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1 Introduction

The purpose of this talk is a review of a recent progress of the spectral analysis

of a model in nonrelativistic quantum electrodynamics. A nonrelativistic electron

minimally coupled (i.e., by replacing the particle momentum p by the covariant one

p − αA) 1 with the transverse degrees of freedom of a massless quantized Maxwell

field is described by “the Pauli-Fierz model”[170], which successfully gave an inter-

pretation of “the Lamb shift” in [37, 145, 199]. In particular the ground states of the

Pauli-Fierz model will be our primary concern here. The general references (books)

of this talk are [22, 52, 88, 97, 99, 138, 175, 176, 177, 178, 185, 188, 139, 200].

1.1 The history of quantum filed models

We will review a history of the Pauli-Fierz type models, e.g, the Nelson model [164],

spin-boson models (e.g., [149]), polaron models (e.g., [81]).

In 1937, F.Bloch and A.Nordsieck [42, 41] investigated a radiation field interact-

ing with a classical current, and shown that the mean number of emitted quanta is

infinite by an infrared divergence.

In 1938, W.Pauli and M.Fierz [170] introduced the Pauli-Fierz model.

In 1947, H.A.Bethe [37] theoretically interpreted the Lamb shift.

In 1948, T.A.Welton [199] gave an intuitive explanation of the Lamb shift.

In 1949, Z.Koba [145] extended Welton’s result [199] to a relativistic model.

In 1950, R.Feynman [70] applied a path integral to a mathematical formulation

of quantum electrodynamics.

In 1952, O.Miyatake [161] and L.van Hove [119] found that the ground state of

a Hamiltonian in a Fock space weakly converges to zero as a cutoff is removed 2 .

In 1955, R.Feynman [71] applied a path integral to estimate the ground state

energy of a polaron model.

1See e.g., [28, 29, 30, 78, 153, 157] for a classical Pauli operator (p−A)2 + V + σ ·B.
2Some relation between the van Hove-Miyatake phenomenon and an infrared divergence is

discussed by H.Ezawa [64]. The Hida space (S)∗ ([98]) is a dual space of a subspace (S) in a Fock
space. The van Hove-Miyatake phenomenon is investigated by J.Potthoff and L.Streit [171] in the
Hida space. However the phenomenon still survives in the Hida space.
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In 1958, E.Lieb and K.Yamazaki gave estimates of the ground state energy and

some ground state expectation values of a polaron model in [156].

In 1962, D.Shale [182] obtained a mathematical manner to study both of the

infrared and ultraviolet divergences.

In 1963, Y.Kato and N.Mugibayashi [143] constructed asymptotic fields and

were concerned with the spectrum of a Hamiltonian. E.Nelson [162, 163] examined

Feynman’s result [70] in a simple model but with a mathematical rigorous manner.3

In 1964, E.Nelson [164] introduced a model of nonrelativistic quantum particles

linearly coupled with scalar bosons, so called “the Nelson model”, and he renormal-

ized its Hamiltonian.

In 1968-1969, R.Høegh-Krohn applied the Kato-Mugibayashi scattering theory

[143] to the Nelson model in [120]-[122], and extended the work to general models

in [123]-[125].

In 1968-1972, J.Glimm and A.Jaffe analyzed the ground state properties of a

quantum field model (λϕ4-model) from the point of view of the constructive quantum

field theory in the series of papers [84]-[87] 4 (see books e.g., [22, 88, 185]).

In 1969, P.Blanchard [40] were concerned with asymptotics of the Pauli-Fierz

model with the dipole approximation and discussed an infrared divergence.

In 1970, I.Segal [180, 181] proved the essential self-adjointness and the inde-

composability of a quantum field Hamiltonian. J.P. Eckmann [60] renormalized the

Nelson model with relativistic kinematics (Eckmann’s model).

In 1971, J.Cannon [44] studied the quantum field theoretical property (Wight-

man functionals,etc.) of the Nelson model. L.Gross [90] proved the existence and

uniqueness of the ground state of relativistic and nonrelativistic polaron models for

zero total-momentum.

In 1972, L.Gross [91] studied the massive Nelson model with relativistic kine-

matics (Eckmann’s model) and constructed a Hilbert space on which a self-adjoint

operator without an ultraviolet cutoff acts. S.Albeverio [2, 3] was concerned with

the scattering theory of Eckmann’s model.

In 1973, E. Nelson [165, 166] constructed a quantum field from a Markov field.

3E.Nelson established imaginary-time path integrals. T.Ichinose and H.Tamura [132, 133] con-
structed a distribution-valued countably additive measure presenting a real-time evolution of a
Dirac Hamiltonian in two space-time dimensions.

4From the point of view of the constructive quantum field theory, K.R. Ito [134, 135], and
D.Brydges, J.Fröhlich and E.Seiler [43] considered QED in two space-time dimensions.
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Hilbert space L2(Rd)⊗F ⊗ · · · ⊗ F︸ ︷︷ ︸
d−1

Decoupled Hamiltonian (−(1/2)∆ + V )⊗ 1+ 1⊗Hf

Free Hamiltonian Hf =
∫
ω(k)ar†(k)ar(k)dk

Dispersion relation ω(k) = |k|

Quantized field Aµ(λ̂, x) = (1/
√
2)
∫
ar†(k)λ̂(−k)erµ(k)e−ikx + ar(k)λ̂(k)erµ(k)e

ikxdk

Canonical pair Πµ(λ̂, x) = i(1/
√
2)
∫
ar†(k)λ̂(−k)erµ(k)e−ikx − ar(k)λ̂(k)erµ(k)e

ikxdk

CCR [Aµ(λ̂, x),Πν(ρ̂, x)] = i(dµνλ̂, ρ̂), dµν(k) = 1− kµkν/|k|2

Total Hamiltonian (1/2)
(
p⊗ 1− αA(λ̂, x)

)2
+ V ⊗ 1+ 1⊗Hf

Self-adjointness Essentially self-adjoint on D(∆) ∩D(Hf) for all α ∈ R

Ground state Ψg Exists for |α| ≪ 1 and is unique

Particle-localization ∥Ψg(x)∥ ≤ De−δ|x|

Boson-localization (Ψg, e
βNΨg) <∞ ?, β > 0

Finite-time Gibbs meas. f(X0)f(X2t)e
−
∫ 2t

0
V (Xs)dse−(α2/4)

∫ 2t

0
dbµ(s)

∫ 2t

0
dbν(s′)Wµν(Xs−Xs′ ,s−s′)dX

Pair potential Wµν(X, t) =
∫
Rd dµν(k)|λ̂(k)|2eikXe−|t|ω(k)dk

Infinite-time Gibbs meas. Exist

Diamagnetic inequality |
(
Ψ, e−tHΦ

)
| ≤

(
∥Ψ∥, e−t(−(1/2)∆+V )∥Φ∥

)

Stability inf σ(−(1/2)∆ + V ) ≤ inf σ(H)

Table 1: The spinless one-particle Pauli-Fierz model
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Hilbert space L2(Rd)⊗F

Decoupled Hamiltonian (−(1/2)∆ + V )⊗ 1+ 1⊗HN
f

Free Hamiltonian HN
f :=

∫
ω(k)a†(k)a(k)dk

Dispersion relation ω(k) =
√
|k|2 +m2, m ≥ 0

Quantized field ϕ(λ̂, x) = (1/
√
2)
∫
a†(k)λ̂(−k)e−ikx + a(k)λ̂(k)eikxdk

Canonical pair π(λ̂, x) = i(1/
√
2)
∫
a†(k)λ̂(−k)e−ikx − a(k)λ̂(k)eikxdk

CCR [ϕ(λ̂), π(ρ̂)] = (λ̂, ρ̂)

Total Hamiltonian (−(1/2)∆ + V )⊗ 1+ αϕ(λ̂, x) + 1⊗HN
f

Self-adjointness Self-adjoint on D(∆) ∩D(Hf) for all α ∈ R

Ground state Ψg Exists for all α ∈ R and is unique

Particle localization ∥Ψg(x)∥ ≤ De−δ|x|

Boson localization (Ψg, e
βNΨg) <∞ for all β ∈ R

Finite-time Gibbs meas. f(X0)f(X2t)e
−
∫ t

0
V (Xs)dse(α

2/4)
∫ 2t

0
ds
∫ 2t

0
ds′W (Xs−Xs′ ,s−s′)dX

Pair potential W (X, t) =
∫
Rd |λ̂(k)|2eikXe−|t|ω(k)dk

Infinite-time Gibbs meas. Exist

Diamagnetic inequality |
(
Ψ, e−tHΦ

)
| ≤

(
∥Ψ∥, e−t(−1/2∆+V−α2∥λ̂/

√
ω∥2)∥Φ∥

)
Stability inf σ(−(1/2)∆ + V ) ≤ inf σ(H) + (α2/2)∥λ̂/

√
ω∥2

Table 2: The one-particle Nelson model
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The Pauli-Fierz polaron model H(p) = (1/2)
(
p−Pf − αA(λ̂, 0)

)2
+Hf , p ∈ Rd

Field momentum Pf =
∫
kar†(k)ar(k)dk

The Nelson polaron model H(p) = (1/2)(p−PN
f )

2 + αϕ(λ̂, 0) +HN
f , p ∈ Rd

Field momentum PN
f =

∫
ka†(k)a(k)dk

Table 3: Polaron models

In 1973-1974, J.Fröhlich investigated an infrared divergence of a polaron model

in [74, 75]. He also shown the existence and uniqueness of the ground state of a

polaron model without an ultraviolet cutoff for sufficiently small total momentum.

In 1976, K.Rzazewski and W.Zakowicz [179] solved an initial value problem of

the Pauli-Fierz model with the dipole approximation and an x2-potential.

In 1978-1980, J.Fröhlich and Y.M.Park [79, 80] opened a problem on the analysis

of nonrelativistic quantum electrodynamics.

In 1980, A.Grossmann and A.Tip [93] studied a resonance of a single mode

Pauli-Fierz model with the dipole approximation and an x2-potential.

In 1981-2000(!), A.Arai gave a firm mathematical base on the Pauli-Fierz model.

The first mathematical rigorous results on the model were, as far as we know, due

to A.Arai. He investigated the model with the dipole approximation in the series of

papers [7]-[18], and shown that the model was exactly solvable, i.e., he obtained the

self-adjointness of the Hamiltonian, the existence and uniqueness of its ground state,

asymptotic completeness, the instability of its embedded eigenvalues (resonance),

scaling limits, and long-time behaviors of a two-point function, etc.

In 1983, M.D.Donsker and S.R.S.Varadhan [58] obtained, independently of the

existence of the ground states, asymptotics of the ground state energy of a polaron

model as the coupling constant tends to infinity, by means of a large deviation theory

of path integrals.

In 1985, T.Okamoto and K.Yajima [167] shown the existence of a resonance of

the massive Pauli-Fierz model in terms of a complex scaling technique ([5]).

In 1986, H.Spohn proved the existence of the ground state [193] and its localiza-

tion [192] of a polaron model for arbitrary values of total momentum for one or two
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dimensions. He also considered an effective mass in [197].

In 1989, H.Spohn [195] investigated the ground state properties of a spin-boson

model, in which he proved the existence of the ground states of the spin-boson model

and shown its localization 5. The work has been continued by H.Spohn, R.Stückl

and W.Wreszinski in [198] to generalized versions: “J-spin boson models”.

In 1995, M.Hübner and H.Spohn [128, 129] studied a resonance of the spin-boson

model with a help of a modification of a positive commutator method. For the

Pauli-Fierz model with a confined external potential and sufficiently small coupling

constants, V.Bach, J.Fröhlich and I.E.Sigal [31] proved the existence of a ground

state, its particle localization, and the existence of resonance poles, by means of a

renormalization group method. The full papers [32, 33] were published in 1998.

In 1996 A.Arai and M.Hirokawa proved the existence of the ground state of a

spin-boson model for sufficiently small coupling constants in [23], and extended this

to a generalized version in [24]6.

In 1996-1997, C.Fefferman, J.Fröhlich and J.M.Graf [72, 73] considered the sta-

bility of the Pauli-Fierz model and gave a lower bound of its ground state energy.

In 1997, H.Spohn [194] shown the asymptotic completeness of the Pauli-Fierz

model with the dipole approximation and non x2-potentials. E.Lieb and L.E.Thomas

[155] gave an alternative simple proof of the asymptotics of the ground state energy

of a polaron model given by Donsker and Varadhan [58].

In 1998, H.Spohn [197] proved the existence of the ground state of the Nelson

model for arbitrary coupling constants by a functional integral method. After [197],

C.Gérard [83] proved the same thing as that of [197] with some generalization in

an entirely different way. V.Bach, J.Fröhlich and I.E.Sigal [34] proved the existence

of the ground states of the Pauli-Fierz model without an infrared cutoff and with

Coulomb potentials (cf. F.Hiroshima [109, 113]), and they shown that the spectrum

of the model was purely absolutely continuous except in small neighborhood of the

ground state energy and the ionization thresholds. See also [35].

In 1999, E.Lieb and M.Loss [154] contributed to estimate both of upper and

lower bounds of the ground state energy of the Pauli-Fierz model. R. Minlos and

H.Spohn [160] proved the absence of the ground states of the Nelson model with an

5The problem whether the ground state of the spin-boson model exists or not in the original
Hilbert space had not yet been solved in [195]. H.Spohn actually shown the existence of its ground
states in the Hilbert space in his “unpublished note” dated 26 June 1989!

6GSB-model.
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infrared divergence7.

In 2000, A.Arai [19] proved independently of the existence of the ground states

that the essential spectrum of the Pauli-Fierz model coincided with its spectrum.8

F.Hiroshima proved the essential self-adjointness of the Pauli-Fierz model for arbi-

trary coupling constants in [112], and he also shown the uniqueness of its ground

state in [110]. V.Betz, F.Hiroshima, J.Lőrinczi, R.Minlos and H.Spohn [111, 38]

constructed an infinite-time Gibbs measure associated with the Nelson model and

shown the boson localization of its ground state for arbitrary coupling constants.

F.Hiroshima and H. Spohn [117] shown a binding through an interaction between

a particle and a quantum field for the Pauli-Fierz model with the dipole approx-

imation and shallow potentials9. Recently, M.Griesemer, E.Lieb and M.Loss [89]

address that the ground state of the Pauli-Fierz model exists for arbitrary coupling

constants!

