Spectral analysis of atoms interacting with a quantized radiation field

Fumio Hiroshima Setsunan University

Dedicated to the memory of Tosio Kato

Contents

1 Introduction 2
1.1 The history of quantum filed models 2
2 The Pauli-Fierz model 8
2.1 A Fock-Cook representation 8
2.2 The second quantization 11
2.3 The definition of the Pauli-Fierz Hamiltonian 12
2.4 Self-adjointness for $|\alpha| \ll 1$ 14
2.5 Problems of embedded eigenvalues and binding through a coupling 14
3 A Schrödinger representation 15
3.1 The simultaneous diagonalization of the quantized radiation field 15
3.2 Ergodic properties of the decoupled Hamiltonian 18
4 Functional integral representations 19
4.1 A decomposition of $e^{-t d \Gamma(h(-i \nabla))}$ and Gaussian random processes 19
4.2 Functional integrals 22
5 Essential self-adjointness for arbitrary $\alpha \in \mathbf{R}$ 25
5.1 Translation invariance and invariant domains 25
5.2 Essential self-adjointness 29
6 Ground states 30
6.1 Ergodic properties and the uniqueness of the ground state 31
6.2 The particle-localization of ground states 34
6.3 The existence of ground states without infrared cutoffs 37
6.4 Ground state energy 42
6.5 Degenerate ground states with singular potentials 43
6.6 The Kato-Mugibayashi-H.Krohn type scattering theory 46
7 Gibbs measures 48
7.1 The existence of an infinite time Gibbs measure 48
7.2 Expectation values and a boson-localization 51

8 The dipole approximation

9 Concluding remarks

1 Introduction

The purpose of this talk is a review of a recent progress of the spectral analysis of a model in nonrelativistic quantum electrodynamics. A nonrelativistic electron minimally coupled (i.e., by replacing the particle momentum \mathbf{p} by the covariant one $\mathbf{p}-\alpha A)^{1}$ with the transverse degrees of freedom of a massless quantized Maxwell field is described by "the Pauli-Fierz model" [170], which successfully gave an interpretation of "the Lamb shift" in [37, 145, 199]. In particular the ground states of the Pauli-Fierz model will be our primary concern here. The general references (books) of this talk are $[22,52,88,97,99,138,175,176,177,178,185,188,139,200]$.

1.1 The history of quantum filed models

We will review a history of the Pauli-Fierz type models, e.g, the Nelson model [164], spin-boson models (e.g., [149]), polaron models (e.g., [81]).

In 1937, F.Bloch and A.Nordsieck [42, 41] investigated a radiation field interacting with a classical current, and shown that the mean number of emitted quanta is infinite by an infrared divergence.

In 1938, W.Pauli and M.Fierz [170] introduced the Pauli-Fierz model.
In 1947, H.A.Bethe [37] theoretically interpreted the Lamb shift.
In 1948, T.A.Welton [199] gave an intuitive explanation of the Lamb shift.
In 1949, Z.Koba [145] extended Welton's result [199] to a relativistic model.
In 1950, R.Feynman [70] applied a path integral to a mathematical formulation of quantum electrodynamics.

In 1952, O.Miyatake [161] and L.van Hove [119] found that the ground state of a Hamiltonian in a Fock space weakly converges to zero as a cutoff is removed ${ }^{2}$.

In 1955, R.Feynman [71] applied a path integral to estimate the ground state energy of a polaron model.

[^0]In 1958, E.Lieb and K.Yamazaki gave estimates of the ground state energy and some ground state expectation values of a polaron model in [156].

In 1962, D.Shale [182] obtained a mathematical manner to study both of the infrared and ultraviolet divergences.

In 1963, Y.Kato and N.Mugibayashi [143] constructed asymptotic fields and were concerned with the spectrum of a Hamiltonian. E.Nelson [162, 163] examined Feynman's result [70] in a simple model but with a mathematical rigorous manner. ${ }^{3}$

In 1964, E.Nelson [164] introduced a model of nonrelativistic quantum particles linearly coupled with scalar bosons, so called "the Nelson model", and he renormalized its Hamiltonian.

In 1968-1969, R.Høegh-Krohn applied the Kato-Mugibayashi scattering theory [143] to the Nelson model in [120]-[122], and extended the work to general models in [123]-[125].

In 1968-1972, J.Glimm and A.Jaffe analyzed the ground state properties of a quantum field model ($\lambda \phi^{4}$-model) from the point of view of the constructive quantum field theory in the series of papers [84]-[87] ${ }^{4}$ (see books e.g., [22, 88, 185]).

In 1969, P.Blanchard [40] were concerned with asymptotics of the Pauli-Fierz model with the dipole approximation and discussed an infrared divergence.

In 1970, I.Segal [180, 181] proved the essential self-adjointness and the indecomposability of a quantum field Hamiltonian. J.P. Eckmann [60] renormalized the Nelson model with relativistic kinematics (Eckmann's model).

In 1971, J.Cannon [44] studied the quantum field theoretical property (Wightman functionals,etc.) of the Nelson model. L.Gross [90] proved the existence and uniqueness of the ground state of relativistic and nonrelativistic polaron models for zero total-momentum.

In 1972, L.Gross [91] studied the massive Nelson model with relativistic kinematics (Eckmann's model) and constructed a Hilbert space on which a self-adjoint operator without an ultraviolet cutoff acts. S.Albeverio [2, 3] was concerned with the scattering theory of Eckmann's model.

In 1973, E. Nelson $[165,166]$ constructed a quantum field from a Markov field.

[^1]| Hilbert space | $L^{2}\left(\mathbf{R}^{d}\right) \otimes \underbrace{\mathcal{F} \otimes \cdots \otimes \mathcal{F}}_{d-1}$ |
| :---: | :---: |
| Decoupled Hamiltonian | $(-(1 / 2) \Delta+V) \otimes \mathbf{1}+\mathbf{1} \otimes H_{\mathrm{f}}$ |
| Free Hamiltonian | $H_{\mathrm{f}}=\int \omega(k) a^{r \dagger}(k) a^{r}(k) d k$ |
| Dispersion relation | $\omega(k)=\|k\|$ |
| Quantized field | $A_{\mu}(\hat{\lambda}, x)=(1 / \sqrt{2}) \int a^{r \dagger}(k) \hat{\lambda}(-k) e_{\mu}^{r}(k) e^{-i k x}+a^{r}(k) \hat{\lambda}(k) e_{\mu}^{r}(k) e^{i k x} d k$ |
| Canonical pair | $\Pi_{\mu}(\hat{\lambda}, x)=i(1 / \sqrt{2}) \int a^{r \dagger}(k) \hat{\lambda}(-k) e_{\mu}^{r}(k) e^{-i k x}-a^{r}(k) \hat{\lambda}(k) e_{\mu}^{r}(k) e^{i k x} d k$ |
| CCR | $\left[A_{\mu}(\hat{\lambda}, x), \Pi_{\nu}(\hat{\rho}, x)\right]=i\left(\overline{d_{\mu \nu} \hat{\lambda}}, \hat{\rho}\right), \quad d_{\mu \nu}(k)=1-k_{\mu} k_{\nu} /\|k\|^{2}$ |
| Total Hamiltonian | $(1 / 2)(\mathbf{p} \otimes \mathbf{1}-\alpha A(\hat{\lambda}, x))^{2}+V \otimes \mathbf{1}+\mathbf{1} \otimes H_{\mathrm{f}}$ |
| Self-adjointness | Essentially self-adjoint on $D(\Delta) \cap D\left(H_{\mathrm{f}}\right)$ for all $\alpha \in \mathbf{R}$ |
| Ground state $\Psi_{\text {g }}$ | Exists for $\|\alpha\| \ll 1$ and is unique |
| Particle-localization | $\left\\|\Psi_{\mathrm{g}}(x)\right\\| \leq D e^{-\delta\|x\|}$ |
| Boson-localization | $\left(\Psi_{\mathrm{g}}, e^{\beta N} \Psi_{\mathrm{g}}\right)<\infty ?, \quad \beta>0$ |
| Finite-time Gibbs meas. | $f\left(X_{0}\right) f\left(X_{2 t}\right) e^{-\int_{0}^{2 t} V\left(X_{s}\right) d s} e^{-\left(\alpha^{2} / 4\right) \int_{0}^{2 t} d \mathbf{b}_{\mu}(s) \int_{0}^{2 t} d \mathbf{b}_{\nu}\left(s^{\prime}\right) W_{\mu \nu}\left(X_{s}-X_{s^{\prime}}, s-s^{\prime}\right)} d X$ |
| Pair potential | $W_{\mu \nu}(X, t)=\int_{\mathbf{R}^{d}} d_{\mu \nu}(k)\|\hat{\lambda}(k)\|^{2} e^{i k X} e^{-\|t\| \omega(k)} d k$ |
| Infinite-time Gibbs meas. | Exist |
| Diamagnetic inequality | $\left\|\left(\Psi, e^{-t H} \Phi\right)\right\| \leq\left(\\|\Psi\\|, e^{-t(-(1 / 2) \Delta+V)}\\|\Phi\\|\right)$ |
| Stability | $\inf \sigma(-(1 / 2) \Delta+V) \leq \inf \sigma(H)$ |

Hilbert space	$L^{2}\left(\mathbf{R}^{d}\right) \otimes \mathcal{F}$						
Decoupled Hamiltonian	$(-(1 / 2) \Delta+V) \otimes \mathbf{1}+\mathbf{1} \otimes H_{\mathrm{f}}^{\mathrm{N}}$						
Free Hamiltonian	$H_{\mathrm{f}}^{\mathrm{N}}:=\int \omega(k) a^{\dagger}(k) a(k) d k$						
Dispersion relation	$\omega(k)=\sqrt{\|k\|^{2}+m^{2}}, m \geq 0$						
Quantized field	$\phi(\hat{\lambda}, x)=(1 / \sqrt{2}) \int a^{\dagger}(k) \hat{\lambda}(-k) e^{-i k x}+a(k) \hat{\lambda}(k) e^{i k x} d k$						
Canonical pair	$\pi(\hat{\lambda}, x)=i(1 / \sqrt{2}) \int a^{\dagger}(k) \hat{\lambda}(-k) e^{-i k x}-a(k) \hat{\lambda}(k) e^{i k x} d k$						
CCR	$[\phi(\hat{\lambda}), \pi(\hat{\rho})]=(\overline{\hat{\lambda}}, \hat{\rho})$						
Total Hamiltonian	$(-(1 / 2) \Delta+V) \otimes \mathbf{1}+\alpha \phi(\hat{\lambda}, x)+\mathbf{1} \otimes H_{\mathrm{f}}^{\mathrm{N}}$						
Self-adjointness	Self-adjoint on $D(\Delta) \cap D\left(H_{\mathrm{f}}\right)$ for all $\alpha \in \mathbf{R}$						
Ground state $\Psi_{\text {g }}$	Exists for all $\alpha \in \mathbf{R}$ and is unique						
Particle localization	$\left\\|\Psi_{\mathrm{g}}(x)\right\\| \leq D e^{-\delta\|x\|}$						
Boson localization	$\left(\Psi_{\mathrm{g}}, e^{\beta N} \Psi_{\mathrm{g}}\right)<\infty$ for all $\beta \in \mathbf{R}$						
Finite-time Gibbs meas.	$f\left(X_{0}\right) f\left(X_{2 t}\right) e^{-\int_{0}^{t} V\left(X_{s}\right) d s} e^{\left(\alpha^{2} / 4\right)} \int_{0}^{2 t} d s \int_{0}^{2 t} d s^{\prime} W\left(X_{s}-X_{\left.s^{\prime}, s-s^{\prime}\right)} d X\right.$						
Pair potential	$W(X, t)=\int_{\mathbf{R}^{d}}\|\hat{\lambda}(k)\|^{2} e^{i k X} e^{-\|t\| \omega(k)} d k$						
Infinite-time Gibbs meas.	Exist						
Diamagnetic inequality	$\left\|\left(\Psi, e^{-t H} \Phi\right)\right\| \leq\left(\\|\Psi\\|, e^{-t\left(-1 / 2 \Delta+V-\alpha^{2}\\|\hat{\lambda} / \sqrt{\omega}\\|^{2}\right)}\\|\Phi\\|\right)$						
Stability	$\inf \sigma(-(1 / 2) \Delta+V) \leq \inf \sigma(H)+\left(\alpha^{2} / 2\right)\\|\hat{\lambda} / \sqrt{\omega}\\|^{2}$						

Table 2: The one-particle Nelson model

The Pauli-Fierz polaron model	$H(p)=(1 / 2)\left(p-\mathbf{P}_{\mathrm{f}}-\alpha A(\hat{\lambda}, 0)\right)^{2}+H_{\mathrm{f}}, \quad p \in \mathbf{R}^{d}$
Field momentum	$\mathbf{P}_{\mathrm{f}}=\int k a^{\dagger \dagger}(k) a^{r}(k) d k$
The Nelson polaron model	$H(p)=(1 / 2)\left(p-\mathbf{P}_{\mathrm{f}}^{\mathrm{N}}\right)^{2}+\alpha \phi(\hat{\lambda}, 0)+H_{\mathrm{f}}^{\mathrm{N}}, \quad p \in \mathbf{R}^{d}$
Field momentum	$\mathbf{P}_{\mathrm{f}}^{\mathrm{N}}=\int k a^{\dagger}(k) a(k) d k$

Table 3: Polaron models
In 1973-1974, J.Fröhlich investigated an infrared divergence of a polaron model in [74, 75]. He also shown the existence and uniqueness of the ground state of a polaron model without an ultraviolet cutoff for sufficiently small total momentum.

In 1976, K.Rzazewski and W.Zakowicz [179] solved an initial value problem of the Pauli-Fierz model with the dipole approximation and an x^{2}-potential.

In 1978-1980, J.Fröhlich and Y.M.Park [79, 80] opened a problem on the analysis of nonrelativistic quantum electrodynamics.

In 1980, A.Grossmann and A.Tip [93] studied a resonance of a single mode Pauli-Fierz model with the dipole approximation and an x^{2}-potential.

In 1981-2000(!), A.Arai gave a firm mathematical base on the Pauli-Fierz model. The first mathematical rigorous results on the model were, as far as we know, due to A.Arai. He investigated the model with the dipole approximation in the series of papers [7]-[18], and shown that the model was exactly solvable, i.e., he obtained the self-adjointness of the Hamiltonian, the existence and uniqueness of its ground state, asymptotic completeness, the instability of its embedded eigenvalues (resonance), scaling limits, and long-time behaviors of a two-point function, etc.

In 1983, M.D.Donsker and S.R.S.Varadhan [58] obtained, independently of the existence of the ground states, asymptotics of the ground state energy of a polaron model as the coupling constant tends to infinity, by means of a large deviation theory of path integrals.

In 1985, T.Okamoto and K.Yajima [167] shown the existence of a resonance of the massive Pauli-Fierz model in terms of a complex scaling technique ([5]).

In 1986, H.Spohn proved the existence of the ground state [193] and its localization [192] of a polaron model for arbitrary values of total momentum for one or two
dimensions. He also considered an effective mass in [197].
In 1989, H.Spohn [195] investigated the ground state properties of a spin-boson model, in which he proved the existence of the ground states of the spin-boson model and shown its localization ${ }^{5}$. The work has been continued by H.Spohn, R.Stückl and W.Wreszinski in [198] to generalized versions: " J-spin boson models".

