian describing an interaction of nonrelativistic particles and a quantized field. Let \mathcal{H}_1 and \mathcal{H}_2 be two Hilbert spaces over \mathbb{C} . We consider a self-adjoint operator $\mathbf{H}_{\beta}(\Lambda)$ with a scaling parameter $\Lambda > 0$ acting in the tensor product of \mathcal{H}_1 and \mathcal{H}_2 , $\mathcal{H} = \mathcal{H}_1 \otimes \mathcal{H}_2$, which is of the form

$$\mathbf{H}_{\beta}(\Lambda) = H_1 \otimes I + \Lambda \alpha H_{int} + \Lambda^{\beta} I \otimes H_2, \quad \beta \ge 1.$$

Here H_1 and H_2 are self-adjoint operators in \mathcal{H}_1 and \mathcal{H}_2 , respectively, H_{int} is a symmetric operator in \mathcal{H} and $\alpha \in \mathbf{R}$ is a coupling constant. Introducing a renormalization $E_{\beta}(\Lambda)$ which goes to infinity or minus infinity as $\Lambda \to \infty$ in some sense, we want to investigate the strong limit of exp $(-it (\mathbf{H}_{\beta}(\Lambda) - E_{\beta}(\Lambda))), t \in \mathbf{R}$ as $\Lambda \to \infty$. In this talk, we shall limit ourselves to discuss the "generalized spin-boson model (GSB)", which is defined as an operator acting in $\mathcal{H}_1 \otimes \mathcal{F}$, where \mathcal{F} denotes a Boson Fock space, by

$$\mathbf{H}_{GSB} = H_1 \otimes I + \alpha \sum_{j=1}^N B_j \otimes \phi(\lambda_j) + I \otimes H_b.$$

Here B_j are symmetric operators in \mathcal{H}_1 , $\phi(\lambda_j)$ and H_b are field operators with momentum cut-off functions λ_j , and the free Hamiltonian in \mathcal{F} , respectively.