2 The Pauli-Fierz model

2.1 A Fock-Cook representation

We start with introducing some basic facts of a quantum field often used in this

talk. We define the Boson Fock space over L2(Rd) by

F := F(L2(Rd)) := ⊕∞
n=0

(
⊗n

sL
2(Rd)

)
,

where ⊗0
sL

2(Rd) := C and ⊗n
sL

2(Rd) denotes the symmetric tensor product of

L2(Rd), i.e., f ∈ ⊗n
sL

2(Rd) if and only if f ∈ L2(Rd × · · · ×Rd︸ ︷︷ ︸
n

) and

f(k1, · · · , ki, · · · , kj, · · · , kn) = f(k1, · · · , kj, · · · , ki, · · · , kn), 1 ≤ i, j ≤ n.

The creation operator a†(f) and the annihilation operator a(f) smeared by f ∈
L2(Rd) are defined by, for Ψ = ⊕∞

n=0Ψ
(n) ∈ F ,

(
a†(f)Ψ

)(n)
(k1, · · · , kn) =

1√
n

n∑
j=1

f(kj)Ψ
(n−1)(k1, · · · , k̂j, · · · , kn),

7A.Arai and M.Hirokawa [25] gave a sufficient condition for the existence of the ground states
in some domain with an infrared divergence for a GSB model. See also A.Arai, M.Hirokawa and
F.Hiroshima [27].

8Asymptotic completeness for the massive Nelson model is established in [55, 6].
9A.Arai and M.Hirokawa [26] found a non-perturbative ground state of the Wigner-Weisskopf

model for large coupling constants. Also see [101].
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(a(f)Ψ)(n) (k1, · · · , kn) =
√
n+ 1

n∑
j=1

∫
Rd
f(k)Ψ(n+1)(k1, · · · ,

j

k, · · · , kn)dk,

where ̂ denotes neglecting the term10. Let Ωb := 1 ⊕ 0 ⊕ 0 · · · ∈ F be the bare

vacuum. It is well known that

F0 := L
{
a†(f1) · · · a†(fn)Ωb,Ωb

∣∣∣fj ∈ L2(Rd), j = 1, ..., n, n ∈ N
}

is dense in F , where L{· · ·} denotes the finite linear hull of vectors in {· · ·}. Moreover

F0 is an invariant subspace of a♯ = a† or a. a♯ obeys the canonical commutation

relations on F0, i.e.,

[a(f), a†(g)] = (f, g)L2(Rd), [a♯(f), a♯(g)] = 0,

where (f, g)K (resp. ∥f∥K) denotes the scalar product (resp. the norm) of Hilbert

space K. We omit K in (f, g)K unless no confusion may arise. Note that (f, g)K is

linear in g and antilinear in f . a♯ satisfies that

(a(f)Ψ,Φ)F = (Ψ, a†(f)Φ)F

for Ψ,Φ ∈ F0. We define

FEM := F ⊗ · · · ⊗ F︸ ︷︷ ︸
d−1

, FEM0 := F0⊗̂ · · · ⊗̂F0︸ ︷︷ ︸
d−1

,

where ⊗̂ denotes an algebraic tensor product, and ar♯ : FEM → FEM is defined by

ar♯(f) := 1⊗ · · · ⊗
r︷ ︸︸ ︷

a♯(f)⊗ · · · ⊗ 1︸ ︷︷ ︸
d−1

, r = 1, ..., d− 1.

It obeys that, on FEM0,

[ar†(f), as†(g)] = δrs(f, g), [ar♯(f), as♯(g)] = 0.

We denote by the same symbol a♯ its closed extension. The vectors

er(k) := (er1(k), · · · , erd(k)), r = 1, ..., d− 1,

are d− 1 possible orthonormal polarization vectors perpendicular to k, i.e.,

er(k) · es(k) = δrs, er(k) · k = 0, a.e.k ∈ Rd.

10Formally we write a♯(f) =
∫
a♯(k)f(k)dk.
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Note that11

dµν(k) := erµ(k)e
r
ν(k) = δµν − (kµkν)/|k|2.

We define a quantized radiation field Aµ(λ̂) by

Aµ(λ̂) := Aµ(λ̂, x) :=
1√
2

{
ar†(erµe

−ikx ˜̂λ) + ar(erµe
ikxλ̂)

}
, µ = 1, ..., d,

and its canonical pair Πµ(λ̂) by

Πµ(λ̂) := Π(λ̂, x) := i
1√
2

{
ar†(erµe

−ikx ˜̂λ)− ar(erµe
ikxλ̂)

}
, µ = 1, ..., d,

where g̃(k) := g(−k) and ĝ denotes the Fourier transform of g. Note that

divA(λ̂) =
d∑

µ=1

[pµ, Aµ(λ̂)] = 0, (the Coulomb gauge),

on some domain. It is checked that 12

[Aµ(λ̂),Πν(ρ̂)] = i(dµνλ̂, ρ̂),

[Aµ(λ̂), Aν(ρ̂)] = [Πµ(λ̂),Πν(ρ̂)] = 0,

on FEM0 and

(Aµ(λ̂)Ωb, Aν(ρ̂)Ωb) =
1

2
(dµνλ̂, ρ̂) = (Πµ(λ̂)Ωb,Πν(ρ̂)Ωb).

Throughout this talk we assume that

λ̂(−k) = λ̂(k), (2.1)

namely, λ is real. This assumption ensures that both of Aµ(λ̂) and Πν(λ̂) are sym-

metric operators.

11The summation of repeated indexes are understood (the Einstein rule).
12Formally one writes

[Aµ(k),Πν(k
′)] = i(δµν − kµkν/|k|2)δ(k − k′) or [Aµ(x),Πν(y)] = i(δµν − ∂µ∂ν/|x− y|)δ(x− y).
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2.2 The second quantization

Let h be a self-adjoint operator of L2(Rd). Define St : F → F , t ∈ R, by

Sta
†(f1) · · · a†(fn)Ωb := a†(eithf1) · · · a†(eithfn)Ωb, StΩb := Ωb.

It is seen that St ⊗ · · · ⊗ St︸ ︷︷ ︸
d−1

, t ∈ R, is a strongly continuous one-parameter unitary

group on FEM. Thus there exists a self-adjoint operator dΓb(h) in FEM such that

St ⊗ · · · ⊗ St︸ ︷︷ ︸
d

= eitdΓb(h), t ∈ R.

We call dΓb(h) “the second quantization” [49] of h. Actually dΓb(h) acts 13 as

follows:

dΓb(h)Ωb = 0,

dΓb(h)a
†r1(f1) · · · a†rn(fn)Ωb =

n∑
j=1

a†r1(f1) · · · a†rj(hfj) · · · a†rn(fn)Ωb.

Let

ωµ(k) :=
√
|k|2 + µ2, µ ≥ 0,

and define the free Hamiltonian in FEM by 14

Hb := dΓb(ωµ).

It is known that15

σ(Hb) = {0} ∪ [µ,∞), σp(Hb) = {0}, σess(Hb) = [µ,∞),

and {0} is of multiplicity one and

HbΩb = 0.

In what follows we assume that µ = 0 and set

ω := ω0.

13dΓb(h) = ⊕∞
n=0

∑n
j=1 1⊗ · · ·

j︷︸︸︷
h · · · ⊗ 1︸ ︷︷ ︸
n

.

14Formally Hb is written as Hb =
∫
ωm(k)ar†(k)ar(k)dk.

15σ(T ):the spectrum of T , σess(T ):the essential spectrum of T , σdisc(T ):the discrete spectrum of
T , σp(T ):the point spectrum of T , σac(T ):the absolutely continuous spectrum of T .
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It is a direct calculation that

eitdΓb(h)ar†(f)e−itdΓb(h) = ar†(eithf),

eitdΓb(h)ar(f)e−itdΓb(h) = ar(e−ithf).

In particular, for Nb := dΓb(1),

eiπ/2Nbar†(f)e−iπ/2Nb = iar†(f), (2.2)

eiπ/2dΓb(h)ar(f)e−iπ/2dΓb(h) = −iar(f). (2.3)

Operator Nb is called the number operator. From (2.2) and (2.3) it follows that

eiπ/2NbAµ(λ̂)e
−iπ/2Nb = Πµ(λ̂), µ = 1, ..., d. (2.4)

For later convenience, we introduce some fundamental inequalities:

∥ar†(f)Ψ∥ ≤ ∥f ||∥Ψ∥+ ∥f/
√
ω∥∥H1/2

b Ψ∥, (2.5)

∥ar(f)Ψ∥ ≤ ∥f/
√
ω∥∥H1/2

b Ψ∥, (2.6)

for 16 Ψ ∈ D(H
1/2
b ) and

∥ar♯(f)ar♯(f)Ψ∥ ≤ (∥f/
√
ω∥+ ∥f∥)(∥f

√
ω∥+ ∥f∥+ ∥

√
ωf∥+ ∥ωf∥)∥(Hb + 1)Ψ∥,

(2.7)

for Ψ ∈ D(Hb) ([13]). Moreover

∥ar†(f)Ψ∥ ≤ ∥f∥(∥Ψ∥+ ∥N1/2
b Ψ∥), (2.8)

∥ar(f)Ψ∥ ≤ ∥f∥∥N1/2
b Ψ∥, (2.9)

for Ψ ∈ D(N
1/2
b ).

2.3 The definition of the Pauli-Fierz Hamiltonian

Let

Hb := L2(Rd)⊗F ∼=
∫ ⊕

Rd
Fdx.

Here L2(Rd) accommodates the state space of the electron moving in d-dimensional

space and F that of bosons (photons). Define

Aµ :=
∫ ⊕

Rd
Aµ(λ̂, x)dx, µ = 1, ..., d.

16D(T ) denotes the domain of T .
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The Pauli-Fierz Hamiltonian HPF is defined as a densely defined symmetric operator

acting in Hb by

HPF :=
1

2M
(p⊗ 1− αA)2 + V ⊗ 1+ 1⊗Hb,

where M is the mass of the electron, α a coupling constant17and we work with a

unit h̄ = c = 1 18. For simplicity we set M = 1. λ̂ serves as an ultraviolet cutoff. A

physically reasonable choice of λ is

λ̂(k) = ρ̂(k)/
√
(2π)dω(k),

where ρ is a charge density, i.e.,

α = −
∫
Rd
ρ(x)dx, ρ(x) ≥ 0. (2.10)

In particular for d = 3, ∫
R3

λ̂(k)2

ω(k)2
dk <∞ (2.11)

implies that

0 =
√
(2π)3ρ̂(0) =

∫
R3
ρ(x)dx = −α.

We call (2.11) infrared cutoff condition. Throughout this talk we do not impose

(2.10).

17Physically α = −
√
1/137 with a unit h̄ = c = 1

18 Actually HPF is a Hamiltonian reduced by “the one-particle sector”. Define the antisymmetric
Fock space by Fas := ⊕∞

n=0

(
⊗n

asL
2(Rd)

)
, where ⊗n

asL
2(Rd) denotes the n-fold antisymmetric

tensor product of L2(Rd). Set HT := Fas ⊗FEM. Then

HT = ⊕∞
Z=0HZ, HZ := (⊗Z

asL
2(Rd))⊗F ∼= L2

as(R
dZ)⊗FEM.

Let Ψ(x) and Ψ†(x) be formal kernels of the annihilation operator and the creation operator in Fas,
respectively, i.e., anticommutation relations {Ψ(x),Ψ†(y)} = δ(x−y) holds. The total Hamiltonian
H is defined on HT by

H :=
1

2

∫
Ψ†(x)

(
p− αA(λ̂, x)

)2
Ψ(x)dx

+

∫
ω(k)ar†(k)ar(k)dk + α2

∫
Ψ†(x)Ψ†(y)V (x− y)Ψ(x)Ψ(y)dxdy,

where V (x) = −1/(4π|x|). Thus it follows that

H⌈H1 = HPF,

H⌈HZ =
1

2

Z∑
j=1

(
pj − αA(λ̂, xj)

)2
+Hf − α2

Z∑
i̸=j

1

4π|xi − xj |
, Z ≥ 2.

When Z ≥ 2, a longitudinal interaction (a Coulomb potential) does appear.
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2.4 Self-adjointness for |α| ≪ 1

We abbreviate 1 ⊗ X and X ⊗ 1 by X unless no confusion arise. The Pauli-Fierz

Hamiltonian is written as

HPF = Hp +Hb + αHI,

where

Hp := −∆/2 + V, HI := −pA+ αA2.

Assume that

∥∆f∥ ≤ a∥Hpf∥+ b∥f∥ (2.12)

for f ∈ D(Hp) with some constants a and b. Let λ̂/
√
ω, λ̂,

√
ωλ̂, ωλ̂ ∈ L2(Rd) .

Then, by the fundamental inequalities (2.5), (2.6) and (2.7), we easily have

∥pAΨ∥ ≤ C1∥(Hp +Hb + 1)Ψ∥, (2.13)

∥A2Ψ∥ ≤ C2∥(Hb + 1)Ψ∥ (2.14)

with some constants C1 and C2 for Ψ ∈ D(Hp) ∩D(Hb).

Proposition 2.1 ([167]) Let λ̂/
√
ω, λ̂,

√
ωλ̂, ωλ̂ ∈ L2(Rd) and |α| be sufficiently

small. Assume (2.12). Then HPF is self-adjoint on D(Hp)∩D(Hb), bounded below,

and essentially self-adjoint on any core of Hp +Hb.

Proof: By virtue of (2.13) and (2.14), we have

∥HIΨ∥ ≤ C ′∥(Hp +Hb)Ψ∥+ C ′′∥Ψ∥

with some constants C ′ and C ′′. The proposition follows from the Kato-Rellich

theorem and the fact that D(Hp +Hb) = D(Hp) ∩D(Hb). QED

2.5 Problems of embedded eigenvalues and binding through
a coupling

Here we state the purpose of this talk. The decoupled Hamiltonian (α = 0) is

denoted by

Hd := Hp +Hb.
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First we let

σ(Hp) = {Ej}Nj=0 ∪ [Σ,∞), E0 ≤ E1 ≤ · · · < Σ.

Then

σ(Hd) = [E0,∞), σp(Hd) = {Ej}Nj=0.

Thus all the point spectra of Hd are embedded in the continuous spectrum. We can

say that the spectral analysis of H = Hd + αHI is a problem of a perturbation of

embedded point spectra. We will see that, under some condition, the point spectrum

E0 survives after adding the perturbation αHI. See Section 6.

Secondly we assume that

σ(Hp) = [0,∞), σp(Hp) = ∅.