In 1995, M.Hübner and H.Spohn [128, 129] studied a resonance of the spin-boson model with a help of a modification of a positive commutator method. For the Pauli-Fierz model with a confined external potential and sufficiently small coupling constants, V.Bach, J.Fröhlich and I.E.Sigal [31] proved the existence of a ground state, its particle localization, and the existence of resonance poles, by means of a renormalization group method. The full papers [32, 33] were published in 1998.

In 1996 A.Arai and M.Hirokawa proved the existence of the ground state of a spin-boson model for sufficiently small coupling constants in [23], and extended this to a generalized version in $[24]^{6}$.

In 1996-1997, C.Fefferman, J.Fröhlich and J.M.Graf [72, 73] considered the stability of the Pauli-Fierz model and gave a lower bound of its ground state energy.

In 1997, H.Spohn [194] shown the asymptotic completeness of the Pauli-Fierz model with the dipole approximation and non x^{2}-potentials. E.Lieb and L.E.Thomas [155] gave an alternative simple proof of the asymptotics of the ground state energy of a polaron model given by Donsker and Varadhan [58].

In 1998, H.Spohn [197] proved the existence of the ground state of the Nelson model for arbitrary coupling constants by a functional integral method. After [197], C.Gérard [83] proved the same thing as that of [197] with some generalization in an entirely different way. V.Bach, J.Fröhlich and I.E.Sigal [34] proved the existence of the ground states of the Pauli-Fierz model without an infrared cutoff and with Coulomb potentials (cf. F.Hiroshima [109, 113]), and they shown that the spectrum of the model was purely absolutely continuous except in small neighborhood of the ground state energy and the ionization thresholds. See also [35].

In 1999, E.Lieb and M.Loss [154] contributed to estimate both of upper and lower bounds of the ground state energy of the Pauli-Fierz model. R. Minlos and H.Spohn [160] proved the absence of the ground states of the Nelson model with an

[^2]infrared divergence ${ }^{7}$.
In 2000, A.Arai [19] proved independently of the existence of the ground states that the essential spectrum of the Pauli-Fierz model coincided with its spectrum. ${ }^{8}$ F.Hiroshima proved the essential self-adjointness of the Pauli-Fierz model for arbitrary coupling constants in [112], and he also shown the uniqueness of its ground state in [110]. V.Betz, F.Hiroshima, J.Lőrinczi, R.Minlos and H.Spohn [111, 38] constructed an infinite-time Gibbs measure associated with the Nelson model and shown the boson localization of its ground state for arbitrary coupling constants. F.Hiroshima and H. Spohn [117] shown a binding through an interaction between a particle and a quantum field for the Pauli-Fierz model with the dipole approximation and shallow potentials ${ }^{9}$. Recently, M.Griesemer, E.Lieb and M.Loss [89] address that the ground state of the Pauli-Fierz model exists for arbitrary coupling constants!

2 The Pauli-Fierz model

2.1 A Fock-Cook representation

We start with introducing some basic facts of a quantum field often used in this talk. We define the Boson Fock space over $L^{2}\left(\mathbf{R}^{d}\right)$ by

$$
\mathcal{F}:=\mathcal{F}\left(L^{2}\left(\mathbf{R}^{d}\right)\right):=\oplus_{n=0}^{\infty}\left(\otimes_{s}^{n} L^{2}\left(\mathbf{R}^{d}\right)\right)
$$

where $\otimes_{s}^{0} L^{2}\left(\mathbf{R}^{d}\right):=\mathbf{C}$ and $\otimes_{s}^{n} L^{2}\left(\mathbf{R}^{d}\right)$ denotes the symmetric tensor product of $L^{2}\left(\mathbf{R}^{d}\right)$, i.e., $f \in \otimes_{s}^{n} L^{2}\left(\mathbf{R}^{d}\right)$ if and only if $f \in L^{2}(\underbrace{\mathbf{R}^{d} \times \cdots \times \mathbf{R}^{d}}_{n})$ and

$$
f\left(k_{1}, \cdots, k_{i}, \cdots, k_{j}, \cdots, k_{n}\right)=f\left(k_{1}, \cdots, k_{j}, \cdots, k_{i}, \cdots, k_{n}\right), \quad 1 \leq i, j \leq n .
$$

The creation operator $a^{\dagger}(f)$ and the annihilation operator $a(f)$ smeared by $f \in$ $L^{2}\left(\mathbf{R}^{d}\right)$ are defined by, for $\Psi=\oplus_{n=0}^{\infty} \Psi^{(n)} \in \mathcal{F}$,

$$
\left(a^{\dagger}(f) \Psi\right)^{(n)}\left(k_{1}, \cdots, k_{n}\right)=\frac{1}{\sqrt{n}} \sum_{j=1}^{n} f\left(k_{j}\right) \Psi^{(n-1)}\left(k_{1}, \cdots, \widehat{k_{j}}, \cdots, k_{n}\right),
$$

[^3]$$
(a(f) \Psi)^{(n)}\left(k_{1}, \cdots, k_{n}\right)=\sqrt{n+1} \sum_{j=1}^{n} \int_{\mathbf{R}^{d}} f(k) \Psi^{(n+1)}\left(k_{1}, \cdots, \stackrel{j}{k}, \cdots, k_{n}\right) d k
$$
where^ denotes neglecting the term ${ }^{10}$. Let $\Omega_{\mathrm{b}}:=1 \oplus 0 \oplus 0 \cdots \in \mathcal{F}$ be the bare vacuum. It is well known that
$$
\mathcal{F}_{0}:=\mathcal{L}\left\{a^{\dagger}\left(f_{1}\right) \cdots a^{\dagger}\left(f_{n}\right) \Omega_{\mathrm{b}}, \Omega_{\mathrm{b}} \mid f_{j} \in L^{2}\left(\mathbf{R}^{d}\right), j=1, \ldots, n, n \in \mathbf{N}\right\}
$$
is dense in \mathcal{F}, where $\mathcal{L}\{\cdots\}$ denotes the finite linear hull of vectors in $\{\cdots\}$. Moreover \mathcal{F}_{0} is an invariant subspace of $a^{\sharp}=a^{\dagger}$ or a. a^{\sharp} obeys the canonical commutation relations on \mathcal{F}_{0}, i.e.,
$$
\left[a(f), a^{\dagger}(g)\right]=(\bar{f}, g)_{L^{2}\left(\mathbf{R}^{d}\right)}, \quad\left[a^{\sharp}(f), a^{\sharp}(g)\right]=0,
$$
where $(f, g)_{K}$ (resp. $\|f\|_{K}$) denotes the scalar product (resp. the norm) of Hilbert space K. We omit K in $(f, g)_{K}$ unless no confusion may arise. Note that $(f, g)_{K}$ is linear in g and antilinear in f. a^{\sharp} satisfies that
$$
(a(f) \Psi, \Phi)_{\mathcal{F}}=\left(\Psi, a^{\dagger}(\bar{f}) \Phi\right)_{\mathcal{F}}
$$
for $\Psi, \Phi \in \mathcal{F}_{0}$. We define
$$
\mathcal{F}_{\mathrm{EM}}:=\underbrace{\mathcal{F} \otimes \cdots \otimes \mathcal{F}}_{d-1}, \quad \mathcal{F}_{\mathrm{EM} 0}:=\underbrace{\mathcal{F}_{0} \widehat{\otimes} \cdots \hat{\otimes} \mathcal{F}_{0}}_{d-1},
$$
where $\widehat{\otimes}$ denotes an algebraic tensor product, and $a^{r \sharp}: \mathcal{F}_{\mathrm{EM}} \rightarrow \mathcal{F}_{\mathrm{EM}}$ is defined by
$$
a^{r \sharp}(f):=\underbrace{1 \otimes \cdots \otimes \overbrace{a^{\sharp}}(f) \otimes \cdots \otimes 1}_{d-1}, \quad r=1, \ldots, d-1 .
$$

It obeys that, on $\mathcal{F}_{\mathrm{EM} 0}$,

$$
\left[a^{r \dagger}(f), a^{s \dagger}(g)\right]=\delta_{r s}(\bar{f}, g), \quad\left[a^{r \sharp}(f), a^{s \sharp}(g)\right]=0 .
$$

We denote by the same symbol a^{\sharp} its closed extension. The vectors

$$
e^{r}(k):=\left(e_{1}^{r}(k), \cdots, e_{d}^{r}(k)\right), \quad r=1, \ldots, d-1,
$$

are $d-1$ possible orthonormal polarization vectors perpendicular to k, i.e.,

$$
e^{r}(k) \cdot e^{s}(k)=\delta_{r s}, \quad e^{r}(k) \cdot k=0, \quad \text { a.e. } k \in \mathbf{R}^{d} .
$$

[^4]Note that ${ }^{11}$

$$
d_{\mu \nu}(k):=e_{\mu}^{r}(k) e_{\nu}^{r}(k)=\delta_{\mu \nu}-\left(k_{\mu} k_{\nu}\right) /|k|^{2} .
$$

We define a quantized radiation field $A_{\mu}(\hat{\lambda})$ by

$$
A_{\mu}(\hat{\lambda}):=A_{\mu}(\hat{\lambda}, x):=\frac{1}{\sqrt{2}}\left\{a^{r \dagger}\left(e_{\mu}^{r} e^{-i k x} \tilde{\hat{\lambda}}\right)+a^{r}\left(e_{\mu}^{r} e^{i k x} \hat{\lambda}\right)\right\}, \quad \mu=1, \ldots, d
$$

and its canonical pair $\Pi_{\mu}(\hat{\lambda})$ by

$$
\Pi_{\mu}(\hat{\lambda}):=\Pi(\hat{\lambda}, x):=i \frac{1}{\sqrt{2}}\left\{a^{r \dagger}\left(e_{\mu}^{r} e^{-i k x} \tilde{\hat{\lambda}}\right)-a^{r}\left(e_{\mu}^{r} e^{i k x} \hat{\lambda}\right)\right\}, \quad \mu=1, \ldots, d
$$

where $\widetilde{g}(k):=g(-k)$ and \widehat{g} denotes the Fourier transform of g. Note that

$$
\operatorname{div} A(\hat{\lambda})=\sum_{\mu=1}^{d}\left[\mathbf{p}_{\mu}, A_{\mu}(\hat{\lambda})\right]=0, \quad \text { (the Coulomb gauge) }
$$

on some domain. It is checked that ${ }^{12}$

$$
\begin{gathered}
{\left[A_{\mu}(\hat{\lambda}), \Pi_{\nu}(\hat{\rho})\right]=i\left(\overline{d_{\mu \nu} \hat{\lambda}}, \hat{\rho}\right),} \\
{\left[A_{\mu}(\hat{\lambda}), A_{\nu}(\hat{\rho})\right]=\left[\Pi_{\mu}(\hat{\lambda}), \Pi_{\nu}(\hat{\rho})\right]=0}
\end{gathered}
$$

on $\mathcal{F}_{\text {EM } 0}$ and

$$
\left(A_{\mu}(\hat{\lambda}) \Omega_{\mathrm{b}}, A_{\nu}(\hat{\rho}) \Omega_{\mathrm{b}}\right)=\frac{1}{2}\left(d_{\mu \nu} \hat{\lambda}, \hat{\rho}\right)=\left(\Pi_{\mu}(\hat{\lambda}) \Omega_{\mathrm{b}}, \Pi_{\nu}(\hat{\rho}) \Omega_{\mathrm{b}}\right)
$$

Throughout this talk we assume that

$$
\begin{equation*}
\hat{\lambda}(-k)=\overline{\hat{\lambda}(k)}, \tag{2.1}
\end{equation*}
$$

namely, λ is real. This assumption ensures that both of $A_{\mu}(\hat{\lambda})$ and $\Pi_{\nu}(\hat{\lambda})$ are symmetric operators.

[^5]$\left[A_{\mu}(k), \Pi_{\nu}\left(k^{\prime}\right)\right]=i\left(\delta_{\mu \nu}-k_{\mu} k_{\nu} /|k|^{2}\right) \delta\left(k-k^{\prime}\right)$ or $\left[A_{\mu}(x), \Pi_{\nu}(y)\right]=i\left(\delta_{\mu \nu}-\partial_{\mu} \partial_{\nu} /|x-y|\right) \delta(x-y)$.

2.2 The second quantization

Let h be a self-adjoint operator of $L^{2}\left(\mathbf{R}^{d}\right)$. Define $S_{t}: \mathcal{F} \rightarrow \mathcal{F}, t \in \mathbf{R}$, by

$$
S_{t} a^{\dagger}\left(f_{1}\right) \cdots a^{\dagger}\left(f_{n}\right) \Omega_{\mathrm{b}}:=a^{\dagger}\left(e^{i t h} f_{1}\right) \cdots a^{\dagger}\left(e^{i t h} f_{n}\right) \Omega_{\mathrm{b}}, \quad S_{t} \Omega_{\mathrm{b}}:=\Omega_{\mathrm{b}}
$$

It is seen that $\underbrace{S_{t} \otimes \cdots \otimes S_{t}}_{d-1}, t \in \mathbf{R}$, is a strongly continuous one-parameter unitary group on $\mathcal{F}_{\text {EM }}$. Thus there exists a self-adjoint operator $d \Gamma_{\mathrm{b}}(h)$ in $\mathcal{F}_{\text {EM }}$ such that

$$
\underbrace{S_{t} \otimes \cdots \otimes S_{t}}_{d}=e^{i t d \Gamma_{\mathrm{b}}(h)}, \quad t \in \mathbf{R} .
$$

We call $d \Gamma_{\mathrm{b}}(h)$ "the second quantization" [49] of h. Actually $d \Gamma_{\mathrm{b}}(h)$ acts ${ }^{13}$ as follows:

$$
\begin{gathered}
d \Gamma_{\mathrm{b}}(h) \Omega_{\mathrm{b}}=0 \\
d \Gamma_{\mathrm{b}}(h) a^{\dagger r_{1}}\left(f_{1}\right) \cdots a^{\dagger r_{n}}\left(f_{n}\right) \Omega_{\mathrm{b}}=\sum_{j=1}^{n} a^{\dagger r_{1}}\left(f_{1}\right) \cdots a^{\dagger r_{j}}\left(h f_{j}\right) \cdots a^{\dagger r_{n}}\left(f_{n}\right) \Omega_{\mathrm{b}}
\end{gathered}
$$

Let

$$
\omega_{\mu}(k):=\sqrt{|k|^{2}+\mu^{2}}, \quad \mu \geq 0
$$

and define the free Hamiltonian in $\mathcal{F}_{\text {EM }}$ by ${ }^{14}$

$$
H_{\mathrm{b}}:=d \Gamma_{\mathrm{b}}\left(\omega_{\mu}\right)
$$

It is known that ${ }^{15}$

$$
\sigma\left(H_{\mathrm{b}}\right)=\{0\} \cup[\mu, \infty), \quad \sigma_{\mathrm{p}}\left(H_{\mathrm{b}}\right)=\{0\}, \quad \sigma_{\mathrm{ess}}\left(H_{\mathrm{b}}\right)=[\mu, \infty),
$$

and $\{0\}$ is of multiplicity one and

$$
H_{\mathrm{b}} \Omega_{\mathrm{b}}=0
$$

In what follows we assume that $\mu=0$ and set

$$
\omega:=\omega_{0}
$$

$$
{ }^{13} d \Gamma_{\mathrm{b}}(h)=\oplus_{n=0}^{\infty} \sum_{j=1}^{n} \underbrace{\mathbf{1} \otimes \cdots \overbrace{h}^{j} \cdots \otimes \mathbf{1}}_{n} .
$$

${ }^{14}$ Formally H_{b} is written as $H_{\mathrm{b}}=\int \omega_{m}(k) a^{r \dagger}(k) a^{r}(k) d k$.
${ }^{15} \sigma(T)$:the spectrum of $T, \sigma_{\text {ess }}(T)$:the essential spectrum of $T, \sigma_{\text {disc }}(T)$:the discrete spectrum of $T, \sigma_{\mathrm{p}}(T)$:the point spectrum of $T, \sigma_{\mathrm{ac}}(T)$:the absolutely continuous spectrum of T.

