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This lecture deals with whether Kato’s inequality holds for the magnetic relativistic
Schrödinger operator HA with vector potential A(x) and mass m ≥ 0 associated with the
classical relativistic Hamiltonian symbol

√
(ξ − A(x))2 +m2 such as

Re[(sgnu)HAu] ≥
√
−∆+m2 |u|, (1)

in the distribution sense, for u is in L2(Rd) with HAu in L1
loc(R

d).
In the literature there are three magnetic relativistic Schrödinger operators associated

with the classical symbol (1) (e.g. [I 12], [I 13]). The first two H
(1)
A and H

(2)
A are to be defined

as pseudo-differential operators: for f ∈ C∞
0 (Rd),

(H
(1)
A f)(x) :=

1

(2π)d

∫∫
Rd×Rd

ei(x−y)·ξ

√(
ξ − A

(x+ y

2

))2

+m2 f(y)dydξ, (2)

(H
(2)
A f)(x) :=

1

(2π)d

∫∫
Rd×Rd

ei(x−y)·ξ

√(
ξ −

∫ 1

0

A((1− θ)x+ θy)dθ
)2

+m2 f(y)dydξ. (3)

The third H
(3)
A is defined as the square root of the nonnegative selfadjoint (nonrelativistic

Schrödinger) operator (−i∇− A(x))2 +m2 in L2(Rd):

H
(3)
A :=

√
(−i∇− A(x))2 +m2. (4)

H
(1)
A is the so-calledWeyl pseudo-differential operator ([ITa 86], [I 89]). H

(2)
A is a modification

of H
(1)
A given in [IfMP07], and H

(3)
A used in [LSei 10] to discuss relativistic stability of matter.

All these three operators are nonlocal operators, and, under suitable condtion on A(x),
become selfadjoint. For A = 0 we put H0 =

√
−∆+m2, where −∆ is the minus-signed

Laplacian in Rd. H
(2)
A and H

(3)
A are gauge-covariant, but not H

(1)
A .

Inequality (1) for H
(1)
A has been shown in [I 89], [ITs 76], and similarly will be for H

(2)
A .

For H
(3)
A , we assume that d ≥ 2, as in case d = 1 any magnetic vector potential can be

removed by a gauge tranformation. We want to show

Theorem 1 (Kato’s inequality). Let m ≥ 0 and assume that A ∈ [L2
loc(R

d)]d. Then if u is

in L2(Rd) with H
(3)
A u in L1

loc(R
d), then the distributional inequality holds:

Re[(sgnu)H
(3)
A u] ≥

√
−∆+m2 |u|, (5)
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or
Re[(sgnu)H

(3)
A u] ≥ [

√
−∆+m2 −m] |u|. (6)

Here (sgnu)(x) := u(x)/|u(x)|, if u(x) ̸= 0; = 0, if u(x) = 0.
From Theorem 1 follows the following corollary.

Corollary (Diamagnetic inequality) Let m ≥ 0 and assume that A ∈ [L2
loc(R

d)]d. Then
f, g ∈ L2(Rd)

|(f, e−t[H
(3)
A −m]g)| ≤ (|f |, e−t[H0−m]|g|). (7)

Once Theorem 1 is established, we can apply it to show the following theorem on essential
selfadjointness of the relativistic Schrödinger operator with both vector and scalar potentials
A(x) and V (x):

H := H
(3)
A + V. (8)

Theorem 2. Let m ≥ 0 and assume that A ∈ [L2
loc(R

d)]d. If V (x) is in L2
loc(R

d) with

V (x) ≥ 0 a.e., then H = H
(3)
A + V is essentially selfadjoint on C∞

0 (Rd) and its unique
selfadjoint extension is bounded below by m.

The characteristic feature is that, unlike H
(1)
A and H

(2)
A , H

(3)
A is, since being defined as

an operator square root (4), neither an integral operator nor a pseudo-differential operator

associated with a certain tractable symbol. H
(3)
A is, under the condition of the theorem,

essentially selfadjoint on C∞
0 (Rd) so that H

(3)
A has domain containing C∞

0 (Rd) as an operator

core, but one does seem unabale to determine the domain of H
(3)
A . So the crucial point is in

how to derive regularity of the weak solution u ∈ L2(Rd) of equation

H
(3)
A u ≡

√
(−i∇− A(x))2 +m2 u = f, for given f ∈ L1

loc(R
d).

We shall show inequality (5)/(6), modifying the method used in the case ([I 89], [ITs 92])

for the Weyl pseudo-differential operator H
(1)
A , basically along the idea of Kato’s original

proof for the magnetic nonrelativistic Schrödinger operator 1
2
(−i∇−A(x))2 in [K 72]. How-

ever, the present case seems to be not so simple as to need much further modification within
“operator theory plus alpha”.
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