Then

σ(Hd) = [0,∞), σp(Hd) = ∅.

Our question is as follows: does there exist the ground state of H = Hd+αHI for

some α > 0? The answer is YES. As heuristic level one argues that the coupling to

the radiation field amounts to renormalizing a bare mass M to an “effective” mass

M(α2) with M(α2) increasing in α2.Thus effectively instead of Hp = −∆/(2M)+V

we should consider

−∆/(2M(α2)) + V. (2.15)

Hence a bound state can be produced through a coupling α sufficiently large. Most

likely (2.15) has no sharp mathematical meaning. However we will see an associated

phenomenon of the Pauli-Fierz model in Section 8.

3 A Schrödinger representation

3.1 The simultaneous diagonalization of the quantized ra-
diation field

In order to obtain a functional integral representation of a heat semigroup, we shall

take a Schrödinger representation of the quantized radiation field A(λ̂). Note that

(Aµ(λ̂)Ωb, Aν(ρ̂)Ωb) =
1

2
(dµνλ̂, ρ̂),

[Aµ(λ̂), Aν(ρ̂)] = 0.
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Define a quadratic form on ⊕dL2(Rd) by

q(f, g) :=
1

2
(dµν f̂µ, ĝν), f, g ∈ ⊕dL2(Rd).

In particular we set q(f, f) := q(f). Let (Q, ν) be a probability measure space and

ϕ(f) a Gaussian random process on (Q, ν)19 indexed by real f ∈ ⊕dL2(Rd) with a

covariance ∫
Q
ϕ(f)ϕ(g)dν(ϕ) =

1

2
q(f, g).

Note that ∫
Q
eαϕ(f)dν(ϕ) = e(α

2/2)q(f), α ∈ C.

We set for f ∈ ⊕dL2(Rd)

ϕ(f) := ϕ(ℜf) + iϕ(ℑf).

Let Ω be the identity function in L2(Q). Set

L2
0(Q) := { :ϕ(f1) · · ·ϕ(fn): ,Ω|fj ∈ ⊕dL2(Rd), j = 1, ..., n, n ∈ N},

where the wick product :ϕ(f1) · · ·ϕ(fn): is recursively defined by

:ϕ(f): = ϕ(f),

:ϕ(f)ϕ(f1) · · ·ϕ(fn): := ϕ(f) :ϕ(f1) · · ·ϕ(fn):

−1

2

n∑
j=1

(f, fj) :ϕ(f1) · · · ̂ϕ(fj) · · ·ϕ(fn): .
It is known that L2

0(Q) is dense in L2(Q) and

( :ϕ(f1) · · ·ϕ(fn): , :ϕ(g1) · · ·ϕ(gm): )L2(Q) = δnm
∑
π∈Gn

q(f1, gπ(1)) · · · q(fn, gπ(n)),

19Actually we can construct the Gaussian measure ν on “the Schwartz distribution space of
transverse vector potentials” ([73, 105])

ST :=

Ψ ∈ S ′
real(R

d)× · · · × S ′
real(R

d)︸ ︷︷ ︸
d

∣∣∣∣∣∣ divΨ = 0


by the Minlos theorem (e.g., [97]).
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where Gn denotes the set of the nth-degree permutations. Let T : L2(Rd) → L2(Rd)

be a contractive operator. We define a contractive operator 20 Γ(T ) : L2(Q) → L2(Q)

by

Γ(T ) :ϕ(f1) · · ·ϕ(fn): := :ϕ([T ]f1) · · ·ϕ([T ]fn): ,

Γ(T )Ω := Ω,

where [T ] := T ⊕ · · · ⊕ T︸ ︷︷ ︸
d

. Let h be a self-adjoint operator of L2(Rd). Then Γ(eith)

is a strongly continuous one-parameter unitary group in t. Thus there exists a

self-adjoint operator dΓ(h) of L2(Q) such that

Γ(eith) = eitdΓ(h), t ∈ R.

The number operator in L2(Q) is defined by

N := dΓ(1),

and the canonical pair of ϕ(λ) by

π(λ) := eiπN/2ϕ(λ)e−iπN/2.

Let

ω̂ := ω(−i∇)

and we define the free Hamiltonian of L2(Q) by

Hf := dΓ(ω̂).

Set

Aµ(λ) := ϕ(0⊕ · · ·
µ︷︸︸︷
λ · · · ⊕ 0︸ ︷︷ ︸
d

), µ = 1, ..., d.

Proposition 3.1 ([105]) There exists a unitary operator θ : F → L2(Q) such that

(1) θΩb = Ω; (2) θ−1Hbθ = Hf ; (3) θ
−1Aµ(λ(· − x))θ = Aµ(λ̂, x) for each x ∈ Rd.

Let H be a Hilbert space defined by21

H := L2(Rd)⊗ L2(Q) ∼=
∫ ⊕

Rd
L2(Q)dx.

20Γ is a functor from the set of contractive operators on L2(Rd) to that on L2(Q). See [164].
21H is the set of L2(Q)-valued L2-functions on Rd. Thus, for F ∈ H, F (x) ∈ L2(Q) a.e. x ∈ Rd

and
∫
Rd ∥F (x)∥2L2(Q)dx = ∥F∥2H.
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Set

Aµ :=
∫ ⊕

Rd
Aµ(λ(· − x))dx.

The Pauli-Fierz Hamiltonian in a Schödinger representation is defined by

H :=
1

2
(p⊗ 1− αA)2 + V ⊗ 1+ 1⊗Hf .

Let

Θ :=
∫ ⊕

Rd
θdx.

From Proposition 3.1 it follows that on a dense domain

Θ−1HΘ = HPF.

3.2 Ergodic properties of the decoupled Hamiltonian

Let (M,m) be a σ-finite measure space. We say that Ψ ∈ L2(M,dm) is positive

if Ψ ≥ 0 (Ψ ̸= 0) for a.e. M . We also say that operator A of L2(M,dm) is

“positivity preserving” (simply we say PP) if (Ψ, AΦ)L2(M,dm) ≥ 0 for all positive

Ψ,Φ, moreover, “positivity improving” (simply we say PI) if (Ψ, AΦ)L2(M,dm) > 0

for all positive Ψ,Φ. Let K be a nonnegative self-adjoint operator in L2(M,dm). It

is well known that if e−tK is PI, then the ground state of K is unique and strictly

positive.

Let T be a contractive operator of L2(Q). It is established (e.g.,[88, 185]) that

Γ(T ) is PP and that Γ(T ) is PI if ∥T∥ < 1.

Proposition 3.2 ([68, 69, 183]) e−tHf is PI for all t > 0 in L2(Q).

Define a set V0 of external potentials V by

V0: V = V+ − V− such that V± ≥ 0, V+ ∈ L1
loc(R

d) and V− is infinitesimally small

with respect to the Laplacian in the sense of form.

Proposition 3.3 ([188]) Let V ∈ V0. Then e
−tHp is PI for all t > 0 in L2(Rd).

Proposition 3.4 ([110]) Let V ∈ V0. Then e−t(Hp⊗1+1⊗Hf) is PI for all t > 0 in

H.

Proposition 3.4 does not directly follows from Propositions 3.2 and 3.3. It is seen

that e−t(Hp⊗1+1⊗Hf) = e−t(Hp⊗1)e−t(1⊗Hf), however, both of e−t(Hp⊗1) and e−t(1⊗Hf)

are not PI, which are PP in H.

By Proposition 3.4, Hp +Hf has a strictly positive unique ground state ϕp ⊗Ω,

where ϕp denotes the ground state of Hp.
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4 Functional integral representations

In this section we assume that λ̂/
√
ω, λ̂,

√
ωλ̂, ωλ̂ ∈ L2(Rd) , |α| ≪ 1, V is relatively

bounded with respect to the Laplacian. Set

H = H0 +Hf + V,

where

H0 :=
1

2
(p− αA)2 .

We want to construct a functional integral representation of the form(
Φ, e−β0Ke−t1Hf1e

−β1Ke−(t2−t1)Hf2 · · · fm−1e
−βm−1Ke−(tm−tm−1)HΨ

)
H
,

where fj ∈ L∞(Rd), j = 1, ...,m− 1, K is a nonnegative self-adjoint operator.

4.1 A decomposition of e−tdΓ(h(−i∇)) and Gaussian random
processes

For f, g ∈ ⊕dL2(Rd+1), we define

q0(f, g) :=
∫
Rd+1

dµν(k)f̂µ(k, k0)ĝν(k, k0)dkdk0.

Let (Q0, ν0) denote a probability measure space and ϕ0(f) be a Gaussian random

process indexed by real f ∈ ⊕dL2(Rd+1) with a covariance∫
Q0

ϕ0(f)ϕ0(g)ν0(dϕ0) =
1

2
q0(f, g).

For f ∈ ⊕dL2(Rd+1), we define

ϕ0(f) = ϕ0(ℜf) + iϕ0(ℑf).

Let Ω0 be the identity function in L2(Q0). Let jt : L
2(Rd) → L2(Rd+1) be defined

by

ĵtf(k, k0) =
e−itk0

√
2π

√√√√ ω(k)

ω(k)2 + |k0|2
f̂(k), (k, k0) ∈ Rd ×R, t ∈ R.

It is immediate to see that

(jtf, jsg)L2(Rd+1) =
1

2
(f̂ , e−|t−s|ωĝ)L2(Rd),
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namely

j∗t js =
1

2
e−|t−s|ω(−i∇), t, s ∈ R. (4.1)

Let Jt : L
2(Q) → L2(Q0) be defined by

Jt :ϕ(f1) · · ·ϕ(fn): := :ϕ0([jt]f1) · · ·ϕ0([jt]fn): , JtΩ = Ω0.

It is easily seen that, by (4.1), Jt extends to an isometry of L2(Q) to L2(Q0) such

that

J∗
t Js = e−|t−s|Hf , t, s ∈ R. (4.2)

In addition to ϕ0, we need another Gaussian random process. For f, g ∈ ⊕dL2(Rd+2),

we define

q1(f, g) :=
∫
Rd+2

dµν(k)f̂µ(k, k0, k1)ĝν(k, k0, k1)dkdk0dk1.

Let (Q1, ν1) denote a probability measure space and ϕ1(f) be a Gaussian random

process indexed by real f ∈ ⊕dL2(Rd+2) with a covariance∫
Q1

ϕ1(f)ϕ1(g)ν1(dϕ1) =
1

2
q1(f, g).

For f ∈ ⊕dL2(Rd+2), we define

ϕ1(f) = ϕ1(ℜf) + iϕ1(ℑf).

Let Ω1 be the identity function in L2(Q1). Let h be a nonnegative multiplication

operator of L2(Rd). We define ξt : L
2(Rd+1) → L2(Rd+2) by

ξ̂tf(k, k0, k1) =
e−itk1

√
π

√√√√ h(k)

h(k)2 + |k1|2
f̂(k, k0) (k, k0, k1) ∈ Rd ×R×R, t ∈ R.

Similarly to (4.1) we have

ξ∗t ξs =
1

2
e−|t−s|(h(−i∇)⊗1) (4.3)

under identification L2(Rd+1) ∼= L2(Rd)⊗ L2(R). Define Ξt : L
2(Q0) → L2(Q1) by

Ξt :ϕ0(f1) · · ·ϕ0(fn): := :ϕ1([ξt]f1) · · ·ϕ1([ξt]fn): , ΞtΩ1 = Ω0.

From (4.3) it follows that

Ξ∗
tΞs = e−|t−s|dΓ(h(−i∇)⊗1). (4.4)
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From the definitions of Jt and Ξs, we see that

Jse
−tdΓ(h(−i∇)) = e−tdΓ(h(−i∇)⊗1)Js. (4.5)

We define the canonical pairs of ϕ0(f) and ϕ1(g) by

π0(f) := eiπN0/2ϕ0(f)e
−iπN0/2,

π1(g) := eiπN1/2ϕ1(g)e
−iπN1/2,

respectively, where N0 and N1 are the number operators in L2(Q0) and L2(Q1),

respectively.

4.2 Functional integrals

Let b(t) := {bµ(t)} be the d-dimensional Brownian motion starting at the origin

on the probability measure space (C([0,∞);Rd), db). Let Xs := b(s) + x be the

Wiener path and dP := dx⊗ db on W := Rd × C([0,∞);Rd).

We define the subspace of coherent states in L2(Q) by

L2
C(Q) := {F (ϕ(f1), · · · , ϕ(fn))|F ∈ S(Rn), fj ∈ ⊕dL2(Rd), j = 1, ..., n, n ∈ N},

where S(Rn) denotes the set of Schwartz test functions on Rn.

Theorem 4.1 (Functional integral representation I [105, 111])

Let h be a nonnegative multiplication operator of L2(Rd) and set K := dΓ(h(−i∇)).

Let 0 ≤ t1 ≤ t2 ≤ · · · ≤ tm, and 0 ≤ τ1 ≤ τ2 ≤ · · · ≤ τm. We assume that

F0, Fm ∈ H, F1, · · · , Fm−1 ∈ L2
C(Q)⊗̂L∞(Rd). Set F̂j := ΞτjJtjFj. Then(

F0, e
−τ1Ke−t1HF1e

−(τ2−τ1)Ke−(t2−t1)HF2 · · ·Fm−1e
−(τm−τm−1)Ke−(tm−tm−1)HFm

)
=
∫
W
dPe−

∫ t

0
V (Xs)ds

(
F̂0(X0), e

iαϕ1(L(X))F̂t1(Xt1) · · · F̂tm(Xtm)
)
L2(Q1)

,

where

L(X) := ⊕d
µ=1

m∑
j=1

∫ tj

tj−1

ξτjjsλ(· −Xs)dbµ(s) ∈ ⊕dL2(Rd+2),

and
∫ S
T · · · dbµ(s) denotes L

2(Rd+2)-valued 22 stochastic integrals.23

22λ(· −Xs) ∈ L2(Rd), jsλ(· −Xs) ∈ L2(Rd+1), ξτj jsλ(· −Xs) ∈ L2(Rd+2).
23Let F : R×Rd → K, where K is a Hilbert space. Then K-valued stochastic integral is defined

by ∫ t

0

F (s,b(s))dbµ(s) := s− lim
n→∞

2n∑
k=1

F

(
k − 1

2n
t,b

(
k − 1

2n
t

)){
bµ

(
k

2n
t

)
− bµ

(
k − 1

2n
t

)}
in L2(C(R;Rd);K). See [188].
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Proof: For instance we set V = 0. By the Trotter-Kato product formula [142] we

have

e−tH = s− lim
n→∞

(
e−t/nH0e−t/nHf

)n
.