It is a direct calculation that

$$
\begin{aligned}
& e^{i t d \Gamma_{\mathrm{b}}(h)} a^{r \dagger}(f) e^{-i t d \Gamma_{\mathrm{b}}(h)}=a^{r \dagger}\left(e^{i t h} f\right), \\
& e^{i t d \Gamma_{\mathrm{b}}(h)} a^{r}(f) e^{-i t d \Gamma_{\mathrm{b}}(h)}=a^{r}\left(e^{-i t h} f\right) .
\end{aligned}
$$

In particular, for $N_{\mathrm{b}}:=d \Gamma_{\mathrm{b}}(\mathbf{1})$,

$$
\begin{gather*}
e^{i \pi / 2 N_{\mathrm{b}}} a^{r \dagger}(f) e^{-i \pi / 2 N_{\mathrm{b}}}=i a^{r \dagger}(f), \tag{2.2}\\
e^{i \pi / 2 d \Gamma_{\mathrm{b}}(h)} a^{r}(f) e^{-i \pi / 2 d \Gamma_{\mathrm{b}}(h)}=-i a^{r}(f) . \tag{2.3}
\end{gather*}
$$

Operator N_{b} is called the number operator. From (2.2) and (2.3) it follows that

$$
\begin{equation*}
e^{i \pi / 2 N_{\mathrm{b}}} A_{\mu}(\hat{\lambda}) e^{-i \pi / 2 N_{\mathrm{b}}}=\Pi_{\mu}(\hat{\lambda}), \quad \mu=1, \ldots, d \tag{2.4}
\end{equation*}
$$

For later convenience, we introduce some fundamental inequalities:

$$
\begin{gather*}
\left\|a^{r \dagger}(f) \Psi\right\| \leq\|f\|\|\Psi\|+\|f / \sqrt{\omega}\|\left\|H_{\mathrm{b}}^{1 / 2} \Psi\right\|, \tag{2.5}\\
\left\|a^{r}(f) \Psi\right\| \leq\|f / \sqrt{\omega}\|\left\|H_{\mathrm{b}}^{1 / 2} \Psi\right\|, \tag{2.6}
\end{gather*}
$$

for ${ }^{16} \Psi \in D\left(H_{\mathrm{b}}^{1 / 2}\right)$ and
$\left\|a^{r \sharp}(f) a^{r \sharp}(f) \Psi\right\| \leq(\|f / \sqrt{\omega}\|+\|f\|)(\|f \sqrt{\omega}\|+\|f\|+\|\sqrt{\omega} f\|+\|\omega f\|)\left\|\left(H_{\mathrm{b}}+\mathbf{1}\right) \Psi\right\|$,
for $\Psi \in D\left(H_{\mathrm{b}}\right)([13])$. Moreover

$$
\begin{gather*}
\left\|a^{r \dagger}(f) \Psi\right\| \leq\|f\|\left(\|\Psi\|+\left\|N_{\mathrm{b}}^{1 / 2} \Psi\right\|\right), \tag{2.8}\\
\left\|a^{r}(f) \Psi\right\| \leq\|f\|\left\|N_{\mathrm{b}}^{1 / 2} \Psi\right\|, \tag{2.9}
\end{gather*}
$$

for $\Psi \in D\left(N_{\mathrm{b}}^{1 / 2}\right)$.

2.3 The definition of the Pauli-Fierz Hamiltonian

Let

$$
\mathcal{H}_{\mathrm{b}}:=L^{2}\left(\mathbf{R}^{d}\right) \otimes \mathcal{F} \cong \int_{\mathbf{R}^{d}}^{\oplus} \mathcal{F} d x .
$$

Here $L^{2}\left(\mathbf{R}^{d}\right)$ accommodates the state space of the electron moving in d-dimensional space and \mathcal{F} that of bosons (photons). Define

$$
A_{\mu}:=\int_{\mathbf{R}^{d}}^{\oplus} A_{\mu}(\hat{\lambda}, x) d x, \quad \mu=1, \ldots, d
$$

[^6]The Pauli-Fierz Hamiltonian $H_{\text {PF }}$ is defined as a densely defined symmetric operator acting in \mathcal{H}_{b} by

$$
H_{\mathrm{PF}}:=\frac{1}{2 M}(\mathbf{p} \otimes \mathbf{1}-\alpha A)^{2}+V \otimes \mathbf{1}+\mathbf{1} \otimes H_{\mathrm{b}}
$$

where M is the mass of the electron, α a coupling constant ${ }^{17}$ and we work with a unit $\hbar=c=1^{18}$. For simplicity we set $M=1 . \hat{\lambda}$ serves as an ultraviolet cutoff. A physically reasonable choice of λ is

$$
\hat{\lambda}(k)=\hat{\rho}(k) / \sqrt{(2 \pi)^{d} \omega(k)}
$$

where ρ is a charge density, i.e.,

$$
\begin{equation*}
\alpha=-\int_{\mathbf{R}^{d}} \rho(x) d x, \quad \rho(x) \geq 0 \tag{2.10}
\end{equation*}
$$

In particular for $d=3$,

$$
\begin{equation*}
\int_{\mathbf{R}^{3}} \frac{\hat{\lambda}(k)^{2}}{\omega(k)^{2}} d k<\infty \tag{2.11}
\end{equation*}
$$

implies that

$$
0=\sqrt{(2 \pi)^{3}} \hat{\rho}(0)=\int_{\mathbf{R}^{3}} \rho(x) d x=-\alpha
$$

We call (2.11) infrared cutoff condition. Throughout this talk we do not impose (2.10).

$$
\begin{aligned}
& { }^{17} \text { Physically } \alpha=-\sqrt{1 / 137} \text { with a unit } \hbar=c=1 \\
& { }^{18} \text { Actually } H_{\mathrm{PF}} \text { is a Hamiltonian reduced by ""he one-particle sector". Define the antisymmetric } \\
& \text { Fock space by } \mathcal{F}_{\text {as }}:=\oplus_{=0}^{\infty}\left(\otimes_{a s}^{n} L^{2}\left(\mathbf{R}^{d}\right)\right) \text {, where } \otimes_{a s}^{n} L^{2}\left(\mathbf{R}^{d}\right) \text { denotes the } n \text {-fold antisymmetric } \\
& \text { tensor product of } L^{2}\left(\mathbf{R}^{d}\right) \text {. Set } \mathcal{H}_{\mathrm{T}}:=\mathcal{F}_{\text {as }} \otimes \mathcal{F}_{\mathrm{EM}} \text {. Then } \\
& \qquad \mathcal{H}_{\mathrm{T}}=\oplus_{Z=0}^{\infty} \mathcal{H}^{\mathrm{Z}}, \quad \mathcal{H}^{\mathrm{Z}}:=\left(\otimes_{a s}^{Z} L^{2}\left(\mathbf{R}^{d}\right)\right) \otimes \mathcal{F} \cong L_{a s}^{2}\left(\mathbf{R}^{d Z}\right) \otimes \mathcal{F}_{\mathrm{EM}} . \\
& \text { Let } \Psi(x) \text { and } \Psi^{\dagger}(x) \text { be formal kernels of the annihilation operator and the creation operator in } \mathcal{F}_{\text {as }}, \\
& \text { respectively, i.e., anticommutation relations }\left\{\Psi(x), \Psi^{\dagger}(y)\right\}=\delta(x-y) \text { holds. The total Hamiltonian } \\
& H \text { is defined on } \mathcal{H}_{\mathrm{T}} \text { by } \\
& \qquad H:=\frac{1}{2} \int \Psi^{\dagger}(x)(\mathbf{p}-\alpha A(\hat{\lambda}, x))^{2} \Psi(x) d x \\
& \quad+\int \omega(k) a^{r \dagger}(k) a^{r}(k) d k+\alpha^{2} \int \Psi^{\dagger}(x) \Psi^{\dagger}(y) V(x-y) \Psi(x) \Psi(y) d x d y,
\end{aligned}
$$

where $V(x)=-1 /(4 \pi|x|)$. Thus it follows that

$$
\begin{gathered}
H \Gamma_{\mathcal{H}^{1}}=H_{\mathrm{PF}}, \\
H \Gamma_{\mathcal{H}^{z}}=\frac{1}{2} \sum_{j=1}^{Z}\left(\mathbf{p}_{j}-\alpha A\left(\hat{\lambda}, x_{j}\right)\right)^{2}+H_{\mathrm{f}}-\alpha^{2} \sum_{i \neq j}^{Z} \frac{1}{4 \pi\left|x_{i}-x_{j}\right|}, \quad Z \geq 2 .
\end{gathered}
$$

When $Z \geq 2$, a longitudinal interaction (a Coulomb potential) does appear.

2.4 Self-adjointness for $|\alpha| \ll 1$

We abbreviate $\mathbf{1} \otimes X$ and $X \otimes \mathbf{1}$ by X unless no confusion arise. The Pauli-Fierz Hamiltonian is written as

$$
H_{\mathrm{PF}}=H_{\mathrm{p}}+H_{\mathrm{b}}+\alpha H_{\mathrm{I}},
$$

where

$$
H_{\mathrm{p}}:=-\Delta / 2+V, \quad H_{\mathrm{I}}:=-\mathbf{p} A+\alpha A^{2} .
$$

Assume that

$$
\begin{equation*}
\|\Delta f\| \leq a\left\|H_{\mathrm{p}} f\right\|+b\|f\| \tag{2.12}
\end{equation*}
$$

for $f \in D\left(H_{\mathrm{p}}\right)$ with some constants a and b. Let $\hat{\lambda} / \sqrt{\omega}, \hat{\lambda}, \sqrt{\omega} \hat{\lambda}, \omega \hat{\lambda} \in L^{2}\left(\mathbf{R}^{d}\right)$. Then, by the fundamental inequalities (2.5), (2.6) and (2.7), we easily have

$$
\begin{gather*}
\|\mathbf{p} A \Psi\| \leq C_{1}\left\|\left(H_{\mathrm{p}}+H_{\mathrm{b}}+\mathbf{1}\right) \Psi\right\|, \tag{2.13}\\
\left\|A^{2} \Psi\right\| \leq C_{2}\left\|\left(H_{\mathrm{b}}+\mathbf{1}\right) \Psi\right\| \tag{2.14}
\end{gather*}
$$

with some constants C_{1} and C_{2} for $\Psi \in D\left(H_{\mathrm{p}}\right) \cap D\left(H_{\mathrm{b}}\right)$.
Proposition 2.1 ([167]) Let $\hat{\lambda} / \sqrt{\omega}, \hat{\lambda}, \sqrt{\omega} \hat{\lambda}, \omega \hat{\lambda} \in L^{2}\left(\mathbf{R}^{d}\right)$ and $|\alpha|$ be sufficiently small. Assume (2.12). Then H_{PF} is self-adjoint on $D\left(H_{\mathrm{p}}\right) \cap D\left(H_{\mathrm{b}}\right)$, bounded below, and essentially self-adjoint on any core of $H_{\mathrm{p}}+H_{\mathrm{b}}$.

Proof: By virtue of (2.13) and (2.14), we have

$$
\left\|H_{\mathrm{I}} \Psi\right\| \leq C^{\prime}\left\|\left(H_{\mathrm{p}}+H_{\mathrm{b}}\right) \Psi\right\|+C^{\prime \prime}\|\Psi\|
$$

with some constants C^{\prime} and $C^{\prime \prime}$. The proposition follows from the Kato-Rellich theorem and the fact that $D\left(H_{\mathrm{p}}+H_{\mathrm{b}}\right)=D\left(H_{\mathrm{p}}\right) \cap D\left(H_{\mathrm{b}}\right)$.

QED

2.5 Problems of embedded eigenvalues and binding through a coupling

Here we state the purpose of this talk. The decoupled Hamiltonian $(\alpha=0)$ is denoted by

$$
H_{\mathrm{d}}:=H_{\mathrm{p}}+H_{\mathrm{b}} .
$$

First we let

$$
\sigma\left(H_{\mathrm{p}}\right)=\left\{E_{j}\right\}_{j=0}^{N} \cup[\Sigma, \infty), \quad E_{0} \leq E_{1} \leq \cdots<\Sigma .
$$

Then

$$
\sigma\left(H_{\mathrm{d}}\right)=\left[E_{0}, \infty\right), \quad \sigma_{\mathrm{p}}\left(H_{\mathrm{d}}\right)=\left\{E_{j}\right\}_{j=0}^{N} .
$$

Thus all the point spectra of H_{d} are embedded in the continuous spectrum. We can say that the spectral analysis of $H=H_{\mathrm{d}}+\alpha H_{\mathrm{I}}$ is a problem of a perturbation of embedded point spectra. We will see that, under some condition, the point spectrum E_{0} survives after adding the perturbation αH_{I}. See Section 6 .

Secondly we assume that

$$
\sigma\left(H_{\mathrm{p}}\right)=[0, \infty), \quad \sigma_{\mathrm{p}}\left(H_{\mathrm{p}}\right)=\emptyset .
$$

Then

$$
\sigma\left(H_{\mathrm{d}}\right)=[0, \infty), \quad \sigma_{\mathrm{p}}\left(H_{\mathrm{d}}\right)=\emptyset .
$$

Our question is as follows: does there exist the ground state of $H=H_{\mathrm{d}}+\alpha H_{\mathrm{I}}$ for some $\alpha>0$? The answer is YES. As heuristic level one argues that the coupling to the radiation field amounts to renormalizing a bare mass M to an "effective" mass $M\left(\alpha^{2}\right)$ with $M\left(\alpha^{2}\right)$ increasing in α^{2}.Thus effectively instead of $H_{\mathrm{p}}=-\Delta /(2 M)+V$ we should consider

$$
\begin{equation*}
-\Delta /\left(2 M\left(\alpha^{2}\right)\right)+V . \tag{2.15}
\end{equation*}
$$

Hence a bound state can be produced through a coupling α sufficiently large. Most likely (2.15) has no sharp mathematical meaning. However we will see an associated phenomenon of the Pauli-Fierz model in Section 8.

3 A Schrödinger representation

3.1 The simultaneous diagonalization of the quantized radiation field

In order to obtain a functional integral representation of a heat semigroup, we shall take a Schrödinger representation of the quantized radiation field $A(\hat{\lambda})$. Note that

$$
\begin{gathered}
\left(A_{\mu}(\hat{\lambda}) \Omega_{\mathrm{b}}, A_{\nu}(\hat{\rho}) \Omega_{\mathrm{b}}\right)=\frac{1}{2}\left(d_{\mu \nu} \hat{\lambda}, \hat{\rho}\right), \\
{\left[A_{\mu}(\hat{\lambda}), A_{\nu}(\hat{\rho})\right]=0 .}
\end{gathered}
$$

Define a quadratic form on $\oplus^{d} L^{2}\left(\mathbf{R}^{d}\right)$ by

$$
q(f, g):=\frac{1}{2}\left(d_{\mu \nu} \hat{f}_{\mu}, \hat{g}_{\nu}\right), \quad f, g \in \oplus^{d} L^{2}\left(\mathbf{R}^{d}\right)
$$

In particular we set $q(f, f):=q(f)$. Let (Q, ν) be a probability measure space and $\phi(f)$ a Gaussian random process on $(Q, \nu)^{19}$ indexed by real $f \in \oplus^{d} L^{2}\left(\mathbf{R}^{d}\right)$ with a covariance

$$
\int_{Q} \phi(f) \phi(g) d \nu(\phi)=\frac{1}{2} q(f, g) .
$$

Note that

$$
\int_{Q} e^{\alpha \phi(f)} d \nu(\phi)=e^{\left(\alpha^{2} / 2\right) q(f)}, \quad \alpha \in \mathbf{C}
$$

We set for $f \in \oplus^{d} L^{2}\left(\mathbf{R}^{d}\right)$

$$
\phi(f):=\phi(\Re f)+i \phi(\Im f)
$$

Let Ω be the identity function in $L^{2}(Q)$. Set

$$
L_{0}^{2}(Q):=\left\{: \phi\left(f_{1}\right) \cdots \phi\left(f_{n}\right):, \Omega \mid f_{j} \in \oplus^{d} L^{2}\left(\mathbf{R}^{d}\right), j=1, \ldots, n, n \in \mathbf{N}\right\}
$$

where the wick product : $\phi\left(f_{1}\right) \cdots \phi\left(f_{n}\right)$: is recursively defined by

$$
\begin{gathered}
: \phi(f):=\phi(f), \\
: \phi(f) \phi\left(f_{1}\right) \cdots \phi\left(f_{n}\right)::=\phi(f): \phi\left(f_{1}\right) \cdots \phi\left(f_{n}\right): \\
-\frac{1}{2} \sum_{j=1}^{n}\left(\bar{f}, f_{j}\right): \phi\left(f_{1}\right) \cdots \phi \widehat{\left(f_{j}\right)} \cdots \phi\left(f_{n}\right):
\end{gathered}
$$

It is known that $L_{0}^{2}(Q)$ is dense in $L^{2}(Q)$ and

$$
\left(: \phi\left(f_{1}\right) \cdots \phi\left(f_{n}\right):,: \phi\left(g_{1}\right) \cdots \phi\left(g_{m}\right):\right)_{L^{2}(Q)}=\delta_{n m} \sum_{\pi \in \mathcal{G}_{\mathrm{n}}} q\left(f_{1}, g_{\pi(1)}\right) \cdots q\left(f_{n}, g_{\pi(n)}\right),
$$

[^7]where \mathcal{G}_{n} denotes the set of the n th-degree permutations. Let $T: L^{2}\left(\mathbf{R}^{d}\right) \rightarrow L^{2}\left(\mathbf{R}^{d}\right)$ be a contractive operator. We define a contractive operator ${ }^{20} \Gamma(T): L^{2}(Q) \rightarrow L^{2}(Q)$ by
\[

$$
\begin{gathered}
\Gamma(T): \phi\left(f_{1}\right) \cdots \phi\left(f_{n}\right)::=: \phi\left([T] f_{1}\right) \cdots \phi\left([T] f_{n}\right):, \\
\Gamma(T) \Omega:=\Omega
\end{gathered}
$$
\]

where $[T]:=\underbrace{T \oplus \cdots \oplus T}_{d}$. Let h be a self-adjoint operator of $L^{2}\left(\mathbf{R}^{d}\right)$. Then $\Gamma\left(e^{i t h}\right)$ is a strongly continuous one-parameter unitary group in t. Thus there exists a self-adjoint operator $d \Gamma(h)$ of $L^{2}(Q)$ such that

$$
\Gamma\left(e^{i t h}\right)=e^{i t d \Gamma(h)}, \quad t \in \mathbf{R} .
$$

The number operator in $L^{2}(Q)$ is defined by

$$
N:=d \Gamma(\mathbf{1})
$$

and the canonical pair of $\phi(\lambda)$ by

$$
\pi(\lambda):=e^{i \pi N / 2} \phi(\lambda) e^{-i \pi N / 2}
$$

Let

$$
\widehat{\omega}:=\omega(-i \nabla)
$$

and we define the free Hamiltonian of $L^{2}(Q)$ by

$$
H_{\mathrm{f}}:=d \Gamma(\widehat{\omega}) .
$$

Set

$$
\mathbf{A}_{\mu}(\lambda):=\phi(\underbrace{0 \oplus \cdots \overbrace{\lambda}^{\mu} \cdots \oplus 0}_{d}), \quad \mu=1, \ldots, d .
$$

Proposition 3.1 ([105]) There exists a unitary operator $\theta: \mathcal{F} \rightarrow L^{2}(Q)$ such that (1) $\theta \Omega_{\mathrm{b}}=\Omega$; (2) $\theta^{-1} H_{\mathrm{b}} \theta=H_{\mathrm{f}}$; (3) $\theta^{-1} \mathbf{A}_{\mu}(\lambda(\cdot-x)) \theta=A_{\mu}(\hat{\lambda}, x)$ for each $x \in \mathbf{R}^{d}$.

Let \mathcal{H} be a Hilbert space defined by ${ }^{21}$

$$
\mathcal{H}:=L^{2}\left(\mathbf{R}^{d}\right) \otimes L^{2}(Q) \cong \int_{\mathbf{R}^{d}}^{\oplus} L^{2}(Q) d x .
$$

[^8]Set

$$
\mathbf{A}_{\mu}:=\int_{\mathbf{R}^{d}}^{\oplus} \mathbf{A}_{\mu}(\lambda(\cdot-x)) d x
$$

The Pauli-Fierz Hamiltonian in a Schödinger representation is defined by

$$
H:=\frac{1}{2}(\mathbf{p} \otimes \mathbf{1}-\alpha \mathbf{A})^{2}+V \otimes \mathbf{1}+\mathbf{1} \otimes H_{\mathrm{f}} .
$$

Let

$$
\Theta:=\int_{\mathbf{R}^{d}}^{\oplus} \theta d x .
$$

From Proposition 3.1 it follows that on a dense domain

$$
\Theta^{-1} H \Theta=H_{\mathrm{PF}} .
$$

3.2 Ergodic properties of the decoupled Hamiltonian

Let (M, m) be a σ-finite measure space. We say that $\Psi \in L^{2}(M, d m)$ is positive if $\Psi \geq 0(\Psi \neq 0)$ for a.e. M. We also say that operator A of $L^{2}(M, d m)$ is "positivity preserving" (simply we say PP) if $(\Psi, A \Phi)_{L^{2}(M, d m)} \geq 0$ for all positive Ψ, Φ, moreover, "positivity improving" (simply we say PI) if $(\Psi, A \Phi)_{L^{2}(M, d m)}>0$ for all positive Ψ, Φ. Let K be a nonnegative self-adjoint operator in $L^{2}(M, d m)$. It is well known that if $e^{-t K}$ is PI, then the ground state of K is unique and strictly positive.

Let T be a contractive operator of $L^{2}(Q)$. It is established (e.g., $\left.[88,185]\right)$ that $\Gamma(T)$ is PP and that $\Gamma(T)$ is PI if $\|T\|<1$.
Proposition $3.2([68,69,183]) e^{-t H_{\mathrm{f}}}$ is PI for all $t>0$ in $L^{2}(Q)$.
Define a set V_{0} of external potentials V by
$V_{0}: V=V_{+}-V_{-}$such that $V_{ \pm} \geq 0, V_{+} \in L_{\mathrm{loc}}^{1}\left(\mathbf{R}^{d}\right)$ and V_{-}is infinitesimally small with respect to the Laplacian in the sense of form.

Proposition 3.3 ([188]) Let $V \in V_{0}$. Then $e^{-t H_{\mathrm{p}}}$ is PI for all $t>0$ in $L^{2}\left(\mathbf{R}^{d}\right)$.
Proposition 3.4 ([110]) Let $V \in V_{0}$. Then $e^{-t\left(H_{\mathrm{p}} \otimes \mathbf{1}+\mathbf{1} \otimes H_{\mathrm{f}}\right)}$ is PI for all $t>0$ in \mathcal{H}.

Proposition 3.4 does not directly follows from Propositions 3.2 and 3.3. It is seen that $e^{-t\left(H_{\mathrm{p}} \otimes \mathbf{1}+\mathbf{1} \otimes H_{\mathrm{f}}\right)}=e^{-t\left(H_{\mathrm{p}} \otimes \mathbf{1}\right)} e^{-t\left(\mathbf{1} \otimes H_{\mathrm{f}}\right)}$, however, both of $e^{-t\left(H_{\mathrm{p}} \otimes \mathbf{1}\right)}$ and $e^{-t\left(\mathbf{1} \otimes H_{\mathrm{f}}\right)}$ are not PI, which are PP in \mathcal{H}.

By Proposition 3.4, $H_{\mathrm{p}}+H_{\mathrm{f}}$ has a strictly positive unique ground state $\phi_{\mathrm{p}} \otimes \Omega$, where ϕ_{p} denotes the ground state of H_{p}.

4 Functional integral representations

In this section we assume that $\hat{\lambda} / \sqrt{\omega}, \hat{\lambda}, \sqrt{\omega} \hat{\lambda}, \omega \hat{\lambda} \in L^{2}\left(\mathbf{R}^{d}\right),|\alpha| \ll 1, V$ is relatively bounded with respect to the Laplacian. Set

$$
H=H_{0}+H_{\mathrm{f}}+V
$$

where

$$
H_{0}:=\frac{1}{2}(\mathbf{p}-\alpha \mathbf{A})^{2} .
$$

We want to construct a functional integral representation of the form

$$
\left(\Phi, e^{-\beta_{0} K} e^{-t_{1} H} f_{1} e^{-\beta_{1} K} e^{-\left(t_{2}-t_{1}\right) H} f_{2} \cdots f_{m-1} e^{-\beta_{m-1} K} e^{-\left(t_{m}-t_{m-1}\right) H} \Psi\right)_{\mathcal{H}}
$$

where $f_{j} \in L^{\infty}\left(\mathbf{R}^{d}\right), j=1, \ldots, m-1, K$ is a nonnegative self-adjoint operator.

4.1 A decomposition of $e^{-t d \Gamma(h(-i \nabla))}$ and Gaussian random processes

For $f, g \in \oplus^{d} L^{2}\left(\mathbf{R}^{d+1}\right)$, we define

$$
q_{0}(f, g):=\int_{\mathbf{R}^{d+1}} d_{\mu \nu}(k) \overline{\hat{f}_{\mu}}\left(k, k_{0}\right) \hat{g}_{\nu}\left(k, k_{0}\right) d k d k_{0}
$$

Let $\left(Q_{0}, \nu_{0}\right)$ denote a probability measure space and $\phi_{0}(f)$ be a Gaussian random process indexed by real $f \in \oplus^{d} L^{2}\left(\mathbf{R}^{d+1}\right)$ with a covariance

$$
\int_{Q_{0}} \phi_{0}(f) \phi_{0}(g) \nu_{0}\left(d \phi_{0}\right)=\frac{1}{2} q_{0}(f, g) .
$$

For $f \in \oplus^{d} L^{2}\left(\mathbf{R}^{d+1}\right)$, we define

$$
\phi_{0}(f)=\phi_{0}(\Re f)+i \phi_{0}(\Im f) .
$$

Let Ω_{0} be the identity function in $L^{2}\left(Q_{0}\right)$. Let $j_{t}: L^{2}\left(\mathbf{R}^{d}\right) \rightarrow L^{2}\left(\mathbf{R}^{d+1}\right)$ be defined by

$$
\widehat{{j_{t} f}}\left(k, k_{0}\right)=\frac{e^{-i t k_{0}}}{\sqrt{2 \pi}} \sqrt{\frac{\omega(k)}{\omega(k)^{2}+\left|k_{0}\right|^{2}}} \hat{f}(k), \quad\left(k, k_{0}\right) \in \mathbf{R}^{d} \times \mathbf{R}, \quad t \in \mathbf{R}
$$

It is immediate to see that

$$
\left(j_{t} f, j_{s} g\right)_{L^{2}\left(\mathbf{R}^{d+1}\right)}=\frac{1}{2}\left(\hat{f}, e^{-|t-s| \omega} \hat{g}\right)_{L^{2}\left(\mathbf{R}^{d}\right)}
$$

namely

$$
\begin{equation*}
j_{t}^{*} j_{s}=\frac{1}{2} e^{-|t-s| \omega(-i \nabla)}, \quad t, s \in \mathbf{R} . \tag{4.1}
\end{equation*}
$$

Let $J_{t}: L^{2}(Q) \rightarrow L^{2}\left(Q_{0}\right)$ be defined by

$$
J_{t}: \phi\left(f_{1}\right) \cdots \phi\left(f_{n}\right)::=: \phi_{0}\left(\left[j_{t}\right] f_{1}\right) \cdots \phi_{0}\left(\left[j_{t}\right] f_{n}\right):, \quad J_{t} \Omega=\Omega_{0}
$$

It is easily seen that, by $(4.1), J_{t}$ extends to an isometry of $L^{2}(Q)$ to $L^{2}\left(Q_{0}\right)$ such that

$$
\begin{equation*}
J_{t}^{*} J_{s}=e^{-|t-s| H_{\mathrm{f}}}, \quad t, s \in \mathbf{R} \tag{4.2}
\end{equation*}
$$

In addition to ϕ_{0}, we need another Gaussian random process. For $f, g \in \oplus^{d} L^{2}\left(\mathbf{R}^{d+2}\right)$, we define

$$
q_{1}(f, g):=\int_{\mathbf{R}^{d+2}} d_{\mu \nu}(k) \overline{\hat{f}_{\mu}}\left(k, k_{0}, k_{1}\right) \hat{g}_{\nu}\left(k, k_{0}, k_{1}\right) d k d k_{0} d k_{1} .
$$

Let $\left(Q_{1}, \nu_{1}\right)$ denote a probability measure space and $\phi_{1}(f)$ be a Gaussian random process indexed by real $f \in \oplus^{d} L^{2}\left(\mathbf{R}^{d+2}\right)$ with a covariance

$$
\int_{Q_{1}} \phi_{1}(f) \phi_{1}(g) \nu_{1}\left(d \phi_{1}\right)=\frac{1}{2} q_{1}(f, g) .
$$