Put an := tn − tn−1 and bn := τn − τn−1. Thus

lim
n→∞

(
F0, e

−b1K
(
e−a1/nH0e−a1/nHf

)n
F1e

−b2K
(
e−a1/nH0e−a1/nHf

)n
F2e

−b3K · · ·

· · ·Fm−1e
−bmK

(
e−am/nH0e−am/nHf

)n
Fm

)
Since [105, 188]

e−tH0 = s− lim
n→∞

(
Qt/2n

)2n
,

where Qs : H → H is defined by, for F (·) ∈ H,

QsF (x) :=
∫
Rd
ps(x− y)e(iα/2)ϕ(⊕

d
µ=1(λ(·−x)+λ(·−y))·(xµ−yµ))F (y)dy, (4.6)

Q0F (x) := F (x), (4.7)

where pt(x) := (2πt)−d/2 exp (−|x|2/2t). Using the facts that

e−tHf = J∗
TJT+t,

Jse
ϕ(f)J∗

s = (JsJ
∗
s )e

ϕ0(jsf)(JsJ
∗
s )

as an operator, and the Markov property24 of JsJ
∗
s [88, 185], we have

=
(
J0F0,

(
e−b1K

)
eiαϕ0(t0,t1) (Jt1F1)

(
e−b2K

)
eiαϕ0(t1,t2) · · ·

· · ·
(
Jtm−1Fm−1

) (
e−bmK

)
eiαϕ0(tm−1,tm)JtmFm

)
,

where

ϕ0(ta, tb) := ϕ0

(
⊕d

µ=1

∫ tb

ta
jsλ(· −Xs)dbµ(s)

)
.

Using also that

Ξ∗
T+tΞT = e−tK ,

Ξte
ϕ0(f)Ξ∗

t = (ΞtΞ
∗
t )e

ϕ0(ξtf)(ΞtΞ
∗
t )

as an operator, we get the desired results by the Markov property of ΞtΞ
∗
t . QED

24Let Es := JsJ
∗
s . Thus Es is a projection of L2(Q0). Define Q[a,b] := L{F ∈ L2(Q0)|F ∈

RanEs, s ∈ [a, b]}. Let Σ[a,b] be the smallest σ-field generated by Q[a,b]. Let Ψ be measurable
with respected to Σ[a,b] and Ψ with respect to Σ[c,d], where a ≤ b ≤ c ≤ d. Then, for b ≤ s ≤ c,
(Ψ, EsΦ) = (Ψ,Φ).
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Corollary 4.2 Let F,G ∈ H. Then

(F, e−tHG) =
∫
W
dPe−

∫ t

0
V (Xs)ds(J0F (X0), e

iαϕ0(Kt(X))JtG(Xt))L2(Q0),

where

Kt(X) := ⊕d
µ=1

∫ t

0
jsλ(· −Xs)dbµ(s).

In particular, for f ∈ L2(Rd),

(f ⊗ Ω, e−tHf ⊗ Ω) =
∫
W
dPe−

∫ t

0
V (Xs)dsf(X0)f(Xt)e

−(α2/2)q0(Kt(X)).

We immediately see a Kato-type inequality ([140]) 25

Corollary 4.3 (Diamagnetic inequality [103, 105]) Let F,G ∈ H. Then∣∣∣(F, e−tHG
)∣∣∣ ≤ (

|F |, e−t(Hp+Hf)|G|
)
.

In particular

inf σ(Hp) ≤ inf σ(H).

Proof: Note that |JtG| = Jt|G|, since Jt is PP, and that inf σ(Hp +Hf) = inf σ(Hp).

Thus corollary follows directly from Corollary 4.2. QED

Corollary 4.4 Let f ∈ L2(Rd). Then

(f ⊗ Ω, e−tHe−sKe−tHf ⊗ Ω)

=
∫
W
dPe−

∫ t

0
V (Xs)dsf(X0)f(X2t)e

−(α2/2)q0(K2t)+(α2/2)F (X), (4.8)

where

F (X) := 2q1

(
⊕d

µ=1

∫ t

0
ξ0jsλ(· −Xs)dbµ(s),⊕d

µ=1

∫ 2t

t
ξtjs′λ(· −Xs′)dbµ(s

′)
)
.

Proof: By Theorem 4.1 we have

L.H.S. (4.8) =
∫
W
dPe−

∫ 2t

0
V (Xs)dsf(X0)f(X2t)

(
Ω1, e

iαϕ1(W )Ω1

)
L2(Q1)

=
∫
W
dPe−

∫ 2t

0
V (Xs)dsf(X0)f(X2t)e

−(α2/2)q1(W ),

25The Kato inequality is studied and applied in e.g., [57, 63, 96, 103, 105, 130, 131, 140, 141,
150, 189, 186] etc.
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where

W = ⊕d
µ=1

(∫ t

0
ξ0jsλ(· −Xs)dbµ(s) +

∫ 2t

t
ξtjsλ(· −Xs)dbµ(s)

)
.

Since

q1(W ) = q0(K2t)− F (X),

we get the desired result. QED

Remark 4.5 Formally we see that

F (X) =
∫ t

0
dbµ(s)

∫ 2t

t
dbν(s

′)
∫
Rd

(
1− e−th(k)

)
dµν(k)e

−|s−s′|ω(k)|λ̂(k)|2eik(Xs−Xs′ )dk,

q0(Kt(X)) =
∫ t

0
dbµ(s)

∫ t

0
dbν(s

′)
∫
Rd
dµν(k)e

−|s−s′|ω(k)eik(Xs−Xs′ )|λ̂(k)|2dk.

This formal expression appears in [94, 110, 70, 194].

5 Essential self-adjointness for arbitrary α ∈ R

5.1 Translation invariance and invariant domains

We redefine Qs : H → H for arbitrary α ∈ R by

QsF (x) :=
∫
Rd
ps(x− y)e(iα/2)ϕ(⊕

d
µ=1(λ(·−x)+λ(·−y))·(xµ−yµ))F (y)dy, s > 0, (5.1)

Q0F (x) := F (x). (5.2)

Let

S(t) := s− lim
n→∞

(
Qt/2n

)2n
.

Let λ̂, ωλ̂ ∈ L2(Rd) . Thus by a direct calculation we see that S(t) exists and

(F, S(t)G) =
∫
W
dP

(
G(X0), e

iαϕ(Z(X))G(Xt)
)
,

where

Z(X) := ⊕d
µ=1

∫ t

0
λ(· −Xs)dbµ(s) ∈ ⊕dL2(Rd).

By the definition of Qs we immediately see that

(F, S(t)S(s)G) = (F, S(s+ t)G),
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lim
t→∞

(F, S(t)G) = (F, S(0)G) = (F,G).

Hence S(t), t ≥ 0, is a strongly continuous one-parameter semigroup in t. Thus

there exists a nonnegative self-adjoint operator Ĥ0 in L2(Q) such that

S(t) = e−tĤ0 .

Lemma 5.1 Let λ̂, ωλ̂ ∈ L2(Rd) . Then, for all α ∈ R,

H0⌈D(∆)∩D(N)⊂ Ĥ0.

Proof: For F ∈ C∞
0 (Rd)⊗̂L2

0(Q) and G ∈ H, we have [48, 105](
G,

1

t

(
e−tĤ0 − 1

)
F
)
H
= −

∫ 1

0
ds
(
e−tĤ0G,H0F

)
H
. (5.3)

Since

∥H0F∥ ≤ C (∥∆F∥+ ∥NF∥+ ∥F∥)

with some constant C, by a limiting argument we extend (5.3) to F ∈ D(∆)∩D(N).

Take G ∈ D(Ĥ0). We have

−
(
Ĥ0G,F

)
= lim

t→∞

(
G,

1

t

(
e−tĤ0 − 1

)
F
)
= −

∫ 1

0
ds (G,H0F ) = − (G,H0F ) .

Then
(
Ĥ0G,F

)
= (G,H0F ), which yields that F ∈ D(Ĥ0) and Ĥ0F = H0F . Hence

lemma follows. QED

Lemma 5.2 Let λ̂/
√
ω, λ̂,

√
ωλ̂, ωλ̂ ∈ L2(Rd) . Then we have, for all α ∈ R, that

H0⌈D(∆)∩D(Hf)⊂ Ĥ0. (5.4)

Proof: Since (5.3) extends to F ∈ D(∆) ∩D(Hf), lemma follows in the similar way

as that of Lemma 5.1. QED

We define

Ĥ := Ĥ0+̇Hf .

Let V = 0. We note that, for λ̂, ωλ̂ ∈ L2(Rd) ,

H⌈D(∆)∩D(N)∩D(Hf)⊂ Ĥ, (5.5)
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moreover for λ̂/
√
ω, λ̂,

√
ωλ̂, ωλ̂ ∈ L2(Rd) ,

H⌈D(∆)∩D(Hf)⊂ Ĥ. (5.6)

Similarly to the proof of Theorem 4.1 we have(
F, e−tĤG

)
=
∫
W
dP

(
J0F (X0), e

iαϕ0(Kt(X))JtG(Xt)
)
. (5.7)

In particular, for a.e. (x, ϕ) ∈ Rd ×Q,(
e−tĤF

)
(ϕ, x) = EJtG(Xt),

where E denotes the expectation value with respect to db and

Jt := Jt(X) := J∗
0e

iαϕ0(Kt(X))Jt.

The following Burkholder type inequality [138, p.166] is useful to estimate stochastic

integrals.

Lemma 5.3 Let ωk/2λ̂ ∈ L2(Rd), k = 0, 1, ..., n. Then

E
∥∥∥∥(ω̂ ⊗ 1)k/2

∫ t

0
jsλ(· −Xs)dbµ(s)

∥∥∥∥2m
L2(Rd+1)

≤ (2m)!

2m
tm∥ωk/2λ̂∥2mL2(Rd).

Proof: See [112, Theorem 4.6]. QED

Lemma 5.4 (1) Let λ̂, ωnλ̂ ∈ L2(Rd) and G ∈ D(Hn
f ), n = 1, 2. Then

e−tĤG ∈ D(H2
f ).

(2) Let λ̂, ωλ̂ ∈ L2(Rd), and G ∈ D(Nk). Then

e−tĤG ∈ D(Nk).

Proof: We prove (1). (2) is proved similarly. It is enough to prove both of(
e−tĤG

)
(x) ∈ D(H2

f ), a.e.x ∈ Rd, (5.8)

and ∫
Rd

∥H2
f e

−tĤG(x)∥2L2(Q)dx <∞. (5.9)
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It is immediately seen that Jt (resp.J∗
t ) maps D(H2

f ) (resp.D(dΓ(ω̂ ⊗ 1)2)) to

D(dΓ(ω̂ ⊗ 1)2) (resp. D(H2
f )), and that eiαϕ0(Kt(X)) leaves D(dΓ(ω̂ ⊗ 1)2) invari-

ant. Then we have for Ψ ∈ D(H2
f ),

H2
f JtΨ = J∗

t e
iαϕ0(Kt(X))S(X)2J0Ψ, a.e.(x,b) ∈ W ,

where

S(X) := dΓ(ω̂ ⊗ 1) + απ0([ω̂ ⊗ 1]Kt(X)) + (α2/2)q0([ω̂ ⊗ 1]Kt(X),Kt(X)).

Using Burkholder inequality (5.3), and fundamental inequalities (2.5),(2.6) and

(2.7), we have

E∥H2
f JtG(X)∥L2(Q) ≤ C∥(Hf + 1)2G(x)∥L2(Q)

with some constant C. Since
(
e−tĤF

)
(ϕ, x) = EJtG(Xt),

∥H2
f e

−tĤG∥H ≤ C∥(Hf + 1)2G∥H.

Hence lemma follows. QED

We define the total momentum Pµ by

Pµ := pµ ⊗ 1+ 1⊗Pf,µ, µ = 1, ..., d,

where

Pf,µ := dΓ(−i∇µ).

By the definitions of e−tĤ we see that (translation invariance)26

e−isPµe−tĤ = e−tĤe−isPµ , t ≥ 0, s ∈ R. (5.10)

Lemma 5.5 Let λ̂, ωλ̂, ω2λ̂ ∈ L2(Rd) and

Dµ := D(p2
µ) ∩D(Hfpµ) ∩D(H2

f ), µ = 1, ..., d.

Then, for all t ≥ 0,

e−tĤDµ ⊂ Dµ, µ = 1, ..., d.

26Let V = 0. It follows that on some domain [Pµ,H] = 0, µ = 1, ..., d.
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Proof: By translation invariance (5.10), it follows that, for Ψ ∈ D(Pµ), e
−tĤΨ ∈

D(Pµ) and

Pµe
−tĤΨ = e−tĤPµΨ. (5.11)

Note that

D(Hn
f ) ⊂ D(Pn

f,µ), n = 1, 2.

Let G ∈ Dµ. Thus PµG ∈ D(Pµ), and (5.11) implies that

e−tĤG ∈ D(P2
µ).

By Lemma 5.4, we have

e−tĤG ∈ D(H2
f ) ⊂ D(P2

f,µ).

It is easily checked that

e−tĤG ∈ D(PµPf,µ) ∩D(Pf,µPµ).

From

D(p2
µ) ⊃ D(P2

µ) ∩D(PµPf,µ) ∩D(Pf,µPµ) ∩D(P2
f,µ),

it follows that

e−tĤG ∈ D(p2
µ).

Since e−tĤG ∈ D(Hfpµ) is easily seen, we get e−tĤG ∈ Dµ. QED

5.2 Essential self-adjointness

Theorem 5.6 ([112]) Let V be a relatively bounded with respect to the Laplacian

with a sufficiently small relative bound ε. Set

Sess := C∞(N) ∩D(H2
f )

d∩
µ=1

{
D(p2

µ) ∩D(Hfpµ)
}
.

We assume that λ̂, ωλ̂, ω2λ̂ ∈ L2(Rd) . Then H is essentially self-adjoint on Sess

and bounded below. In particular D(∆) ∩D(N) ∩D(Hf) is a core of H.

Proof: We have Sess ⊂ D(∆) ∩D(Hf) ∩D(N) ⊂ D(Ĥ). Moreover Sess is invariant

subspace of e−tĤ by Lemma 5.5. Since Ĥ⌈D(∆)∩D(Hf)∩D(N)⊂ H for V = 0 by (5.5),

we obtain that H for V = 0 is essentially self-adjoint on Sess. By a diamagnetic
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inequality (Corollary 4.3), V is also relatively bounded with respect to H with a

relative bound < ε [105, 188]. Hence theorem follows from the Kato-Rellich theorem.