For $f \in \oplus^{d} L^{2}\left(\mathbf{R}^{d+2}\right)$, we define

$$
\phi_{1}(f)=\phi_{1}(\Re f)+i \phi_{1}(\Im f)
$$

Let Ω_{1} be the identity function in $L^{2}\left(Q_{1}\right)$. Let h be a nonnegative multiplication operator of $L^{2}\left(\mathbf{R}^{d}\right)$. We define $\xi_{t}: L^{2}\left(\mathbf{R}^{d+1}\right) \rightarrow L^{2}\left(\mathbf{R}^{d+2}\right)$ by

$$
\widehat{\xi_{t} f}\left(k, k_{0}, k_{1}\right)=\frac{e^{-i t k_{1}}}{\sqrt{\pi}} \sqrt{\frac{h(k)}{h(k)^{2}+\left|k_{1}\right|^{2}}} \hat{f}\left(k, k_{0}\right) \quad\left(k, k_{0}, k_{1}\right) \in \mathbf{R}^{d} \times \mathbf{R} \times \mathbf{R}, \quad t \in \mathbf{R}
$$

Similarly to (4.1) we have

$$
\begin{equation*}
\xi_{t}^{*} \xi_{s}=\frac{1}{2} e^{-|t-s|(h(-i \nabla) \otimes \mathbf{1})} \tag{4.3}
\end{equation*}
$$

under identification $L^{2}\left(\mathbf{R}^{d+1}\right) \cong L^{2}\left(\mathbf{R}^{d}\right) \otimes L^{2}(\mathbf{R})$. Define $\Xi_{t}: L^{2}\left(Q_{0}\right) \rightarrow L^{2}\left(Q_{1}\right)$ by

$$
\Xi_{t}: \phi_{0}\left(f_{1}\right) \cdots \phi_{0}\left(f_{n}\right)::=: \phi_{1}\left(\left[\xi_{t}\right] f_{1}\right) \cdots \phi_{1}\left(\left[\xi_{t}\right] f_{n}\right):, \quad \Xi_{t} \Omega_{1}=\Omega_{0}
$$

From (4.3) it follows that

$$
\begin{equation*}
\Xi_{t}^{*} \Xi_{s}=e^{-|t-s| d \Gamma(h(-i \nabla) \otimes \mathbf{1})} . \tag{4.4}
\end{equation*}
$$

Figure 1: (4.2) and (4.4)

Figure 2: (4.5)

From the definitions of J_{t} and Ξ_{s}, we see that

$$
\begin{equation*}
J_{s} e^{-t d \Gamma(h(-i \nabla))}=e^{-t d \Gamma(h(-i \nabla) \otimes \mathbf{1})} J_{s} . \tag{4.5}
\end{equation*}
$$

We define the canonical pairs of $\phi_{0}(f)$ and $\phi_{1}(g)$ by

$$
\begin{aligned}
\pi_{0}(f) & :=e^{i \pi N_{0} / 2} \phi_{0}(f) e^{-i \pi N_{0} / 2} \\
\pi_{1}(g) & :=e^{i \pi N_{1} / 2} \phi_{1}(g) e^{-i \pi N_{1} / 2}
\end{aligned}
$$

respectively, where N_{0} and N_{1} are the number operators in $L^{2}\left(Q_{0}\right)$ and $L^{2}\left(Q_{1}\right)$, respectively.

4.2 Functional integrals

Let $\mathbf{b}(t):=\left\{\mathbf{b}_{\mu}(t)\right\}$ be the d-dimensional Brownian motion starting at the origin on the probability measure space $\left(\mathrm{C}\left([0, \infty) ; \mathbf{R}^{d}\right), d \mathbf{b}\right)$. Let $X_{s}:=\mathbf{b}(s)+x$ be the Wiener path and $d P:=d x \otimes d \mathbf{b}$ on $\mathcal{W}:=\mathbf{R}^{d} \times \mathrm{C}\left([0, \infty) ; \mathbf{R}^{d}\right)$.

We define the subspace of coherent states in $L^{2}(Q)$ by

$$
L_{\mathrm{C}}^{2}(Q):=\left\{F\left(\phi\left(f_{1}\right), \cdots, \phi\left(f_{n}\right)\right) \mid F \in \mathcal{S}\left(\mathbf{R}^{n}\right), f_{j} \in \oplus^{d} L^{2}\left(\mathbf{R}^{d}\right), j=1, \ldots, n, n \in \mathbf{N}\right\}
$$

where $\mathcal{S}\left(\mathbf{R}^{n}\right)$ denotes the set of Schwartz test functions on \mathbf{R}^{n}.

Theorem 4.1 (Functional integral representation I [105, 111])

Let h be a nonnegative multiplication operator of $L^{2}\left(\mathbf{R}^{d}\right)$ and set $K:=d \Gamma(h(-i \nabla))$. Let $0 \leq t_{1} \leq t_{2} \leq \cdots \leq t_{m}$, and $0 \leq \tau_{1} \leq \tau_{2} \leq \cdots \leq \tau_{m}$. We assume that $F_{0}, F_{m} \in \mathcal{H}, F_{1}, \cdots, F_{m-1} \in L_{\mathrm{C}}^{2}(Q) \widehat{\otimes} L^{\infty}\left(\mathbf{R}^{d}\right)$. Set $\widehat{F}_{j}:=\Xi_{\tau_{j}} J_{t_{j}} F_{j}$. Then

$$
\begin{gathered}
\left(F_{0}, e^{-\tau_{1} K} e^{-t_{1} H} F_{1} e^{-\left(\tau_{2}-\tau_{1}\right) K} e^{-\left(t_{2}-t_{1}\right) H} F_{2} \cdots F_{m-1} e^{-\left(\tau_{m}-\tau_{m-1}\right) K} e^{-\left(t_{m}-t_{m-1}\right) H} F_{m}\right) \\
=\int_{\mathcal{W}} d P e^{-\int_{0}^{t} V\left(X_{s}\right) d s}\left(\widehat{F}_{0}\left(X_{0}\right), e^{i \alpha \phi_{1}(\mathbf{L}(X))} \widehat{F}_{t_{1}}\left(X_{t_{1}}\right) \cdots \widehat{F}_{t_{m}}\left(X_{t_{m}}\right)\right)_{L^{2}\left(Q_{1}\right)},
\end{gathered}
$$

where

$$
\mathbf{L}(X):=\oplus_{\mu=1}^{d} \sum_{j=1}^{m} \int_{t_{j-1}}^{t_{j}} \xi_{\tau_{j}} j_{s} \lambda\left(\cdot-X_{s}\right) d \mathbf{b}_{\mu}(s) \in \oplus^{d} L^{2}\left(\mathbf{R}^{d+2}\right),
$$

and $\int_{T}^{S} \cdots d \mathbf{b}_{\mu}(s)$ denotes $L^{2}\left(\mathbf{R}^{d+2}\right)$-valued ${ }^{22}$ stochastic integrals. ${ }^{23}$
${ }^{22} \lambda\left(\cdot-X_{s}\right) \in L^{2}\left(\mathbf{R}^{d}\right), j_{s} \lambda\left(\cdot-X_{s}\right) \in L^{2}\left(\mathbf{R}^{d+1}\right), \xi_{\tau_{j}} j_{s} \lambda\left(\cdot-X_{s}\right) \in L^{2}\left(\mathbf{R}^{d+2}\right)$.
${ }^{23}$ Let $F: \mathbf{R} \times \mathbf{R}^{d} \rightarrow K$, where K is a Hilbert space. Then K-valued stochastic integral is defined by

$$
\int_{0}^{t} F(s, \mathbf{b}(s)) d \mathbf{b}_{\mu}(s):=s-\lim _{n \rightarrow \infty} \sum_{k=1}^{2^{n}} F\left(\frac{k-1}{2^{n}} t, \mathbf{b}\left(\frac{k-1}{2^{n}} t\right)\right)\left\{\mathbf{b}_{\mu}\left(\frac{k}{2^{n}} t\right)-\mathbf{b}_{\mu}\left(\frac{k-1}{2^{n}} t\right)\right\}
$$

in $L^{2}\left(\mathrm{C}\left(\mathbf{R} ; \mathbf{R}^{d}\right) ; K\right)$. See [188].

Proof: For instance we set $V=0$. By the Trotter-Kato product formula [142] we have

$$
e^{-t H}=s-\lim _{n \rightarrow \infty}\left(e^{-t / n H_{0}} e^{-t / n H_{\mathrm{f}}}\right)^{n}
$$

Put $a_{n}:=t_{n}-t_{n-1}$ and $b_{n}:=\tau_{n}-\tau_{n-1}$. Thus

$$
\begin{gathered}
\lim _{n \rightarrow \infty}\left(F_{0}, e^{-b_{1} K}\left(e^{-a_{1} / n H_{0}} e^{-a_{1} / n H_{\mathrm{f}}}\right)^{n} F_{1} e^{-b_{2} K}\left(e^{-a_{1} / n H_{0}} e^{-a_{1} / n H_{\mathrm{f}}}\right)^{n} F_{2} e^{-b_{3} K} \ldots\right. \\
\left.\cdots F_{m-1} e^{-b_{m} K}\left(e^{-a_{m} / n H_{0}} e^{-a_{m} / n H_{\mathrm{f}}}\right)^{n} F_{m}\right)
\end{gathered}
$$

Since $[105,188]$

$$
e^{-t H_{0}}=s-\lim _{n \rightarrow \infty}\left(Q_{t / 2^{n}}\right)^{2^{n}}
$$

where $Q_{s}: \mathcal{H} \rightarrow \mathcal{H}$ is defined by, for $F(\cdot) \in \mathcal{H}$,

$$
\begin{gather*}
Q_{s} F(x):=\int_{\mathbf{R}^{d}} p_{s}(x-y) e^{(i \alpha / 2) \phi\left(\oplus_{\mu=1}^{d}(\lambda(\cdot-x)+\lambda(\cdot-y)) \cdot\left(x_{\mu}-y_{\mu}\right)\right)} F(y) d y \tag{4.6}\\
Q_{0} F(x):=F(x) \tag{4.7}
\end{gather*}
$$

where $p_{t}(x):=(2 \pi t)^{-d / 2} \exp \left(-|x|^{2} / 2 t\right)$. Using the facts that

$$
\begin{gathered}
e^{-t H_{\mathrm{f}}}=J_{T}^{*} J_{T+t}, \\
J_{s} e^{\phi(f)} J_{s}^{*}=\left(J_{s} J_{s}^{*}\right) e^{\phi_{0}\left(j_{s} f\right)}\left(J_{s} J_{s}^{*}\right)
\end{gathered}
$$

as an operator, and the Markov property ${ }^{24}$ of $J_{s} J_{s}^{*}[88,185]$, we have

$$
\begin{gathered}
=\left(J_{0} F_{0},\left(e^{-b_{1} K}\right) e^{i \alpha \phi_{0}\left(t_{0}, t_{1}\right)}\left(J_{t_{1}} F_{1}\right)\left(e^{-b_{2} K}\right) e^{i \alpha \phi_{0}\left(t_{1}, t_{2}\right)} \cdots\right. \\
\left.\cdots\left(J_{t_{m-1}} F_{m-1}\right)\left(e^{-b_{m} K}\right) e^{i \alpha \phi_{0}\left(t_{m-1}, t_{m}\right)} J_{t_{m}} F_{m}\right)
\end{gathered}
$$

where

$$
\phi_{0}\left(t_{a}, t_{b}\right):=\phi_{0}\left(\oplus_{\mu=1}^{d} \int_{t_{a}}^{t_{b}} j_{s} \lambda\left(\cdot-X_{s}\right) d \mathbf{b}_{\mu}(s)\right) .
$$

Using also that

$$
\begin{gathered}
\Xi_{T+t}^{*} \Xi_{T}=e^{-t K} \\
\Xi_{t} e^{\phi_{0}(f)} \Xi_{t}^{*}=\left(\Xi_{t} \Xi_{t}^{*}\right) e^{\phi_{0}\left(\xi_{t} f\right)}\left(\Xi_{t} \Xi_{t}^{*}\right)
\end{gathered}
$$

as an operator, we get the desired results by the Markov property of $\Xi_{t} \Xi_{t}^{*}$. QED

[^9]Corollary 4.2 Let $F, G \in \mathcal{H}$. Then

$$
\left(F, e^{-t H} G\right)=\int_{\mathcal{W}} d P e^{-\int_{0}^{t} V\left(X_{s}\right) d s}\left(J_{0} F\left(X_{0}\right), e^{i \alpha \phi_{0}\left(\mathbf{K}_{t}(X)\right)} J_{t} G\left(X_{t}\right)\right)_{L^{2}\left(Q_{0}\right)}
$$

where

$$
\mathbf{K}_{t}(X):=\oplus_{\mu=1}^{d} \int_{0}^{t} j_{s} \lambda\left(\cdot-X_{s}\right) d \mathbf{b}_{\mu}(s)
$$

In particular, for $f \in L^{2}\left(\mathbf{R}^{d}\right)$,

$$
\left(f \otimes \Omega, e^{-t H} f \otimes \Omega\right)=\int_{\mathcal{W}} d P e^{-\int_{0}^{t} V\left(X_{s}\right) d s} \overline{f\left(X_{0}\right)} f\left(X_{t}\right) e^{-\left(\alpha^{2} / 2\right) q_{0}\left(\mathbf{K}_{t}(X)\right)} .
$$

We immediately see a Kato-type inequality ([140]) ${ }^{25}$
Corollary 4.3 (Diamagnetic inequality $[103,105])$ Let $F, G \in \mathcal{H}$. Then

$$
\left|\left(F, e^{-t H} G\right)\right| \leq\left(|F|, e^{-t\left(H_{\mathrm{p}}+H_{\mathrm{f}}\right)}|G|\right) .
$$

In particular

$$
\inf \sigma\left(H_{\mathrm{p}}\right) \leq \inf \sigma(H)
$$

Proof: Note that $\left|J_{t} G\right|=J_{t}|G|$, since J_{t} is PP, and that $\inf \sigma\left(H_{\mathrm{p}}+H_{\mathrm{f}}\right)=\inf \sigma\left(H_{\mathrm{p}}\right)$. Thus corollary follows directly from Corollary 4.2.

QED

Corollary 4.4 Let $f \in L^{2}\left(\mathbf{R}^{d}\right)$. Then

$$
\begin{gather*}
\left(f \otimes \Omega, e^{-t H} e^{-s K} e^{-t H} f \otimes \Omega\right) \\
=\int_{\mathcal{W}} d P e^{-\int_{0}^{t} V\left(X_{s}\right) d s} \overline{f\left(X_{0}\right)} f\left(X_{2 t}\right) e^{-\left(\alpha^{2} / 2\right) q_{0}\left(\mathbf{K}_{2 t}\right)+\left(\alpha^{2} / 2\right) F(X)}, \tag{4.8}
\end{gather*}
$$

where

$$
F(X):=2 q_{1}\left(\oplus_{\mu=1}^{d} \int_{0}^{t} \xi_{0} j_{s} \lambda\left(\cdot-X_{s}\right) d \mathbf{b}_{\mu}(s), \oplus_{\mu=1}^{d} \int_{t}^{2 t} \xi_{t} j_{s^{\prime}} \lambda\left(\cdot-X_{s^{\prime}}\right) d \mathbf{b}_{\mu}\left(s^{\prime}\right)\right)
$$

Proof: By Theorem 4.1 we have

$$
\begin{aligned}
\text { L.H.S. } \begin{aligned}
(4.8) & =\int_{\mathcal{W}} d P e^{-\int_{0}^{2 t} V\left(X_{s}\right) d s} \bar{f}\left(X_{0}\right) f\left(X_{2 t}\right)\left(\Omega_{1}, e^{i \alpha \phi_{1}(W)} \Omega_{1}\right)_{L^{2}\left(Q_{1}\right)} \\
& =\int_{\mathcal{W}} d P e^{-\int_{0}^{2 t} V\left(X_{s}\right) d s} \bar{f}\left(X_{0}\right) f\left(X_{2 t}\right) e^{-\left(\alpha^{2} / 2\right) q_{1}(W)}
\end{aligned}, .
\end{aligned}
$$

[^10]where
$$
W=\oplus_{\mu=1}^{d}\left(\int_{0}^{t} \xi_{0} j_{s} \lambda\left(\cdot-X_{s}\right) d \mathbf{b}_{\mu}(s)+\int_{t}^{2 t} \xi_{t} j_{s} \lambda\left(\cdot-X_{s}\right) d \mathbf{b}_{\mu}(s)\right)
$$

Since

$$
q_{1}(W)=q_{0}\left(\mathbf{K}_{2 t}\right)-F(X),
$$

we get the desired result.
QED

Remark 4.5 Formally we see that

$$
\begin{gathered}
F(X)=\int_{0}^{t} d \mathbf{b}_{\mu}(s) \int_{t}^{2 t} d \mathbf{b}_{\nu}\left(s^{\prime}\right) \int_{\mathbf{R}^{d}}\left(1-e^{-t h(k)}\right) d_{\mu \nu}(k) e^{-\left|s-s^{\prime}\right| \omega(k)}|\hat{\lambda}(k)|^{2} e^{i k\left(X_{s}-X_{s^{\prime}}\right)} d k \\
q_{0}\left(\mathbf{K}_{t}(X)\right)=\int_{0}^{t} d \mathbf{b}_{\mu}(s) \int_{0}^{t} d \mathbf{b}_{\nu}\left(s^{\prime}\right) \int_{\mathbf{R}^{d}} d_{\mu \nu}(k) e^{-\left|s-s^{\prime}\right| \omega(k)} e^{i k\left(X_{s}-X_{s^{\prime}}\right)}|\hat{\lambda}(k)|^{2} d k
\end{gathered}
$$

This formal expression appears in [94, 110, 70, 194].

5 Essential self-adjointness for arbitrary $\alpha \in \mathbf{R}$

5.1 Translation invariance and invariant domains

We redefine $Q_{s}: \mathcal{H} \rightarrow \mathcal{H}$ for arbitrary $\alpha \in \mathbf{R}$ by

$$
\begin{gather*}
Q_{s} F(x):=\int_{\mathbf{R}^{d}} p_{s}(x-y) e^{(i \alpha / 2) \phi\left(\oplus_{\mu=1}^{d}(\lambda(\cdot-x)+\lambda(-y)) \cdot\left(x_{\mu}-y_{\mu}\right)\right)} F(y) d y, \quad s>0, \tag{5.1}\\
Q_{0} F(x):=F(x) . \tag{5.2}
\end{gather*}
$$

Let

$$
S(t):=s-\lim _{n \rightarrow \infty}\left(Q_{t / 2^{n}}\right)^{2^{n}}
$$

Let $\hat{\lambda}, \omega \hat{\lambda} \in L^{2}\left(\mathbf{R}^{d}\right)$. Thus by a direct calculation we see that $S(t)$ exists and

$$
(F, S(t) G)=\int_{\mathcal{W}} d P\left(G\left(X_{0}\right), e^{i \alpha \phi(\mathbf{Z}(X))} G\left(X_{t}\right)\right)
$$

where

$$
\mathbf{Z}(X):=\oplus_{\mu=1}^{d} \int_{0}^{t} \lambda\left(\cdot-X_{s}\right) d \mathbf{b}_{\mu}(s) \in \oplus^{d} L^{2}\left(\mathbf{R}^{d}\right)
$$

By the definition of Q_{s} we immediately see that

$$
(F, S(t) S(s) G)=(F, S(s+t) G)
$$

$$
\lim _{t \rightarrow \infty}(F, S(t) G)=(F, S(0) G)=(F, G)
$$

Hence $S(t), t \geq 0$, is a strongly continuous one-parameter semigroup in t. Thus there exists a nonnegative self-adjoint operator \widehat{H}_{0} in $L^{2}(Q)$ such that

$$
S(t)=e^{-t \widehat{H}_{0}}
$$

Lemma 5.1 Let $\hat{\lambda}, \omega \hat{\lambda} \in L^{2}\left(\mathbf{R}^{d}\right)$. Then, for all $\alpha \in \mathbf{R}$,

$$
H_{0}\left\lceil_{D(\Delta) \cap D(N)} \subset \widehat{H}_{0}\right.
$$

Proof: For $F \in C_{0}^{\infty}\left(\mathbf{R}^{d}\right) \widehat{\otimes} L_{0}^{2}(Q)$ and $G \in \mathcal{H}$, we have [48, 105]

$$
\begin{equation*}
\left(G, \frac{1}{t}\left(e^{-t \widehat{H}_{0}}-\mathbf{1}\right) F\right)_{\mathcal{H}}=-\int_{0}^{1} d s\left(e^{-t \widehat{H}_{0}} G, H_{0} F\right)_{\mathcal{H}} . \tag{5.3}
\end{equation*}
$$

Since

$$
\left\|H_{0} F\right\| \leq C(\|\Delta F\|+\|N F\|+\|F\|)
$$

with some constant C, by a limiting argument we extend (5.3) to $F \in D(\Delta) \cap D(N)$. Take $G \in D\left(\widehat{H}_{0}\right)$. We have

$$
-\left(\widehat{H}_{0} G, F\right)=\lim _{t \rightarrow \infty}\left(G, \frac{1}{t}\left(e^{-t \widehat{H}_{0}}-\mathbf{1}\right) F\right)=-\int_{0}^{1} d s\left(G, H_{0} F\right)=-\left(G, H_{0} F\right)
$$

Then $\left(\widehat{H}_{0} G, F\right)=\left(G, H_{0} F\right)$, which yields that $F \in D\left(\widehat{H}_{0}\right)$ and $\widehat{H}_{0} F=H_{0} F$. Hence lemma follows.

Lemma 5.2 Let $\hat{\lambda} / \sqrt{\omega}, \hat{\lambda}, \sqrt{\omega} \hat{\lambda}, \omega \hat{\lambda} \in L^{2}\left(\mathbf{R}^{d}\right)$. Then we have, for all $\alpha \in \mathbf{R}$, that

$$
\begin{equation*}
H_{0}\left\lceil_{D(\Delta) \cap D\left(H_{\mathrm{f}}\right)} \subset \widehat{H}_{0} .\right. \tag{5.4}
\end{equation*}
$$

Proof: Since (5.3) extends to $F \in D(\Delta) \cap D\left(H_{\mathrm{f}}\right)$, lemma follows in the similar way as that of Lemma 5.1.

We define

$$
\widehat{H}:=\widehat{H}_{0} \dot{+} H_{\mathrm{f}}
$$

Let $V=0$. We note that, for $\hat{\lambda}, \omega \hat{\lambda} \in L^{2}\left(\mathbf{R}^{d}\right)$,

$$
\begin{equation*}
H\left\lceil_{D(\Delta) \cap D(N) \cap D\left(H_{\mathrm{f}}\right)} \subset \widehat{H},\right. \tag{5.5}
\end{equation*}
$$

moreover for $\hat{\lambda} / \sqrt{\omega}, \hat{\lambda}, \sqrt{\omega} \hat{\lambda}, \omega \hat{\lambda} \in L^{2}\left(\mathbf{R}^{d}\right)$,

$$
\begin{equation*}
H \Gamma_{D(\Delta) \cap D\left(H_{\mathrm{f}}\right)} \subset \widehat{H} \tag{5.6}
\end{equation*}
$$

Similarly to the proof of Theorem 4.1 we have

$$
\begin{equation*}
\left(F, e^{-t \widehat{H}} G\right)=\int_{\mathcal{W}} d P\left(J_{0} F\left(X_{0}\right), e^{i \alpha \phi_{0}\left(\mathbf{K}_{t}(X)\right)} J_{t} G\left(X_{t}\right)\right) . \tag{5.7}
\end{equation*}
$$

In particular, for a.e. $(x, \phi) \in \mathbf{R}^{d} \times Q$,

$$
\left(e^{-t \widehat{H}} F\right)(\phi, x)=\mathbf{E J}_{t} G\left(X_{t}\right)
$$

where \mathbf{E} denotes the expectation value with respect to $d \mathbf{b}$ and

$$
\mathbf{J}_{t}:=\mathbf{J}_{t}(X):=J_{0}^{*} e^{i \alpha \phi_{0}\left(\mathbf{K}_{t}(X)\right)} J_{t}
$$

The following Burkholder type inequality [138, p.166] is useful to estimate stochastic integrals.

Lemma 5.3 Let $\omega^{k / 2} \hat{\lambda} \in L^{2}\left(\mathbf{R}^{d}\right), k=0,1, \ldots, n$. Then

$$
\mathbf{E}\left\|(\widehat{\omega} \otimes \mathbf{1})^{k / 2} \int_{0}^{t} j_{s} \lambda\left(\cdot-X_{s}\right) d \mathbf{b}_{\mu}(s)\right\|_{L^{2}\left(\mathbf{R}^{d+1}\right)}^{2 m} \leq \frac{(2 m)!}{2^{m}} t^{m}\left\|\omega^{k / 2} \hat{\lambda}\right\|_{L^{2}\left(\mathbf{R}^{d}\right)}^{2 m}
$$

Proof: See [112, Theorem 4.6].
QED

Lemma 5.4 (1) Let $\hat{\lambda}, \omega^{n} \hat{\lambda} \in L^{2}\left(\mathbf{R}^{d}\right)$ and $G \in D\left(H_{\mathrm{f}}^{n}\right), n=1,2$. Then

$$
e^{-t \widehat{H}} G \in D\left(H_{\mathrm{f}}^{2}\right)
$$

(2) Let $\hat{\lambda}, \omega \hat{\lambda} \in L^{2}\left(\mathbf{R}^{d}\right)$, and $G \in D\left(N^{k}\right)$. Then

$$
e^{-t \widehat{H}} G \in D\left(N^{k}\right)
$$

Proof: We prove (1). (2) is proved similarly. It is enough to prove both of

$$
\begin{equation*}
\left(e^{-t \widehat{H}} G\right)(x) \in D\left(H_{\mathrm{f}}^{2}\right), \quad \text { a.e. } x \in \mathbf{R}^{d} \tag{5.8}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{\mathbf{R}^{d}}\left\|H_{\mathrm{f}}^{2} e^{-t \widehat{H}} G(x)\right\|_{L^{2}(Q)}^{2} d x<\infty \tag{5.9}
\end{equation*}
$$

It is immediately seen that J_{t} (resp. J_{t}^{*}) maps $D\left(H_{\mathrm{f}}^{2}\right)\left(\operatorname{resp} . D\left(d \Gamma(\widehat{\omega} \otimes \mathbf{1})^{2}\right)\right)$ to $D\left(d \Gamma(\widehat{\omega} \otimes \mathbf{1})^{2}\right)\left(\right.$ resp. $\left.D\left(H_{\mathrm{f}}^{2}\right)\right)$, and that $e^{i \alpha \phi_{0}\left(\mathbf{K}_{t}(X)\right)}$ leaves $D\left(d \Gamma(\widehat{\omega} \otimes \mathbf{1})^{2}\right)$ invariant. Then we have for $\Psi \in D\left(H_{\mathrm{f}}^{2}\right)$,

$$
H_{\mathrm{f}}^{2} \mathbf{J}_{t} \Psi=J_{t}^{*} e^{i \alpha \phi_{0}\left(\mathbf{K}_{t}(X)\right)} S(X)^{2} J_{0} \Psi, \quad \text { a.e. }(x, \mathbf{b}) \in \mathcal{W}
$$

where

$$
S(X):=d \Gamma(\widehat{\omega} \otimes \mathbf{1})+\alpha \pi_{0}\left([\hat{\omega} \otimes \mathbf{1}] \mathbf{K}_{t}(X)\right)+\left(\alpha^{2} / 2\right) q_{0}\left([\hat{\omega} \otimes \mathbf{1}] \mathbf{K}_{t}(X), \mathbf{K}_{t}(X)\right) .
$$

Using Burkholder inequality (5.3), and fundamental inequalities (2.5),(2.6) and (2.7), we have

$$
\mathbf{E}\left\|H_{\mathrm{f}}^{2} \mathbf{J}_{t} G(X)\right\|_{L^{2}(Q)} \leq C\left\|\left(H_{\mathrm{f}}+\mathbf{1}\right)^{2} G(x)\right\|_{L^{2}(Q)}
$$

with some constant C. Since $\left(e^{-t \widehat{H}} F\right)(\phi, x)=\mathbf{E} \mathbf{J}_{t} G\left(X_{t}\right)$,

$$
\left\|H_{\mathrm{f}}^{2} e^{-t \widehat{H}} G\right\|_{\mathcal{H}} \leq C\left\|\left(H_{\mathrm{f}}+\mathbf{1}\right)^{2} G\right\|_{\mathcal{H}}
$$

Hence lemma follows.
QED
We define the total momentum \mathbf{P}_{μ} by

$$
\mathbf{P}_{\mu}:=\mathbf{p}_{\mu} \otimes \mathbf{1}+\mathbf{1} \otimes \mathbf{P}_{\mathrm{f}, \mu}, \quad \mu=1, \ldots, d
$$

where

$$
\mathbf{P}_{\mathrm{f}, \mu}:=d \Gamma\left(-i \nabla_{\mu}\right) .
$$

By the definitions of $e^{-t \widehat{H}}$ we see that (translation invariance) ${ }^{26}$

$$
\begin{equation*}
e^{-i s \mathbf{P}_{\mu}} e^{-t \widehat{H}}=e^{-t \widehat{H}} e^{-i s \mathbf{P}_{\mu}}, \quad t \geq 0, \quad s \in \mathbf{R} \tag{5.10}
\end{equation*}
$$

Lemma 5.5 Let $\hat{\lambda}, \omega \hat{\lambda}, \omega^{2} \hat{\lambda} \in L^{2}\left(\mathbf{R}^{d}\right)$ and

$$
D_{\mu}:=D\left(\mathbf{p}_{\mu}^{2}\right) \cap D\left(H_{\mathrm{f}} \mathbf{p}_{\mu}\right) \cap D\left(H_{\mathrm{f}}^{2}\right), \quad \mu=1, \ldots, d
$$