QED

Under the assumptions of Theorem 5.6, note that it is not clear that

D(H) ⊃ D(∆) ∩D(Hf).

Corollary 5.7 In addition to the assumptions of Theorem 5.6, we assume that

λ̂/
√
ω,

√
ωλ̂ ∈ L2(Rd). Then H is essentially self-adjoint on

S ′
ess := D(H2

f )
d∩

µ=1

{
D(p2

µ) ∩D(Hfpµ)
}

and bounded below. In particular D(∆) ∩D(Hf) is a core of H.

Proof: Since Ĥ⌈D(∆)∩D(Hf)⊂ H by (5.4) for V = 0, corollary holds. QED

Corollary 5.8 (Functional integral representations II) Let λ̂, ωλ̂ ∈ L2(Rd) .

Then, for all α ∈ R and V ∈ V0, H := Ĥ +̇V+ −̇V− is well defined and, for which

the functional integral representation in Theorem 4.1 holds true.

Proof: Let V = 0. Then the corollary is clear by (5.7). By a diamagnetic inequality

(4.3), we see that V− is also relatively form bounded with respect to Ĥ. Thus

Ĥ +̇V+ −̇V− is well defined. By a limiting argument (4.1) holds for Ĥ +̇V+ −̇V−.

QED

6 Ground states

Let λ̂, ωλ̂ ∈ L2(Rd) and V ∈ V0 unless otherwise stated throughout this section. We

redefine the Pauli-Fierz Hamiltonian by

H := Ĥ +̇V+ −̇V−.

Let E := inf σ(H) and Ep := inf σ(Hp).
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6.1 Ergodic properties and the uniqueness of the ground
state

Let

U := exp
(
i
π

2
N
)
.

Note that

Jte
iaN = eiaN0Jt, a ∈ R.

Thus we have(
F,U−1e−tHUG

)
=
∫
W
dPe−

∫ t

0
V (Xs)ds

(
F (X0), J

∗
0e

iαπ0(Kt(X))JtG(Xt)
)
.

The purpose of this subsection is to prove that U−1e−tHU is PI for all t ≥ 0.

Lemma 6.1 Let F ∈ L2(Q) be a positive. Then there exists a positive sequence

Fn ∈ L2
C(Q) such that s− limn→∞ Fn = F .

Proof: See [126, Theorem 3.2] and [88, 185]. QED

Lemma 6.2 Let f ∈ ⊕dL2(Rd). Then eiπ(f) is PP in L2(Q) for all t ∈ R.

Proof: Let F :=
∫
f(t)ei

∑N

j=1
tjϕ(fj)dt and G :=

∫
g(t)ei

∑M

j=1
tjϕ(gj)dt with f, g the

Fourier transform of positive Schwartz test functions. By the Weyl relation:

eiπ(f)eiϕ(g) = eiq(f,g)eiϕ(g)eiπ(f) (6.1)

and

eiπ(f)Ω = e−(1/2)q(f)e−ϕ(f)Ω, (6.2)

we have(
F, eiπ(f)G

)
=
∫
dt
∫
dsf(t)g(s)

(
ei
∑N

j=1
tjϕ(fj)Ω, eiπ(f)ei

∑M

j=1
sjϕ(gj)Ω

)
≥ 0. (6.3)

From Lemma 6.1, (6.3) follows for arbitrary positive F,G in L2(Q). QED

Lemma 6.3 Let f ∈ ⊕dL2(Rd+1). Then we have

J∗
0e

iπ0(f)Jt = e−(1/2)(q0(f)+q([j∗0 ]f))J∗
0e

−ϕ0(f)Jteiπ([j
∗
0 ]f)eϕ([j

∗
t ]f)⌈L2

C(Q),

where A denotes the closed extension of A.
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Proof: Note that

q0([jt]f, g) = q(f, [j∗t ]g), f ∈ ⊕dL2(Rd), g ∈ ⊕dL2(Rd+1).

Let G ∈ L2
C(Q) be such that

G(ϕ(f1), · · · , ϕ(fn)) =
∫
Rn
g(t)eiϕ(

∑n

j=1
tjfj)dt, g ∈ S(Rn).

By (6.1) and (6.2), we have

eiπ0(f)JtGΩ = eiπ0(f)G(ϕ0(jtf1), · · · , ϕ0(jtfn))Ω0

= G(ϕ0(jtf1) + q0([jt]f1, f), · · · , ϕ0(jtfn) + q0([jt]fn, f))e
iπ0(f)Ω0

= e−(1/2)q0(f)e−ϕ0(f)G(ϕ0(jtf1) + q(f1, [j
∗
t ]f), · · · , ϕ0(jtfn) + q(fn, [j

∗
t ]f))Ω0

= e−(1/2)q0(f)e−ϕ0(f)jte
iπ([j∗0 ]f)Ge−iπ([j∗t ]f)Ω

= e−(1/2)(q0(f)+q([j∗t ]f))e−ϕ0(f)Jte
iπ([j∗0 ]f)eϕ([j

∗
0 ]f)G

Since L2
C(Q) is dense, lemma follows.27 QED

Let f ∈ ⊕dL2(Rd+1) and define a bounded operator on L2(Q) by

QM := J∗
0

(
e−ϕ0(f)

)
M
Jt,

where (
e−ϕ0(f)

)
M

:=

{
e−ϕ0(f), e−ϕ0(f) < M,
M, e−ϕ0(f) ≥M.

Lemma 6.4 We see that QM is PI for all t ∈ R.

Proof: Let θ1, θ2 be positive. It is known that (θ1, QMθ2) ≥ 0. Hence it is enough to

prove that

(θ1, QMθ2) ̸= 0. (6.4)

Assume that (θ1, PMθ2) = 0. Since Jt and J0 are PP, we have{
supp

(
e−ϕ0(f)

)
M
Jtθ2

}∩
{suppJ0θ1} = ∅.

Moreover
(
e−ϕ0(f)

)
M

̸= 0 a.e., since
∫
Q0

|ϕ0(f)|2ν0(dϕ0) <∞. Hence

suppJtθ2 ∩ suppJ0θ1 = ∅,
27We feel that eiπ0(f) is a shift operator in the space L2(Q0) of the infinite degrees of freedom.

Intuitively ϕ0(f) ∼ x, π0(f) ∼ p, U ∼ the Fourier transformation, in L2(Rd).
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which deduces that

0 = (J0θ1, Jtθ2) =
(
θ1, e

−tHfθ2
)
. (6.5)

Since e−tHf is PI by Proposition 3.2,(
θ1, e

−tHfθ2
)
> 0.

Thus we have a contradiction with (6.5). Thus (6.4) follows. QED

Lemma 6.5 Let f ∈ ⊕dL2(Rd+1). Then J∗
0e

iπ0(f)Jt is PI for all t ∈ R.

Proof: Let

PM := e−(1/2)(q0(f)+q([j∗0 ]f))J∗
0

(
e−ϕ0(f)

)
M
Jte

iπ([j∗0 ]f)
(
eϕ([j

∗
t ]f)

)
M
.

Note that PM is PI by Lemmas 6.2 and 6.4. For positive F ∈ L2
C(Q),

PMF ≤ e−(1/2)(q0(f)+q([j∗0 ]f))J∗
0e

−ϕ0(f)Jte
iπ([j∗0 ]f)eϕ([j

∗
t ]f)F = J∗

0e
iπ0(f)JtF.

Thus, by a limiting argument, for arbitrary positive F ∈ L2(Q), we have

PMF ≤ J∗
0e

iπ0(f)JtF.

Since PMF > 0, lemma holds. QED

Theorem 6.6 ([110]) We see that U−1e−tHU is PI for all t ≥ 0.

Proof: Let F = F (x, ϕ) and G = G(x, ϕ) be positive in H. Define

DF := {x ∈ Rd|F (x, ·) ̸≡ 0}, DG := {x ∈ Rd|G(x, ·) ̸≡ 0},

and

DFG := {x+ b(·) ∈ W|x+ b(t) ∈ DF , x ∈ DG}.

It is checked that∫
DFG

dP =
∫
DG

dx
∫
C([0,∞);Rd)

1{b∈C(R;Rd)|x+b(t)∈DF }db

=
∫
DG

dx
∫
DF

pt(x− y)dy > 0.
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Thus F (X0, ·) ̸≡ 0 and G(Xt, ·) ̸≡ 0 on DFG. Since J
∗
0e

iαπ0(Kt(X))Jt is PI on L
2(Q),

we have

(
F,U−1e−tHUG

)
=
∫
W
dPe−

∫ t

0
V (Xs)ds

(
F (X0), J

∗
0e

iαπ0(Kt(X))JtG(Xt)
)

≥
∫
DFG

dPe−
∫ t

0
V (Xs)ds

(
F (X0), J

∗
0e

iαπ0(Kt(X))JtG(Xt)
)
> 0.

We get the desired results. QED

Corollary 6.7 Let Ψg be a ground state of H. Then it is unique and UΨg is strictly

positive.

6.2 The particle-localization of ground states

Let Ψg be the ground state of H. In this subsection we shall show an exponential

decay28 of ∥Ψg(x)∥L2(Q). We introduce classes of external potentials V : Let ∆ be the

cube with the unit side centered about the origin in Rd. We say that V ∈ Lp
u(R

d)

[188] if

∥f∥pLp
u(Rd) := sup

x∈Rd

∫
∆
|f(x+ y)|pdy <∞.

We define sets Vbound and Vexp of external potentials by

Vbound : V = V+ − V−, such that V± ≥ 0, V+ ∈ L1
loc(R

d) and V− =
∑J

ȷ=1Wj such

that supzj∈Rd−µj ∥Wj(·, zj)∥Lp
u(R

µj ) <∞ for some µj, j = 1, ..., J .

Vexp : V = Z +W , such that Z ∈ L1
loc(R

d), Z > −∞, and W > 0, W ∈ Lp(Rd) for

some p > max{1, d/2}.

It is immediate that Vexp ∪ Vbound ⊂ V0.

Lemma 6.8 Let V ∈ Vbound. Then

sup
x∈Rd

∥Ψg(x)∥L2(Q) <∞. (6.6)

Proof: Ψg = etEe−tHΨg. Thus we have

Ψg = etEEe−
∫ t

0
V (Xs)dsJtΨg(Xt).

28See for classical cases [46, 52, 56, 61]
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Hence

∥Ψg(x)∥ ≤ etEEe−
∫ t

0
V (Xs)ds∥Ψg(Xt)∥ = etEe−tHp∥Ψg(·)∥. (6.7)

Since V ∈ Vbound,

sup
x∈Rd

∣∣∣e−tHp∥Ψg(·)∥
∣∣∣ (x) <∞

([188, Theorem 25.5, Corollary 25.6]), we get (6.6). QED

Lemma 6.9 Let V ∈ Vbound. Then, for all f ∈ C∞
0 (Rd) and t > 0,∫

Rd
f(x)∥Ψg(x)∥2dx ≤ CetE

∫
Rd
dx|f(x)|Ee−

∫ t

0
V (Xs)ds,

where C := supx∈Rd ∥Ψg(x)∥2 <∞.

Proof: Note that, by Corollary 6.7, UΨg > 0. Since f ∈ L∞(Rd), we see that, by

Lemma 6.8,∫
Rd
f(x)∥Ψg(x)∥2dx = (fUΨg, UΨg)H = (fΨg,Ψg)H = etE(fΨg, e

−tHΨg)

= etE
∫
W
dPe−

∫ t

0
V (Xs)dsf(x)(Ψg(X0),JtΨg(Xt))

≤ etE
∫
Rd
dx|f(x)|E∥Ψg(x)∥∥Ψg(Xt)∥e−

∫ t

0
V (Xs)ds

≤ etE sup
x∈Rd

∥Ψg(x)∥2
∫
Rd
dx|f(x)|Ee−

∫ t

0
V (Xs)ds.

Thus lemma follows from Lemma 6.6. QED

The following lemma is known as Carmona’s estimate:

Lemma 6.10 ([46]) Let V = Z +W ∈ Vexp. Then for all t ≥ 0 and a ≥ 0,

Ee−
∫ t

0
V (Xs)ds ≤ β1e

tβ2∥W∥p

×
{
e−2tZa(x) + β3

((
a/

√
t
)max{0,d−2}

+ 1
)
e−2t inf Z−a2/2t

}1/2

. (6.8)

where Za(x) := inf{Z(y)||y − x| ≤ a} and βj, j = 1, 2, 3, are positive constants.

Theorem 6.11 Let V = Z +W ∈ Vbound ∩Vexp with Z,W in the definition of Vexp.

Suppose that

Z(x) ≥ γ|x|2m

outside a compact set for some positive constants γ and m. Then for each positive

constant δ sufficiently small, there is D(δ) such that

∥Ψg(x)∥ ≤ D(δ) exp
(
−δ|x|m+1

)
. (6.9)
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Proof: In Lemma 6.10, we set a = a(x) = β4|x| and t = t(x) = β5|x|. Then, for

δ < min{2β5(1− β4)
2, β2

4/2β5}, there exits D(δ)′ such that

CetEEe−
∫ t

0
V (Xs)ds ≤ D(δ)′e−δ|x|m+1

for |x| > N with some sufficiently large N (see [46, Proposition 3.1] for details). By

Lemma 6.9 we see that, for all f ∈ C∞
0 (Rd) with f ≥ 0∫

{|x|>N}
f(x)

(
∥Ψg(x)∥2 −D(δ)′e−δ|x|m+1

)
dx < 0.

Thus (6.9) holds for |x| > N . By Lemma 6.8 ∥Ψg(x)∥ is bounded. Thus theorem

follows. QED

Theorem 6.12 Let V = Z +W ∈ Vbound ∩Vexp with Z,W in the definition of Vexp.

Suppose that

lim inf
|x|→∞

Z(x) > E.

Then there exists a positive constant D and δ such that

∥Ψg(x)∥ ≤ De−δ|x|.

Proof: By Lemma 6.10, we prove theorem in a similar way as that of Theorem 6.11

and [46, Proposition 4.1]. Hence we omit it. QED

From Theorems 6.11 and 6.12, it follows that, for V in Theorems 6.11 or/and

6.12,

∥|x|kΨg∥ <∞

for all k ∈ N. The next corollary tells us a more strong statement.