Then, for all $t \geq 0$,

$$
e^{-t \widehat{H}} D_{\mu} \subset D_{\mu}, \quad \mu=1, \ldots, d
$$

[^11]Proof: By translation invariance (5.10), it follows that, for $\Psi \in D\left(\mathbf{P}_{\mu}\right), e^{-t \widehat{H}} \Psi \in$ $D\left(\mathbf{P}_{\mu}\right)$ and

$$
\begin{equation*}
\mathbf{P}_{\mu} e^{-t \widehat{H}} \Psi=e^{-t \widehat{H}} \mathbf{P}_{\mu} \Psi \tag{5.11}
\end{equation*}
$$

Note that

$$
D\left(H_{\mathrm{f}}^{n}\right) \subset D\left(\mathbf{P}_{\mathrm{f}, \mu}^{n}\right), \quad n=1,2 .
$$

Let $G \in D_{\mu}$. Thus $\mathbf{P}_{\mu} G \in D\left(\mathbf{P}_{\mu}\right)$, and (5.11) implies that

$$
e^{-t \widehat{H}} G \in D\left(\mathbf{P}_{\mu}^{2}\right)
$$

By Lemma 5.4, we have

$$
e^{-t \widehat{H}} G \in D\left(H_{\mathrm{f}}^{2}\right) \subset D\left(\mathbf{P}_{\mathrm{f}, \mu}^{2}\right)
$$

It is easily checked that

$$
e^{-t \widehat{H}} G \in D\left(\mathbf{P}_{\mu} \mathbf{P}_{\mathrm{f}, \mu}\right) \cap D\left(\mathbf{P}_{\mathrm{f}, \mu} \mathbf{P}_{\mu}\right)
$$

From

$$
D\left(\mathbf{p}_{\mu}^{2}\right) \supset D\left(\mathbf{P}_{\mu}^{2}\right) \cap D\left(\mathbf{P}_{\mu} \mathbf{P}_{\mathrm{f}, \mu}\right) \cap D\left(\mathbf{P}_{\mathrm{f}, \mu} \mathbf{P}_{\mu}\right) \cap D\left(\mathbf{P}_{\mathrm{f}, \mu}^{2}\right)
$$

it follows that

$$
e^{-t \widehat{H}} G \in D\left(\mathbf{p}_{\mu}^{2}\right)
$$

Since $e^{-t \widehat{H}} G \in D\left(H_{\mathrm{f}} \mathbf{p}_{\mu}\right)$ is easily seen, we get $e^{-t \widehat{H}} G \in D_{\mu}$.

5.2 Essential self-adjointness

Theorem 5.6 ([112]) Let V be a relatively bounded with respect to the Laplacian with a sufficiently small relative bound ε. Set

$$
S_{\mathrm{ess}}:=C^{\infty}(N) \cap D\left(H_{\mathrm{f}}^{2}\right) \bigcap_{\mu=1}^{d}\left\{D\left(\mathbf{p}_{\mu}^{2}\right) \cap D\left(H_{\mathrm{f}} \mathbf{p}_{\mu}\right)\right\}
$$

We assume that $\hat{\lambda}, \omega \hat{\lambda}, \omega^{2} \hat{\lambda} \in L^{2}\left(\mathbf{R}^{d}\right)$. Then H is essentially self-adjoint on $S_{\text {ess }}$ and bounded below. In particular $D(\Delta) \cap D(N) \cap D\left(H_{\mathrm{f}}\right)$ is a core of H.

Proof: We have $S_{\text {ess }} \subset D(\Delta) \cap D\left(H_{\mathrm{f}}\right) \cap D(N) \subset D(\widehat{H})$. Moreover $S_{\text {ess }}$ is invariant subspace of $e^{-t \widehat{H}}$ by Lemma 5.5. Since $\widehat{H} \Gamma_{D(\Delta) \cap D\left(H_{\mathrm{f}}\right) \cap D(N)} \subset H$ for $V=0$ by (5.5), we obtain that H for $V=0$ is essentially self-adjoint on $S_{\text {ess }}$. By a diamagnetic
inequality (Corollary 4.3), V is also relatively bounded with respect to H with a relative bound $<\varepsilon[105,188]$. Hence theorem follows from the Kato-Rellich theorem. QED

Under the assumptions of Theorem 5.6, note that it is not clear that

$$
D(H) \supset D(\Delta) \cap D\left(H_{\mathrm{f}}\right)
$$

Corollary 5.7 In addition to the assumptions of Theorem 5.6, we assume that $\hat{\lambda} / \sqrt{\omega}, \sqrt{\omega} \hat{\lambda} \in L^{2}\left(\mathbf{R}^{d}\right)$. Then H is essentially self-adjoint on

$$
S_{\mathrm{ess}}^{\prime}:=D\left(H_{\mathrm{f}}^{2}\right) \bigcap_{\mu=1}^{d}\left\{D\left(\mathbf{p}_{\mu}^{2}\right) \cap D\left(H_{\mathrm{f}} \mathbf{p}_{\mu}\right)\right\}
$$

and bounded below. In particular $D(\Delta) \cap D\left(H_{\mathrm{f}}\right)$ is a core of H.
Proof: Since $\widehat{H}\left\lceil_{D(\Delta) \cap D\left(H_{f}\right)} \subset H\right.$ by (5.4) for $V=0$, corollary holds.
QED

Corollary 5.8 (Functional integral representations II) Let $\hat{\lambda}, \omega \hat{\lambda} \in L^{2}\left(\mathbf{R}^{d}\right)$. Then, for all $\alpha \in \mathbf{R}$ and $V \in V_{0}, H:=\widehat{H} \dot{+} V_{+} \dot{-} V_{-}$is well defined and, for which the functional integral representation in Theorem 4.1 holds true.

Proof: Let $V=0$. Then the corollary is clear by (5.7). By a diamagnetic inequality (4.3), we see that V_{-}is also relatively form bounded with respect to \widehat{H}. Thus $\widehat{H} \dot{+} V_{+} \dot{-} V_{-}$is well defined. By a limiting argument (4.1) holds for $\widehat{H} \dot{+} V_{+} \dot{-} V_{-}$. QED

6 Ground states

Let $\hat{\lambda}, \omega \hat{\lambda} \in L^{2}\left(\mathbf{R}^{d}\right)$ and $V \in V_{0}$ unless otherwise stated throughout this section. We redefine the Pauli-Fierz Hamiltonian by

$$
H:=\widehat{H} \dot{+} V_{+} \dot{-} V_{-} .
$$

Let $E:=\inf \sigma(H)$ and $E_{\mathrm{p}}:=\inf \sigma\left(H_{\mathrm{p}}\right)$.

6.1 Ergodic properties and the uniqueness of the ground state

Let

$$
U:=\exp \left(i \frac{\pi}{2} N\right)
$$

Note that

$$
J_{t} e^{i a N}=e^{i a N_{0}} J_{t}, \quad a \in \mathbf{R}
$$

Thus we have

$$
\left(F, U^{-1} e^{-t H} U G\right)=\int_{\mathcal{W}} d P e^{-\int_{0}^{t} V\left(X_{s}\right) d s}\left(F\left(X_{0}\right), J_{0}^{*} e^{i \alpha \pi_{0}\left(\mathbf{K}_{t}(X)\right)} J_{t} G\left(X_{t}\right)\right)
$$

The purpose of this subsection is to prove that $U^{-1} e^{-t H} U$ is PI for all $t \geq 0$.
Lemma 6.1 Let $F \in L^{2}(Q)$ be a positive. Then there exists a positive sequence $F_{n} \in L_{\mathrm{C}}^{2}(Q)$ such that $s-\lim _{n \rightarrow \infty} F_{n}=F$.

Proof: See [126, Theorem 3.2] and [88, 185].
Lemma 6.2 Let $f \in \oplus^{d} L^{2}\left(\mathbf{R}^{d}\right)$. Then $e^{i \pi(f)}$ is $P P$ in $L^{2}(Q)$ for all $t \in \mathbf{R}$.
Proof: Let $F:=\int f(t) e^{i \sum_{j=1}^{N} t_{j} \phi\left(f_{j}\right)} d t$ and $G:=\int g(t) e^{i \sum_{j=1}^{M} t_{j} \phi\left(g_{j}\right)} d t$ with f, g the Fourier transform of positive Schwartz test functions. By the Weyl relation:

$$
\begin{equation*}
e^{i \pi(f)} e^{i \phi(g)}=e^{i q(f, g)} e^{i \phi(g)} e^{i \pi(f)} \tag{6.1}
\end{equation*}
$$

and

$$
\begin{equation*}
e^{i \pi(f)} \Omega=e^{-(1 / 2) q(f)} e^{-\phi(f)} \Omega \tag{6.2}
\end{equation*}
$$

we have

$$
\begin{equation*}
\left(F, e^{i \pi(f)} G\right)=\int d t \int d s \overline{f(t)} g(s)\left(e^{i \sum_{j=1}^{N} t_{j} \phi\left(f_{j}\right)} \Omega, e^{i \pi(f)} e^{i \sum_{j=1}^{M} s_{j} \phi\left(g_{j}\right)} \Omega\right) \geq 0 \tag{6.3}
\end{equation*}
$$

From Lemma 6.1, (6.3) follows for arbitrary positive F, G in $L^{2}(Q)$.
QED

Lemma 6.3 Let $f \in \oplus^{d} L^{2}\left(\mathbf{R}^{d+1}\right)$. Then we have

$$
J_{0}^{*} e^{i \pi_{0}(f)} J_{t}=e^{-(1 / 2)\left(q_{0}(f)+q\left(\left[j_{0}^{*}\right] f\right)\right)} \overline{J_{0}^{*} e^{-\phi_{0}(f)} J_{t} e^{i \pi\left(\left[j_{0}^{*}\right] f\right)} e^{\phi\left(\left[j_{t}^{*}\right] f\right)} \Gamma_{L_{\mathrm{C}}^{2}(Q)}},
$$

where \bar{A} denotes the closed extension of A.

Proof: Note that

$$
q_{0}\left(\left[j_{t}\right] f, g\right)=q\left(f,\left[j_{t}^{*}\right] g\right), \quad f \in \oplus^{d} L^{2}\left(\mathbf{R}^{d}\right), \quad g \in \oplus^{d} L^{2}\left(\mathbf{R}^{d+1}\right) .
$$

Let $G \in L_{\mathrm{C}}^{2}(Q)$ be such that

$$
G\left(\phi\left(f_{1}\right), \cdots, \phi\left(f_{n}\right)\right)=\int_{\mathbf{R}^{n}} g(t) e^{i \phi\left(\sum_{j=1}^{n} t_{j} f_{j}\right)} d t, \quad g \in \mathcal{S}\left(\mathbf{R}^{n}\right)
$$

By (6.1) and (6.2), we have

$$
\begin{gathered}
e^{i \pi_{0}(f)} J_{t} G \Omega=e^{i \pi_{0}(f)} G\left(\phi_{0}\left(j_{t} f_{1}\right), \cdots, \phi_{0}\left(j_{t} f_{n}\right)\right) \Omega_{0} \\
=G\left(\phi_{0}\left(j_{t} f_{1}\right)+q_{0}\left(\left[j_{t}\right] f_{1}, f\right), \cdots, \phi_{0}\left(j_{t} f_{n}\right)+q_{0}\left(\left[j_{t}\right] f_{n}, f\right)\right) e^{i \pi_{0}(f)} \Omega_{0} \\
=e^{-(1 / 2) q_{0}(f)} e^{-\phi_{0}(f)} G\left(\phi_{0}\left(j_{t} f_{1}\right)+q\left(f_{1},\left[j_{t}^{*}\right] f\right), \cdots, \phi_{0}\left(j_{t} f_{n}\right)+q\left(f_{n},\left[j_{t}^{*}\right] f\right)\right) \Omega_{0} \\
=e^{-(1 / 2) q_{0}(f)} e^{-\phi_{0}(f)} j_{t} e^{i \pi\left(\left[j_{0}^{*}\right] f\right)} G e^{-i \pi\left(\left[j_{t}^{*}\right] f\right)} \Omega \\
=e^{-(1 / 2)\left(q_{0}(f)+q\left(\left[j_{t}^{*}\right] f\right)\right)} e^{-\phi_{0}(f)} J_{t} e^{i \pi\left(\left[j_{0}^{*}\right] f\right)} e^{\phi\left(\left[j_{0}^{*}\right] f\right)} G
\end{gathered}
$$

Since $L_{\mathrm{C}}^{2}(Q)$ is dense, lemma follows. ${ }^{27}$
QED
Let $f \in \oplus^{d} L^{2}\left(\mathbf{R}^{d+1}\right)$ and define a bounded operator on $L^{2}(Q)$ by

$$
Q_{M}:=J_{0}^{*}\left(e^{-\phi_{0}(f)}\right)_{M} J_{t},
$$

where

$$
\left(e^{-\phi_{0}(f)}\right)_{M}:= \begin{cases}e^{-\phi_{0}(f)}, & e^{-\phi_{0}(f)}<M \\ M, & e^{-\phi_{0}(f)} \geq M\end{cases}
$$

Lemma 6.4 We see that Q_{M} is PI for all $t \in \mathbf{R}$.
Proof: Let θ_{1}, θ_{2} be positive. It is known that $\left(\theta_{1}, Q_{M} \theta_{2}\right) \geq 0$. Hence it is enough to prove that

$$
\begin{equation*}
\left(\theta_{1}, Q_{M} \theta_{2}\right) \neq 0 . \tag{6.4}
\end{equation*}
$$

Assume that $\left(\theta_{1}, P_{M} \theta_{2}\right)=0$. Since J_{t} and J_{0} are PP, we have

$$
\left\{\operatorname{supp}\left(e^{-\phi_{0}(f)}\right)_{M} J_{t} \theta_{2}\right\} \bigcap\left\{\operatorname{supp} J_{0} \theta_{1}\right\}=\emptyset
$$

$\operatorname{Moreover}\left(e^{-\phi_{0}(f)}\right)_{M} \neq 0$ a.e., since $\int_{Q_{0}}\left|\phi_{0}(f)\right|^{2} \nu_{0}\left(d \phi_{0}\right)<\infty$. Hence

$$
\operatorname{supp} J_{t} \theta_{2} \cap \operatorname{supp} J_{0} \theta_{1}=\emptyset,
$$

[^12]which deduces that
\[

$$
\begin{equation*}
0=\left(J_{0} \theta_{1}, J_{t} \theta_{2}\right)=\left(\theta_{1}, e^{-t H_{\mathrm{f}}} \theta_{2}\right) \tag{6.5}
\end{equation*}
$$

\]

Since $e^{-t H_{\mathrm{f}}}$ is PI by Proposition 3.2,

$$
\left(\theta_{1}, e^{-t H_{\mathrm{f}}} \theta_{2}\right)>0
$$

Thus we have a contradiction with (6.5). Thus (6.4) follows.
QED

Lemma 6.5 Let $f \in \oplus^{d} L^{2}\left(\mathbf{R}^{d+1}\right)$. Then $J_{0}^{*} e^{i \pi_{0}(f)} J_{t}$ is PI for all $t \in \mathbf{R}$.
Proof: Let

$$
\mathbf{P}_{M}:=e^{-(1 / 2)\left(q_{0}(f)+q\left(\left[j_{0}^{*}\right] f\right)\right)} J_{0}^{*}\left(e^{-\phi_{0}(f)}\right)_{M} J_{t} e^{\left.i \pi\left(j_{0}^{*}\right] f\right)}\left(e^{\phi\left(\left[j_{t}^{*}\right] f\right)}\right)_{M} .
$$

Note that \mathbf{P}_{M} is PI by Lemmas 6.2 and 6.4. For positive $F \in L_{\mathrm{C}}^{2}(Q)$,

$$
\mathbf{P}_{M} F \leq e^{\left.-(1 / 2)\left(q_{0}(f)+q\left(j_{0}^{*}\right] f\right)\right)} J_{0}^{*} e^{-\phi_{0}(f)} J_{t} e^{i \pi\left(\left[j_{0}^{*}\right] f\right)} e^{\phi\left(\left[j_{t}^{*}\right] f\right)} F=J_{0}^{*} e^{i \pi_{0}(f)} J_{t} F .
$$

Thus, by a limiting argument, for arbitrary positive $F \in L^{2}(Q)$, we have

$$
\mathbf{P}_{M} F \leq J_{0}^{*} e^{i \pi_{0}(f)} J_{t} F
$$

Since $\mathbf{P}_{M} F>0$, lemma holds.
QED

Theorem 6.6 ([110]) We see that $U^{-1} e^{-t H} U$ is PI for all $t \geq 0$.