Corollary 6.13 Let V be as in Theorems 6.11 or/and 6.12. Then

∥|x|kΨg∥ ≤ sup
x∈Rd

(
E|x|2ke−2

∫ t

0
V (Xs)dse2tE

)1/2

∥Ψg∥

for all k ≥ 0 and t ≥ 0.

Proof: By (6.7) we see that

∥|x|kΨg∥2 =
∫
Rd
dx|x|2k∥Ψg(x)∥2 ≤

∫
Rd
dx|x|2k

(
etEEe−

∫ t

0
V (Xs)ds∥Ψg(Xt)∥

)2

≤
∫
Rd
dx|x|2k

(
Ee−2

∫ t

0
V (Xs)dse2tE

)(
E∥Ψg(Xt)∥2

)
.

Thus corollary follows. QED
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6.3 The existence of ground states without infrared cutoffs

In this subsection, we take the Fock-Cook representation. The essential idea of a

proof of the existence of the ground state of H is due to J.Glimm and A.Jaffe [84]

and we learned it by A.Arai and M.Hirokawa [25]. We assume that 29

−∆ ≤ aHp + b

with some positive constants a and b and

Σ− Ep > 0, (positive spectral gap),

where Σ := σess(Hp). Moreover let λ̂/
√
ω, λ̂,

√
ωλ̂, ωλ̂ ∈ L2(Rd) and |α| ≪ 1.

Using fundamental estimates (2.5), (2.6) and (2.7), we have

(1− |α|A− |α|B)Hd+|α|AEp−|α|C ≤ H ≤ (1 + |α|A+ |α|B)Hd−|α|AEp+|α|C,
(6.10)

where A,B,C are positive constants. Thus we get

|E − Ep| ≤ |α|D,

where D := |α|BEp + |α|C. Let

Γa := {k = (k1, ..., kd) ∈ Rd|kµ = 2πnµ/a, nµ ∈ Z, µ = 1, ..., d},

Γ(l, a) := [l1, l1 + 2π/a)× · · · [ld, ld + 2π/a).

By the map

l2(Γa) ∋ {al}l∈Γa → (a/2π)
∑
l∈Γa

al1Γ(l,a)(·) ∈ L2(Rd),

we identify l2(Γa) with a subspace of L2(Rd). Define

Fa
EM := FEM(L2(Γa)) := F(l2(Γa))⊗ · · · ⊗ F(l2(Γa))︸ ︷︷ ︸

d

⊂ FEM.

Set

Hm,a
b := dΓb(ω(ka) +m)

29Let A and B be self-adjoint operators in a Hilbert spaceK. We say that A ≤ B ifD(B) ⊂ D(A)
and (f,Af) ≤ (f,Bf) for all f ∈ D(B).
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and

Aa
µ :=

1√
2

ar†
∑

l∈Γa

1Γ(l,a)λ̂(−l)e−ilxerµ(l)

+ ar

∑
l∈Γa

1Γ(l,a)λ̂(l)e
ilxerµ(l)

 ,
where kaµ := kaµ(kµ) := 2πn/a if kµ ∈ [2πn/a, 2π(n+ 1)/a). Note that

σ(Hm,a
b ) = σdisc(H

m,a
b ).

Thus a lattice Hamiltonian with an artificial mass m is defined by

Hm,a :=
1

2
(p− αAa)2 + V +Hm,a

b .

Lemma 6.14 Hm,a is reduced by Ha := L2(Rd)⊗Fa
EM.

Proof: See [113] QED

Lemma 6.15 Let Em,a := inf σ(Hm,a). Then

Hm,a⌈H⊥
a
≥ m+ Em,a.

Proof: For instance we set l2 := l2(Γa). Since L
2(Rd) = l2 ⊕ l⊥2 , it is seen that

FEM
∼= Fa

EM ⊗FEM(l
⊥
2 ). (6.11)

Let P be the vacuum projection of FEM(l
⊥
2 ). Then

FEM
∼= Fa

EM ⊕
(
Fa

EM ⊗ P⊥FEM(l
⊥
2 )
)
:= Fa

EM ⊕Fa
EM

⊥. (6.12)

Under identification (6.11) we have

Hm,a
∼= Hm,a⌈Ha⊗1+ 1⊗Hm,a

b .

Then we obtain that

Hm,a
∼= (Hm,a⌈Ha⊗P )⊕

(
Hm,a⌈Ha⊗P⊥

)
+ (1⊗Hm,a

b P )⊕
(
1⊗Hm,a

b P⊥
)

∼= (Hm,a⌈Ha⊗P )⊕
(
Hm,a⌈Ha⊗P⊥ + 1⊗Hm,a

b P⊥
)

∼= (Hm,a⌈Ha)⊕ (Hm,a⌈Ha⊗1+ 1⊗Hm,a
b )P⊥.

Hence

Hm,a⌈H⊥
a

∼= (Hm,a⌈Ha⊗1+ 1⊗Hm,a
b )P⊥ ≥ Em,a +m.

Thus we get the desired results. QED
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Lemma 6.16 Let α and m be such that

0 < m < (1− |α|A− |α|B)(Σ− Ep)− 2|α|D.

Then, for sufficiently large a > 0,

[Em,a, Em,a +m) ⊂ σdisc(Hm,a).

Proof: For sufficiently large a, (6.10) holds true with ω, λ̂ replaced by ωa
m and

(a/2π)
∑

l∈Γa
λ̂(l)1Γ(l,a)(·). Let Ep < Σ′ < Σ. Let l := 1 − |α|A − |α|B and

Hp := Hp − Ep. We denote by ET
A the spectral projection of an operator T to

a Borel set A ⊂ R. We have, by (6.10)

Hm,a⌈Ha≥ lHm,a
b + lHp + Ep − |α|D.

Hence

Hm,a⌈Ha−m− Em,a ≥ lHp + {lHm,a
b − (m+ Em,a − Ep + |α|D)}

≥ l(Σ′−Ep)E
Hp

[Σ′−Ep,∞)+(E
Hp

[0,Σ′−Ep)
⊕E

Hp

[Σ′−Ep,∞)){lH
m,a
b − (m+Em,a−Ep+ |α|D)}

= E
Hp

[0,Σ′−Ep)
⊗ {lHm,a

b − (m+ Em,a − Ep + |α|D)}+ E
Hp

[Σ′−Ep,∞) ⊗ lHm,a
b

+{l(Σ′ − Ep) + Ep − |α|D −m− Em,a}EHp

[Σ′−Ep,∞)

≥ E
Hp

[0,Σ′−Ep)
⊗ E

Hm,a
b

[0,(|α|D+m+Em,a−Ep)/l)
. (6.13)

Since the dimension of the range of the right-hand side of (6.13) is finite, that of

E
Hm,a⌈Ha

[0,m+Em,a)
is also finite. Thus lemma follows. QED

We define Hm by H with ω replaced by ωm := ω +m.

Lemma 6.17 Let α and m be as in Lemma 6.16. Then Hm has a ground state.

Proof: Let Em := inf σ(Hm). Let

Ua := exp (ixµ ⊗ dΓb(ka,µ)) , U := exp (ixµ ⊗ dΓb(kµ)) .

Then we have

UaHm,aU
−1
a =

1

2

(
p⊗ 1− 1⊗ dΓb(k⃗a)− α1⊗ Aa(0)

)2
+ V ⊗ 1+ 1⊗Hm,a

b .
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It is a direct calculation to show that Ua(Hm,a − i)−1U−1
a uniformly converges to

U(Hm − i)−1U−1 as a → ∞. Hence by Lemma 6.16, we get that [Em, Em +m) ⊂
σdisc(Hm). Thus lemma follows. QED

Let Ψ(m)
g be the ground state of Hm. We fix r = 1, ..., d− 1 and f ∈ L2(Rd) and

set

gµ :=
1√
2

˜̂
λerµe

−ikx, Gµ := (f, gµ), µ = 1, ..., d.

Let F be a smooth function on Rd, and l a constant. We have on some domain

[ar(f) + lF,H]

= −ar(ωmf) + iαGµ (∂µ − iαAµ) + l
{
(1/2)

(
∂2µF

)
+ (∂µF ) (∂µ − iαAµ)

}
.

To neglect both of GµAµ and Gµ∂µ, we define θ := −iαx·G. We have

[ar(f) + θ,H] = −ar(ωmf)− iα
{
(1/2)∂2µ(x·G) + xν(∂µGν) (∂µ − (iα)Aµ)

}
.

Since ∂2µ (x·G) = 2 (∂µGµ) + xν(∂
2
µGν), finally we have

[ar(f) + θ,H] = −ar(ωmf) + (−iα)ϑ, (6.14)

where

ϑ := (∂µGµ) + (1/2)xν(∂
2
µGν) + xν(∂µGν)(∂µ − iαAµ).

Lemma 6.18 ([34]) Let V ∈ Vexp. Then there exists a constant C independent of

m such that

∥N1/2
b Ψ(m)

g ∥2 ≤ |α|C
(
∥|x|2Ψ(m)

g ∥2 + ∥|x|Ψ(m)
g ∥2 + ∥Ψ(m)

g ∥2
)
.

Remark 6.19 In this lemma we do not assume the infrared cutoff condition: λ̂/ω ∈
L2(Rd).

Proof: This proof is due to V.Bach, J.Fröhlich and I.E.Sigal [34]. Since

((ar(f) + θ)Ψ(m)
g , (Hm − E)(ar(f) + θ)Ψ(m)

g ) ≥ 0,

we see that

((ar(f) + θ)Ψ(m)
g , [Hm, a

r(f) + θ]Ψ(m)
g ) ≥ 0.
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Thus from (6.14) it follows that

(Ψ(m)
g , ar†(ωmf)a

r(f)Ψ(m)
g ) ≤ ((ar(f)+θ)Ψ(m)

g , (−iα)ϑΨ(m)
g )−(θΨ(m)

g , ar(ωmf)Ψ
(m)
g ).

(6.15)

Substituting fl/
√
ωm for f in (6.15) with {fl}∞l=1 CONS of L2(Rd) and summing up

l from one to infinity, we have

(Ψ(m)
g , NΨ(m)

g ) ≤ (−iα)
{(
ar(ikνgν/ω)Ψ

(m)
g ,Ψ(m)

g

)
+(1/2)

(
ar(−kµkµgν/ω)Ψ(m)

g , xνΨ
(m)
g

)
+
(
ar(ikµgν/ω)Ψ

(m)
g , xν(∂µ − iαAµ)Ψ

(m)
g

)}
−α2

{
(gν , ikµgµ/ωm) (xνΨ

(m)
g ,Ψ(m)

g ) + (1/2)
(
gν ,−k2µgν′/ωm

)
(xνΨ

(m)
g , xν′Ψ

(m)
g )

+(gν , ikµgν′/ωm)(xνΨ
(m)
g , xν′(∂µ − iαAµ)Ψ

(m)
g )

}
(6.16)

It is established ([113]) that

∥pµΨ
(m)
g ∥ ≤ C ′∥Ψ(m)

g ∥, µ = 1, ..., d,

with some constant C ′. Note that

∥kµkνgγ/ωm∥ ≤ ∥ωλ̂∥, ∥kµgν/ωm∥ ≤ ∥λ̂∥, µ, ν, γ = 1, ..., d.

By inequalities (2.8) and (2.9), there exists constants C ′′ and C ′′′ independent of

∥λ̂/ω∥ and m such that

∥N1/2
b Ψ(m)

g ∥2 ≤ |α|C ′′∥N1/2Ψ(m)
g ∥+ |α|C ′′′

(
∥|x|2Ψ(m)

g ∥2 + ∥|x|Ψ(m)
g ∥2 + ∥Ψ(m)

g ∥2
)
.

Thus lemma follows. QED

Lemma 6.20 Let Q := E
Hp

[Ep+ϵ,∞) ⊗ EHb

{0} with ϵ < Σ. Then there exists a constant

D independent of m such that

∥QΨ(m)
g ∥ ≤ |α|D∥Ψ(m)

g ∥/(Σ− Ep).

Proof: See [109, 113]. QED

Theorem 6.21 Suppose that V is in Theorems 6.11 and/or 6.12, and |α| ≪ 1.

Then the ground states of H exists.
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Proof: Let Ψ(m)
g be the normalized ground state of Hm. There exists a subsequence

m′ such that Ψ(m′)
g weakly converges to a vector Ψ as m′ → ∞. If Ψ ̸= 0, Ψ is the

ground state. Let P := E
Hp

[Ep,Ep+ϵ) ⊗ EHb

{0}. Since P +Q ≥ 1−Nb, we have

(Ψ(m′)
g , PΨ(m′)

g ) ≥ ∥Ψ(m′)
g ∥2 − ∥QΨ(m′)

g ∥2 − ∥N1/2
b Ψ(m′)

g ∥2.

From Corollary 6.13 it follows that

∥|x|2Ψ(m′)
g ∥+ ∥|x|Ψ(m′)

g ∥ ≤ C∥Ψ(m′)
g ∥,

where C is independent of m. Thus there exists C ′ independent of m such that

∥N1/2
b Ψ(m′)

g ∥ ≤ C ′∥Ψ(m′)
g ∥.

Since P is a finite rank operator, taking m′ → ∞, we get

(Ψ, PΨ) ≥ 1− |α|C ′ − α2 (D/(Σ− Ep))
2 > 0.

Thus theorem follows. QED

Corollary 6.22 We assume the same condition as that of Theorem 6.21. Then

s− lim
α→0

Ψg = ϕp ⊗ Ω,

where ϕp is the ground state of Hp.

Proof: It follows from the uniqueness of the ground state and Theorem 6.21. QED

6.4 Ground state energy

Let f ∈ L2(Rd) be positive. Then, by Corollary 6.7,

(f ⊗ Ω,Ψg) = (f ⊗ Ω, UΨg) ̸= 0. (6.17)

Theorem 6.23 ([110]) Let λ̂/
√
ω, λ̂,

√
ωλ̂, ωλ̂ ∈ L2(Rd) . We assume that there

exists the ground state of H. Then

E = E(α2) = − lim
t→∞

1

t
log

∫
W
dPe−

∫ t

0
V (Xs)dsf(X0)f(Xt)e

−(α2/2)q0(Kt(X)). (6.18)

In particular E(α2) is a continuous, monotonously increasing, concave function

in α2.
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Proof: From (6.17) it follows that

E(α2) := − lim
t→∞

1

t
log

(
f ⊗ Ω, e−tHf ⊗ Ω

)
.

By Theorem 4.1, (6.18) follows. By a Hölder inequality we see that E(α2) is concave,

which implies that E(α2) is continuous in α2 > 0. Since H converges to Hd as

α → ∞ uniformly in the sense of resolvent, limα2→0E(α
2) = E(0). Hence E(α2) is

continuous in α2 ≥ 0. Concave continuous function E(α2) can be represented as

E(α2) = E(0) +
∫ α2

0
ϕ(t)dt

with some increasing function ϕ(t). Moreover we have by a diamagnetic inequality,

ϕ(t) ≥ 0. Thus E(α2) is monotonously increasing.30 QED

6.5 Degenerate ground states with singular potentials

In this subsection we give a simple example of external potentials for which H

has degenerate ground states. For classical case see [65, 66, 69]. Assume that

λ̂/
√
ω, λ̂,

√
ωλ̂, ωλ̂ ∈ L2(Rd) . Let Dj, j = 1, ..., J , be open sets such that

J∪
j=1

Dj = Rd,
J∩

j=1

Dj = ∅,

and the Lebesgue measure of the boundary S := ∂
(∪J

j=1Dj

)
is zero. Let V be such

that V+ ∈ L1
loc(R

d \S), D(∆)∩D(V+) is dense in Rd, and V− is infinitesimally small

with respect to the Laplacian in the sense of form. We assume that∫ t

0
V+(Xs)ds = 0, (6.19)

if X0 ∈ Di and Xt ∈ Dj, i ̸= j. Moreover we suppose that Hpj := Hp⌈L2(Dj) is

essentially self-adjoint on C∞
0 (Dj) and

−∆ ≤ aHpj + b, j = 1, ..., J,

on L2(Dj) with some constants a and b. Finally we make assumption:

Epj := inf σ(Hpj) ∈ σdisc(Hpj), σess(Hpj)− Epj > 0.

30For the Nelson model and a spin-boson model, we can get the similar expression of the ground
state energy in terms of probability measures. For a spin-boson model M.Hirokawa [100] directly
expands its pair potential term and get a bound of its ground state energy.
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Lemma 6.24 Let Pj be the projection of L2(Rd) to L2(Dj). Then

e−tHPj = Pje
−tH , t ≥ 0.

Proof: Let F,G ∈ C∞
0 (Dj)⊗̂L2

0(Q). We extend functional integral representation in

Theorem 4.1 to external potentials such as stated above. We see that, by (6.19),

(
F, e−tHPjG

)
H
=
∫
Wj

dPe−
∫ t

0
V (Xs)ds

(
J0F (X0), e

iαϕ0(Kt(X))Jt(PjG)(Xt)
)

∫
Wj

dPe−
∫ t

0
V (Xs)ds

(
J0 (PjF ) (X0), e

iαϕ0(Kt(X))JtG(Xt)
)
=
(
PjF, e

−tHG
)
H
,

where Wj is the set of paths q(·) such that q(s) ∈ Dj for 0 ≤ s ≤ t. Thus lemma

follows. QED

Lemma 6.25 Let |α| be sufficiently small. Then Hj is reduced by L2(Dj)⊗ L2(Q)

and

Hj := H⌈L2(Dj)⊗L2(Q)

is essentially self-adjoint on C∞
0 (Dj)⊗̂[L2

0(Q) ∩D(Hf)]. Moreover the ground state

of Hj exits and it is unique.

Proof: By Lemma 6.24, Hj is reduced by L2(Dj) ⊗ L2(Q). Since Hpj is essentially

self-adjoint on C∞
0 (Dj), the Kato-Rellich theorem yields the essential self-adjointness

of Hj. In the similar way as the proofs of Theorems 6.6 and 6.21, one can prove the

existence and uniqueness of the ground state of Hj. QED

Lemma 6.26 (A.Arai [15]) We have σess(H) = [E,∞).

Let m(a) denote the multiplicity of a point spectrum a of H.

Theorem 6.27 ([115]) Set Ej = inf σHj, j = 1, ..., J . Then Ej is an eigenvalue

of H and

m(Ej) ≥ #{Ek|Ek = Ej, k = 1, ..., J}.

Moreover

lim
α→0

Ej = inf σ(Hpj).
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Proof: Let Hj := L2(Dj) ⊗ L2(Q) and Ψj be the unique ground state of Hj. Since

H ∼= ⊕J
j=1Hj on H ∼= ⊕J

j=1Hj, vectors ⊕J
j=1δijΨj are eigenvectors with eigenvalues

Ej. Thus theorem follows. QED

Corollary 6.28 Define E := mink Ek = inf σ(H). Let

H := H − E −
J∑

j=1

(Ej − E)1Dj
.

Then H has J-fold ground states.

A typical example of {Dj} and V is as follows: let d = 3, J = 3, and

D1 := {x ∈ R3|x1 > 0, x2 > 0, x3 > 0},

D2 := {x ∈ R3|x1 < 0, x2 < 0, x3 < 0},

D3 := R3 \D1 ∪D2, D := ∪3
j=1Dj.

Define

Vν(x) :=
ν

|x− ∂D|3
+ |x|2 +m1D1 + n1D2 ,

where ν, m and n are positive constants. Taking sufficiently large ν, we see that

−∆/2 + Vν⌈L2(Dj) is essentially self-adjoint on C∞
0 (Dj) ([136]) and satisfies the as-

sumptions stated in the beginning of this subsection (see [115]). Let

H(ν) := Hp +Hf + Vν .

From the functional integral representation it follows that

lim
ν→0

(
F, e−tH(ν)G

)
=
∫
Wj

dPe−
∫ t

0
V0(Xs)ds(J0F (X0), e

iαϕ0(K(X))JtG(Xt))

̸=
∫
W
dPe−

∫ t

0
V0(Xs)ds(J0F (X0), e

iαϕ0(K(X))JtG(Xt)) =
(
F, e−tH(0)G

)
.

Namely

s− lim
ν→0

e−tH(ν) ̸= e−tH(0).

This phenomena carries an interesting consequence that once turned on the effects

of the singular potential cannot be completely turned off. See [144, 65, 66, 69, 187,

the Klauder phenomena].
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6.6 The Kato-Mugibayashi-H.Krohn type scattering theory

For instance we let λ̂/
√
ω, λ̂,

√
ωλ̂, ωλ̂ ∈ L2(Rd) ,

V (x) := x2, |α| ≪ 1,

in this subsection. Let

ar♯t (f) := eitHe−itH0ar♯(f)eitH0e−itH , r = 1, ..., d− 1.

We want to consider the strong limit of ar♯t as t → ±∞. We will focus on s −
limt→∞ ar†t in what follows. The other statements are similar. From the definition

of ar†t and fundamental limiting arguments 31, we have

ar†t (f)Ψ = ar†T (f)Ψ− i
∫ t

T
eisHαKr

µ(s, x, f) (pµ − Aµ(x)) e
−isHΨds, (6.20)

where

Kr
µ(s, x, f) := [Aµ(λ̂, x), a

r†(e−isωf)] =

 λ̂erµe−ikx

√
2

, e−isωf

 .
Let E be as follows: f ∈ E if

lim
t→∞

t
d−1
2 sup

x∈Rd

∣∣∣∣∫
Rd
f(k)h(k)eikx−itω(k)dk

∣∣∣∣ <∞ for all h ∈ C∞
0 (Rd).

Lemma 6.29 Let λ̂, ∂µλ̂ ∈ E and f ∈ C∞
0 (Rd). Then s− limt→∞ ar♯t (f)Ψ exits for

Ψ ∈ D(H).

Proof: By virtue of (6.20) it is enough to prove that∥∥∥Kr
µ(t, x, f) (pµ −Aµ(x)) e

−itHΨ
∥∥∥
H
∈ L1([T,∞), dt). (6.21)

Using

eitω(k) =
ω(k)

kµ

1

it

∂

∂kµ
eitω(k), k ∈ Rd \ {0},

and integrating by parts, one sees that that

L.H.S. (6.21) ≤ C1t
−(d+1)/2

31Formally it follows that

ar♯t Ψ = ar♯T (f)Ψ + i

∫ t

T

eisH [−αpA(x) + α2A2(x), ar†(e−isωf)]e−isHΨds.
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×
(
∥xµpµe

−itHΨ∥+ ∥pµe
−itHΨ∥+ ∥xµAµ(x)e

−itHΨ∥+ ∥Aµ(x)e
−itHΨ∥

)
(6.22)

with some constant C1. Since V (x) = x2, we have

∥xµpµe
−itHΨ∥ ≤ C2 (∥HΨ∥+ ∥Ψ∥)

with some constant C2. The other terms in (6.22) are estimated similarly and we

have, with some constant C3,

L.H.S. (6.21) ≤ C3t
−(d+1)/2(∥HΨ∥+ ∥Ψ∥) ∈ L1([T,∞), dt).

QED

We define, for Ψ ∈ D(H),

s− lim
t→±

ar♯t (f)Ψ := ar♯±(f)Ψ.

It is immediately seen that

∥ar♯±(f)Ψ∥ ≤ C4(∥f/
√
ω∥+ ∥f∥)(∥|H|1/2Ψ∥+ ∥Ψ∥)

with some constant C4. Hence we extend ar♯±(f) to f, f/
√
ω ∈ L2(Rd). The closure

of ar♯±(f) is written as the same symbol. Then D(ar♯±(f)) ⊃ D(|H|1/2). Moreover we

have

[ar±(f), a
s†
± (g)] = δrs(f̄ , g), [ar♯±(f), a

s♯(g)±] = 0,

and

eitHar†± (f)e
−itH = ar†± (e

itωf),

eitHar±(f)e
−itH = ar±(e

−itωf) (6.23)

on D(H). Let Ψg be the ground state of H. Then

ar±(f)Ψg = 0, for all f, f/
√
ω ∈ L2(Rd).

We define an asymptotic Hilbert space H±asy by

H±asy := {ar1†± (f1) · · · arn†± (fn)Ψg,Ψg|fj ∈ C∞
0 (Rd), rj = 1, ..., d, j = 1, ..., n, n ∈ N}.

Let W± : H±asy → FEM be defined by

W±a
r1†
± (f1) · · · arn†± (fn)Ψg := ar1†(f1) · · · arn†(fn)Ωb,

W±Ψg := Ωb.

Thus W± uniquely extends to a unitary operator of H±asy to FEM.
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Theorem 6.30 We assume that the ground state of H exists. Then we have

σac(H) = [E,∞).

Proof: It is seen that eitH is reduced by H±asy. Then H =
(
H⌈H±asy

)
⊕
(
H⌈H⊥

±asy

)
under identification H ∼= H±asy⊕H⊥

±asy. By the definition of W and (6.23), we have

W±
(
eitH⌈H±asy

)
W ∗

± = eit(Hf+E).

Hence

H ∼= (Hf + E)⊕H⌈H⊥
±asy

under identification H ∼= FEM ⊕ H⊥
±asy. Since σac(Hf + E) = [E,∞), theorem

follows. QED

Remark 6.31 A.Arai [19] proved independently of the existence of the ground states

of H that σess(H) = [E,∞) under some weaker conditions.

7 Gibbs measures

In this section we assume that V ∈ V0 and λ̂, ωλ̂ ∈ L2(Rd) . Related work of this

section are V.Betz, F.Hiroshima, J.Lőrinczi, R.Minlos, H.Osada, H.Spohn [39, 38,

111, 116, 114, 158, 160, 168, 195].

7.1 The existence of an infinite time Gibbs measure

For positive f ∈ L2(Rd), we define a finite-time Gibbs measure on the measure space

WT := C([−T,∞))×Rd by

dW f
2T :=

1

Z2T

f(q−T )f(qT )e
∫ T

−T
V (qs)dse−(α2/2)q0(Kt(X)),

where qs := x + b(T + s), Z2T is normalizing constant such as
∫
dW f

2T = 1. Let

−T ≤ t1 ≥ · · · tm ≤ T . Set

µt1,...,tm
A1,...,Am

:=
∫
WT

1A1(qt1) · · ·1Am(qtm)dW
f
2T .

From Theorem 4.1 it follows that

µt1,...,tm
A1,...,Am

=

(
f ⊗ Ω, e−(T+t1)H1A1e

−(t2−t1)H · · · e−(tm−tm−1)H1Ame
−(T−tm)Hf ⊗ Ω

)
(f ⊗ Ω, e−2THf ⊗ Ω)

.
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Thus µt1,...,tm
A1,...,Am

is consistent. By Kolmogorov’s construction, there exists a probabil-

ity measure (ΞT ,B(ΞT ), µT ) such that

µt1,...,tm
A1,...,Am

=
∫
ΞT

1A1(qt1) · · ·1Am(qtm)µT (dq),

where ΞT :=
(
Rd
)[−T,T ]

and B(·) denotes the smallest σ-field containing cylinder

sets. Let ΠT be the projection of Ξ∞ to ΞT . We define

µex
T (A) := µT (ΠT (A)), A ∈ B(Ξ∞).

We shall prove that

• there exists a continuous version of (Ξ∞,B(Ξ∞), µex
T );

• there exists a subsequence T ′ such that µex
T ′ weakly converges to a measure µ

on (Ξ∞,B(Ξ∞)).

Note that there exists a constant Cn such that

E|b(t)− b(s)|2n = Cn|t− s|n, n ≥ 0.

Lemma 7.1 Let H = H − E. Then we have32

∣∣∣∣∫
Ξ∞

|q(t)− q(s)|2nµex
T (dq)

∣∣∣∣ ≤ |t− s|nCne
|t−s|(E−inf V )

(
∥f∥

∥e−THf ⊗ Ω∥

)2

.

Proof: Let qa(s) and Xa
s are truncated paths defined by

qaν(s) :=


qν(s), |qν(s)| ≤ a,
−a, qν(s) < −a,
a, qν(s) > a,

Xa
ν,s :=


Xν,s, |Xν,s| ≤ a,
−a, Xν,s < −a,
a, Xν,s > a.

Moreover we define

haν(x) :=


xν , |xν | ≤ a,
−a, xν < −a,
a, xν > a.

32Note that E − inf V ≥ E − inf σ(Hp) ≥ 0.
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We put

ψ := e−(T+t)H(f ⊗ Ω)/
∥∥∥e−THf ⊗ Ω

∥∥∥ , ϕ := e−(T−s)H(f ⊗ Ω)/
∥∥∥e−THf ⊗ Ω

∥∥∥ .
Then we have∫

Ξ∞
|qa(s)− qa(t)|2nµex

T (dq) =
2n∑
k=0

2nCk(−1)k
∫
Ξ∞

qaν(s)
kqaν(t)

2n−kµex
T (dq)

=
2n∑
k=0

2nCk(−1)k

(
f ⊗ Ω, e−(T+t)H(haν)

ke−(t−s)H(haν)
2n−ke−(T−s)Hf ⊗ Ω

)
(
f ⊗ Ω, e−2THf ⊗ Ω

)
=

2n∑
k=0

2nCk(−1)k
(
ϕ, (haν)

ke−t(t−s)(haν)
2n−kψ

)

=
2n∑
k=0

2nCk(−1)k
∫
W
dP (Xa

ν,0)
k(Xa

ν,t−s)
2n−ke−

∫ t−s

0
V (Xs′ )ds

′
(ϕ(X0),Jt−sψ(Xt−s)) e

|t−s|E

≤
∫
W
dP |b(0)− b(t− s)|2n ∥ϕ(X0)∥ ∥ψ(Xt−s)∥ e|t−s|(E−inf V )

≤ Cn|t− s|n ∥ϕ∥
(∫

W
dP ∥ψ(Xt−s)∥2

)1/2

e|t−s|(E−inf V )

≤ Cn|t− s|n ∥ϕ∥ ∥ψ∥ e|t−s|(E−inf V ).

Note that

∥ϕ∥ ≤ ∥f∥ /
∥∥∥e−THf ⊗ Ω

∥∥∥ , ∥ψ∥ ≤ ∥f∥ /
∥∥∥e−THf ⊗ Ω

∥∥∥ .
Since |qaν(t) − qaν(s)| ↑ |qν(t) − qν(s)| as a ↑ ∞, lemma follows by the Lebesgue

monotone convergence theorem. QED

By this lemma there exists a continuous version of (Ξ∞,B(Ξ∞), µex
T ), i.e., there

exists Ξcont ∈ B(Ξ∞) such that µex
T (Ξcont) = 1 and Ξcont ∋ q(·) is continuous. Define

a probability measure µT on (C(R;Rd),B(C(R;Rd))) by

µT (A) := µex
T (A′),

where A′ ∈ B(Ξ∞) such that A′ ∩ C(R;Rd) = A. It is immediate to see that µT is

well defined. Thus we had the following lemma:

Lemma 7.2 We see that (C(R;Rd), µT ) and (W,dW f
2T ) have the same finite di-

mensional distributions.
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Theorem 7.3 We assume that there exists the ground state of H. Then there

exists a subsequence T ′ such that µT ′ weakly converges to a probability measure µ on

(C(R;Rd),B(C(R;Rd))) as T ′ → ∞.

Proof: Let Π := {µT ′}T>0. From Lemma 7.1 it follows that

∫
C(R;Rd)

|q(t)− q(s)|2nµT (dq) ≤ |t− s|2nCne
|t−s|(E−inf V )

sup
T>0

∥f∥∥∥∥e−THf ⊗ Ω
∥∥∥
2

.

Since

lim
T→∞

∥∥∥e−THf ⊗ Ω
∥∥∥ = ∥Ψg∥ ̸= 0,

there exists a positive constant Dn independent of T such that∫
C(R;Rd)

|q(t)− q(s)|2nµT (dq) ≤ |t− s|2nDn.

Thus Π is tight ([138]). Hence Π is precompact by [172], i.e., there exists a subse-

quence T ′ such that µT ′ weakly converges to a probability measure µ. QED

Remark 7.4 In Theorem 7.3 we do not explicitly assume |α| ≪ 1.

7.2 Expectation values and a boson-localization

In this subsection we assume that there exists the ground state of H. Let the

expectation value of T with respect to the normalized ground state Ψg be defined

by

⟨T ⟩ := (Ψg, TΨg)H.

Corollary 7.5 Let hj ∈ L∞(Rd), j = 1, ...,m. Then

⟨h1e−(t2−t1)Hh2 · · ·hm−1e
−(tm−tm−1)Hhm⟩ =

∫
C(R;Rd)

h1(q(t1)) · · ·hm(q(tm))µ(dq).

(7.1)

Proof: We directly see that

L.H.S.(7.1) = lim
T→∞

(f ⊗ Ω, e−(T+t1)Hh1e
−(t2−t1)Hh2 · · ·hme−(T−tm)Hf ⊗ Ω)

(f ⊗ Ω, e−2THf ⊗ Ω)

= lim
T→∞

∫
C(R;Rd)

h1(q(t1)) · · ·hm(q(tm))µT (dq) = R.H.S.(7.1)

Thus corollary follows. QED
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Corollary 7.6 We have

lim
|t−s|→∞

∫
C(R;Rd)

q(t)q(s)µ(dq) = ⟨x⟩2.

Proof: By a limiting argument we have∫
C(R;Rd)

q(t)q(s)µ(dq) = ⟨xe−|t−s|Hx⟩.

Thus corollary follows. QED

Corollary 7.7 Let V be as that of Theorem 6.11. Then, for sufficiently small δ > 0,∫
C(R;Rd)

eδ|q(t)|
m+1

µ(dq) = ⟨eδ|x|m+1⟩ <∞. (7.2)

Proof: By Corollary 7.5, we have

⟨eδ|x|m+1
⌈
n
⟩ =

∫
C(R;Rd)

eδ|q(t)|
m+1

⌈
n
µ(dq),

where f(x)⌈n:= f(x) if f(x) ≤ n, otherwise f(x)⌈n = n. Since eδ|·|
m+1 ∥Ψg(·)∥ ∈

L2(Rd), the Lebesgue monotone convergence theorem yields (7.2). QED

Corollary 7.8 Let V be as that of Theorem 6.12. Then∫
C(R;Rd)

eδ|q(t)|µ(dq) = ⟨eδ|x|⟩ <∞. (7.3)

Proof: The proof is similar to that of Corollary 7.7. QED

By means of (4.8) we have(
Ψg, e

−βNΨg

)
= lim

T→∞

∫
C(R;Rd)

e(α
2/2)FT (q)µT (dq),

where

FT (q) := 2q1

(
⊕d

µ=1

∫ 0

−T
ξ0λ(· − qs)dqµ(s),⊕d

µ=1

∫ T

0
ξβλ(· − qs)dqµ(s)

)
.

Since N = dΓ(1) (i.e., h(k) = 1), formally we can write down FT (q) as

FT (q) = (1− e−β)
∫ 0

−T
dqµ(s)

∫ T

0
dqν(s

′)
∫
Rd
dµν(k)e

−|s−s′|ω(k)eik(qs−qs′ )|λ̂(k)|2dk.

(See Remark 4.5). Our conjecture is as follows:
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Conjecture 7.9 There exist a function F∞ on C(R;Rd) and a > 0 such that∫
C(R;Rd)

ezF∞(q)µ(dq)

is analytic in ℜz < a and(
Ψg, e

−βNΨg

)
=
∫
C(R;Rd)

e(α
2/2)(1−e−β)F∞(q)µ(dq)

for α ∈ R and β ∈ C such that ℜ(α2/2)(1− e−β) < a.

8 The dipole approximation

Let λ̂ be sufficiently smooth and rotation invariant 33, and V also sufficiently smooth

for simplicity. Let M be the mass of the electron in this section. The Pauli-Fierz

Hamiltonian with the dipole approximation is defined by A(λ̂, x) → A(0) := A(λ̂, 0),

i.e.,

Hdip :=
1

2M
(p⊗ 1− α1⊗ A(0))2 + V ⊗ 1+ 1⊗Hf .

The Pauli-Fierz Hamiltonian with the dipole approximation is solvable [7]-[16],

namely, we can concretely construct a Bogoliubov transformation ([36]) T [8, 9,

10, 11] which diagonalize Hdip.

Let K be a Hilbert space. We say that a pair of bounded operators {A,B} is of

symplectic group Sym(K) if the following operator equation holds on K ⊕K: 34

(
A B
B A

)∗ (
1 0
0 −1

)(
A B
B A

)
=

(
A B
B A

)(
1 0
0 −1

)(
A B
B A

)∗

=

(
1 0
0 −1

)
,

where Tf := Tf .

Proposition 8.1 (A.Arai [8, 9, 10, 11]) There exists a pair of bounded operators

{W+,W−} ∈ Sym(⊕d−1L2(Rd)) and a vector L ∈ ⊕d−1L2(Rd) such that W+ is a

Hilbert-Schmidt operator on ⊕d−1L2(Rd), and

Bs†(f) := ar†(W+rsf) + ar(W−rsf)− αpν(Lν , f),

Bs(f) := ar†(W+rsf) + ar(W−rsf)− αpν(Lν , f),

33λ̂(k) = λ̂(|k|).
34See e.g.,[146, 147, 148].
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satisfies

[Br(f), B†s(g)] = δrs(f̄ , g), [B♯r(f), B♯s(g)] = 0,

and

eitHdipBs†(f)e−itHdip = Bs†(eitωf),

eitHdipBs(f)e−itHdip = Bs†(e−itωf).

Thus by E.A.Berezin [37] we can concretely construct a Bogoliubov transformation

T diagonalizing Hdip. Also see S.N.M.Ruijsenaars [174, 173].

Theorem 8.2 ([8, 9, 10, 11, 117]) For all α ∈ R. There exists a unitary opera-

tor T of H such that

THdipT
−1 = − 1

2Meff

∆+Hb + α2g + Veff ,

where

Meff :=M + α2∥λ̂/
√
ω∥2,

g :=
d− 1

2π

∫ ∞

−∞

t2
∥∥∥√ωλ̂/(t2 + ω2)

∥∥∥2
M + α2(d− 1)/d

∥∥∥√ωλ̂/√t2 + ω2
∥∥∥2dt,

and

Veff(x) := V (x− A(K))

with some K ∈ ⊕dL2(Rd).

Proof: See [117]35.

Remark 8.3 Operators W± can be extended to a negative mass M < 0. In this

case {W+,W−} ̸∈ Sym(⊕d−1L2(Rd)) ([102]).

Corollary 8.4 Let V = 0. Then inf σ(Hdip) = α2g.

Let d = 3 and V ≤ 0. Set

N(V ) := a3

∫
R3

|V (x)|3/2dx,
35By this transformation, several scaling limits of Hdip are investigated. In particular, taking

a scaling limit, A.Arai obtained an effective potential which had been found by Welton [199].
This work was continued in F.Hiroshima [102, 104]. Another aspects of such scaling limits are
investigated in [1, 53, 54, 59, 169].
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where a3 is a universal constant, and a3 ≤ 0.116 is established in [152, p.269],[151].

It is known as the Lieb-Thirring inequality that

N(V ) ≤ #{negative eigenvalues of −∆/2 + V }.

In particular Hp for V with N(V ) < 1 has no ground state and σ(Hp) = [0,∞).

Moreover Hd = Hp +Hf has no ground state.

Theorem 8.5 (F.Hiroshima and H.Spohn [117])

Let V be as above. Then there exist α0 > 0 and α1 > 0 such that Hdip for α1 >

|α| > α0 has a ground state and it is unique.

9 Concluding remarks

(A boson-localization)

For the Nelson model it is established in [38] that there exists F∞(q) such that

|F∞(q)| ≤ ∥λ̂/ω∥2 for all q ∈ C(R;Rd), (9.1)(
Ψg, e

−βNΨg

)
=
∫
C(R;Rd)

e−(α2/2)(1−e−β)F∞(q)µ(q). (9.2)

Actually

F∞ =
∫ 0

−∞
dt
∫ ∞

0
ds
∫
Rd

|λ̂(k)|2e−|t−s|ω(k)eik(Xs−Xt)dk.

Thus we can see, by an analytic continuation argument, that for all β ∈ C

Ψg ∈ D(eβN)

and (9.2) holds for all β ∈ C. Moreover we explicitly express both of the average

momentum density ⟨a†(k)a(k)⟩ and the average spatial density ⟨a†(x)a(x)⟩ by the

measure µ. Hence we have pointwise bounds of the densities. The key point of a

proof of (9.2) is the uniform estimate (9.1) on paths. In the case of the Pauli-Fierz

model, we, up to moment, do not have such uniform estimate and can not shed any

light on this problem.

(Essential self-adjointness)

Essential self-adjointness of the Pauli-Fierz Hamiltonian H is proved only for one-

particle Hamiltonian. For the Z-particle Hamiltonian (see footnote18), it has not

been established. For the Z-particle case, an invariant domain exists. It is, however,

not so small. See [112].
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(The Zeeman effect)

Let d = 3. The Hamiltonian with spin 1/2 is defined on Hilbert space C2 ⊗H by

Hσ := 1⊗H − (α/2)σ ⊗B(λ̂),

where

B(λ̂) =
∫ ⊕

Rd
B(λ̂, x)dx,

and

B(λ̂, x) := rotA(λ̂, x) =
i√
2

{
ar†

(
(k × er)e−ikx ˜̂λ

)
+ ar

(
(−k × er)eikxλ̂

)}

and σ := (σ1, σ2, σ3) denotes the Pauli matrices. In this case PI-argument does not

work. The uniqueness of the ground state of Hσ is not yet established 36.

In the classical case a paramagnetic inequality of a Pauli operator

(p− A)2 + V + σ ·B

is known under some conditions by L.Erdős [62]. Does there exist the paramagnetic

inequality of Hσ?

(Semi-classical limits)

We can define a partial trace TrΨe
−tH for each Ψ ∈ L2(Q) in terms of functional

integral representations. In [115], a semi-classical limit [50, 190] of the partial trace

is shown:

lim
h̄→0

h̄dTrΨe
−tH = (2π)−d

∫
R2d

e−t(p2/2+V (x))dpdx∥Ψ∥L2(Q).
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[39] V.Betz and J.Lőrinczi, A Gibbsian description of P (ϕ)1-processes, TU München preprint,
1999,

[40] P.Blanchard, Discussion mathématique du modéle de Pauli et Fierz relatif á catastrophe
infrarouge, Comm.Math.Phys. 15 (1969), 156-172.

[41] F.Bloch and A.Nordsieck, Note on the radiation field of the electron, Phys. Rev. 52 (1937),
54-59.

[42] F.Bloch, The low frequency radiation of a scattered electron, Phys. Rev. 52 (1937), 59-62.
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[62] L. Erdős, Dia-and paramagnetism for nonhomogeneous magnetic fields, J. Math. Phys. 38
(1997), 1289-1317.
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[77] J.Fröhlich, Schwinger functions and their generating functionals, II. Markovian and general-
ized path space measures on S ′, Adv. Math. 23 (1977), 119-180.
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