Proof: Let $F=F(x, \phi)$ and $G=G(x, \phi)$ be positive in \mathcal{H}. Define

$$
D_{F}:=\left\{x \in \mathbf{R}^{d} \mid F(x, \cdot) \not \equiv 0\right\}, \quad D_{G}:=\left\{x \in \mathbf{R}^{d} \mid G(x, \cdot) \not \equiv 0\right\}
$$

and

$$
D_{F G}:=\left\{x+\mathbf{b}(\cdot) \in \mathcal{W} \mid x+\mathbf{b}(t) \in D_{F}, x \in D_{G}\right\}
$$

It is checked that

$$
\begin{gathered}
\int_{D_{F G}} d P=\int_{D_{G}} d x \int_{\mathrm{C}\left([0, \infty) ; \mathbf{R}^{d}\right)} \mathbf{1}_{\left\{b \in \mathrm{C}\left(\mathbf{R} ; \mathbf{R}^{d}\right) \mid x+b(t) \in D_{F}\right\}} d \mathbf{b} \\
=\int_{D_{G}} d x \int_{D_{F}} p_{t}(x-y) d y>0 .
\end{gathered}
$$

Thus $F\left(X_{0}, \cdot\right) \not \equiv 0$ and $G\left(X_{t}, \cdot\right) \not \equiv 0$ on $D_{F G}$. Since $J_{0}^{*} e^{i \alpha \pi_{0}\left(\mathbf{K}_{t}(X)\right)} J_{t}$ is PI on $L^{2}(Q)$, we have

$$
\begin{gathered}
\left(F, U^{-1} e^{-t H} U G\right)=\int_{\mathcal{W}} d P e^{-\int_{0}^{t} V\left(X_{s}\right) d s}\left(F\left(X_{0}\right), J_{0}^{*} e^{i \alpha \pi_{0}\left(\mathbf{K}_{t}(X)\right)} J_{t} G\left(X_{t}\right)\right) \\
\geq \int_{D_{F G}} d P e^{-\int_{0}^{t} V\left(X_{s}\right) d s}\left(F\left(X_{0}\right), J_{0}^{*} e^{i \alpha \pi_{0}\left(\mathbf{K}_{t}(X)\right)} J_{t} G\left(X_{t}\right)\right)>0
\end{gathered}
$$

We get the desired results.

Corollary 6.7 Let Ψ_{g} be a ground state of H. Then it is unique and $U \Psi_{\mathrm{g}}$ is strictly positive.

6.2 The particle-localization of ground states

Let Ψ_{g} be the ground state of H. In this subsection we shall show an exponential decay ${ }^{28}$ of $\left\|\Psi_{\mathrm{g}}(x)\right\|_{L^{2}(Q)}$. We introduce classes of external potentials V : Let Δ be the cube with the unit side centered about the origin in \mathbf{R}^{d}. We say that $V \in L_{\mathrm{u}}^{p}\left(\mathbf{R}^{d}\right)$ [188] if

$$
\|f\|_{L_{\mathbf{u}}^{p}\left(\mathbf{R}^{d}\right)}^{p}:=\sup _{x \in \mathbf{R}^{d}} \int_{\Delta}|f(x+y)|^{p} d y<\infty .
$$

We define sets $V_{\text {bound }}$ and $V_{\exp }$ of external potentials by
$V_{\text {bound }}: V=V_{+}-V_{-}$, such that $V_{ \pm} \geq 0, V_{+} \in L_{\mathrm{loc}}^{1}\left(\mathbf{R}^{d}\right)$ and $V_{-}=\sum_{\mathrm{j}=1}^{J} W_{j}$ such that $\sup _{z_{j} \in \mathbf{R}^{d-\mu_{j}}}\left\|W_{j}\left(\cdot, z_{j}\right)\right\|_{L_{\mathbf{u}}^{p}\left(\mathbf{R}^{\mu_{j}}\right)}<\infty$ for some $\mu_{j}, j=1, \ldots, J$.
$V_{\exp }: V=Z+W$, such that $Z \in L_{\mathrm{loc}}^{1}\left(\mathbf{R}^{d}\right), Z>-\infty$, and $W>0, W \in L^{p}\left(\mathbf{R}^{d}\right)$ for some $p>\max \{1, d / 2\}$.

It is immediate that $V_{\exp } \cup V_{\text {bound }} \subset V_{0}$.
Lemma 6.8 Let $V \in V_{\text {bound }}$. Then

$$
\begin{equation*}
\sup _{x \in \mathbf{R}^{d}}\left\|\Psi_{\mathrm{g}}(x)\right\|_{L^{2}(Q)}<\infty \tag{6.6}
\end{equation*}
$$

Proof: $\Psi_{\mathrm{g}}=e^{t E} e^{-t H} \Psi_{\mathrm{g}}$. Thus we have

$$
\Psi_{\mathrm{g}}=e^{t E} \mathbf{E} e^{-\int_{0}^{t} V\left(X_{s}\right) d s} \mathbf{J}_{t} \Psi_{\mathrm{g}}\left(X_{t}\right)
$$

[^13]Hence

$$
\begin{equation*}
\left\|\Psi_{\mathrm{g}}(x)\right\| \leq e^{t E} \mathbf{E} e^{-\int_{0}^{t} V\left(X_{s}\right) d s}\left\|\Psi_{\mathrm{g}}\left(X_{t}\right)\right\|=e^{t E} e^{-t H_{\mathrm{p}}}\left\|\Psi_{\mathrm{g}}(\cdot)\right\| \tag{6.7}
\end{equation*}
$$

Since $V \in V_{\text {bound }}$,

$$
\sup _{x \in \mathbf{R}^{d}}\left|e^{-t H_{\mathrm{p}}}\left\|\Psi_{\mathrm{g}}(\cdot)\right\|\right|(x)<\infty
$$

([188, Theorem 25.5, Corollary 25.6]), we get (6.6).
QED
Lemma 6.9 Let $V \in V_{\text {bound }}$. Then, for all $f \in C_{0}^{\infty}\left(\mathbf{R}^{d}\right)$ and $t>0$,

$$
\int_{\mathbf{R}^{d}} f(x)\left\|\Psi_{\mathrm{g}}(x)\right\|^{2} d x \leq C e^{t E} \int_{\mathbf{R}^{d}} d x|f(x)| \mathbf{E} e^{-\int_{0}^{t} V\left(X_{s}\right) d s}
$$

where $C:=\sup _{x \in \mathbf{R}^{d}}\left\|\Psi_{\mathrm{g}}(x)\right\|^{2}<\infty$.
Proof: Note that, by Corollary 6.7, $U \Psi_{\mathrm{g}}>0$. Since $f \in L^{\infty}\left(\mathbf{R}^{d}\right)$, we see that, by Lemma 6.8,

$$
\begin{aligned}
& \int_{\mathbf{R}^{d}} f(x)\left\|\Psi_{\mathrm{g}}(x)\right\|^{2} d x=\left(f U \Psi_{\mathrm{g}}, U \Psi_{\mathrm{g}}\right)_{\mathcal{H}}=\left(f \Psi_{\mathrm{g}}, \Psi_{\mathrm{g}}\right)_{\mathcal{H}}=e^{t E}\left(f \Psi_{\mathrm{g}}, e^{-t H} \Psi_{\mathrm{g}}\right) \\
& =e^{t E} \int_{\mathcal{W}} d P e^{-\int_{0}^{t} V\left(X_{s}\right) d s} f(x)\left(\Psi_{\mathrm{g}}\left(X_{0}\right), \mathbf{J}_{t} \Psi_{\mathrm{g}}\left(X_{t}\right)\right) \\
& \leq e^{t E} \int_{\mathbf{R}^{d}} d x|f(x)| \mathbf{E}\left\|\Psi_{\mathrm{g}}(x)\right\|\left\|\Psi_{\mathrm{g}}\left(X_{t}\right)\right\| e^{-\int_{0}^{t} V\left(X_{s}\right) d s} \\
& \leq e^{t E} \sup _{x \in \mathbf{R}^{d}}\left\|\Psi_{\mathrm{g}}(x)\right\|^{2} \int_{\mathbf{R}^{d}} d x|f(x)| \mathbf{E} e^{-\int_{0}^{t} V\left(X_{s}\right) d s} .
\end{aligned}
$$

Thus lemma follows from Lemma 6.6.
QED
The following lemma is known as Carmona's estimate:
Lemma 6.10 ([46]) Let $V=Z+W \in V_{\exp }$. Then for all $t \geq 0$ and $a \geq 0$,

$$
\begin{gather*}
\mathbf{E} e^{-\int_{0}^{t} V\left(X_{s}\right) d s} \leq \beta_{1} e^{t \beta_{2}\|W\|_{p}} \\
\times\left\{e^{-2 t Z^{a}(x)}+\beta_{3}\left((a / \sqrt{t})^{\max \{0, d-2\}}+1\right) e^{-2 t \inf Z-a^{2} / 2 t}\right\}^{1 / 2} \tag{6.8}
\end{gather*}
$$

where $Z^{a}(x):=\inf \{Z(y) \| y-x \mid \leq a\}$ and $\beta_{j}, j=1,2,3$, are positive constants.
Theorem 6.11 Let $V=Z+W \in V_{\text {bound }} \cap V_{\exp }$ with Z, W in the definition of $V_{\exp }$. Suppose that

$$
Z(x) \geq \gamma|x|^{2 m}
$$

outside a compact set for some positive constants γ and m. Then for each positive constant δ sufficiently small, there is $D(\delta)$ such that

$$
\begin{equation*}
\left\|\Psi_{\mathrm{g}}(x)\right\| \leq D(\delta) \exp \left(-\delta|x|^{m+1}\right) \tag{6.9}
\end{equation*}
$$

Proof: In Lemma 6.10, we set $a=a(x)=\beta_{4}|x|$ and $t=t(x)=\beta_{5}|x|$. Then, for $\delta<\min \left\{2 \beta_{5}\left(1-\beta_{4}\right)^{2}, \beta_{4}^{2} / 2 \beta_{5}\right\}$, there exits $D(\delta)^{\prime}$ such that

$$
C e^{t E} \mathbf{E} e^{-\int_{0}^{t} V\left(X_{s}\right) d s} \leq D(\delta)^{\prime} e^{-\delta|x|^{m+1}}
$$

for $|x|>N$ with some sufficiently large N (see [46, Proposition 3.1] for details). By Lemma 6.9 we see that, for all $f \in C_{0}^{\infty}\left(\mathbf{R}^{d}\right)$ with $f \geq 0$

$$
\int_{\{|x|>N\}} f(x)\left(\left\|\Psi_{\mathrm{g}}(x)\right\|^{2}-D(\delta)^{\prime} e^{-\delta|x|^{m+1}}\right) d x<0
$$

Thus (6.9) holds for $|x|>N$. By Lemma $6.8\left\|\Psi_{\mathrm{g}}(x)\right\|$ is bounded. Thus theorem follows.

QED

Theorem 6.12 Let $V=Z+W \in V_{\text {bound }} \cap V_{\exp }$ with Z, W in the definition of $V_{\exp }$. Suppose that

$$
\liminf _{|x| \rightarrow \infty} Z(x)>E .
$$

Then there exists a positive constant D and δ such that

$$
\left\|\Psi_{\mathrm{g}}(x)\right\| \leq D e^{-\delta|x|}
$$

Proof: By Lemma 6.10, we prove theorem in a similar way as that of Theorem 6.11 and [46, Proposition 4.1]. Hence we omit it.

QED
From Theorems 6.11 and 6.12 , it follows that, for V in Theorems 6.11 or/and 6.12,

$$
\left\||x|^{k} \Psi_{\mathrm{g}}\right\|<\infty
$$

for all $k \in \mathbf{N}$. The next corollary tells us a more strong statement.
Corollary 6.13 Let V be as in Theorems 6.11 or/and 6.12. Then

$$
\left\||x|^{k} \Psi_{\mathrm{g}}\right\| \leq \sup _{x \in \mathbf{R}^{d}}\left(\mathbf{E}|x|^{2 k} e^{-2} \int_{0}^{t} V\left(X_{s}\right) d s \quad e^{2 t E}\right)^{1 / 2}\left\|\Psi_{\mathrm{g}}\right\|
$$

for all $k \geq 0$ and $t \geq 0$.
Proof: By (6.7) we see that

$$
\begin{aligned}
\left\||x|^{k} \Psi_{\mathrm{g}}\right\|^{2}= & \int_{\mathbf{R}^{d}} d x|x|^{2 k}\left\|\Psi_{\mathrm{g}}(x)\right\|^{2} \leq \int_{\mathbf{R}^{d}} d x|x|^{2 k}\left(e^{t E} \mathbf{E} e^{-\int_{0}^{t} V\left(X_{s}\right) d s}\left\|\Psi_{\mathrm{g}}\left(X_{t}\right)\right\|\right)^{2} \\
& \leq \int_{\mathbf{R}^{d}} d x|x|^{2 k}\left(\mathbf{E} e^{-2 \int_{0}^{t} V\left(X_{s}\right) d s} e^{2 t E}\right)\left(\mathbf{E}\left\|\Psi_{\mathrm{g}}\left(X_{t}\right)\right\|^{2}\right)
\end{aligned}
$$

Thus corollary follows.

6.3 The existence of ground states without infrared cutoffs

In this subsection, we take the Fock-Cook representation. The essential idea of a proof of the existence of the ground state of H is due to J.Glimm and A.Jaffe [84] and we learned it by A.Arai and M.Hirokawa [25]. We assume that ${ }^{29}$

$$
-\Delta \leq a H_{\mathrm{p}}+b
$$

with some positive constants a and b and

$$
\Sigma-E_{\mathrm{p}}>0, \quad(\text { positive spectral gap }),
$$

where $\Sigma:=\sigma_{\text {ess }}\left(H_{\mathrm{p}}\right)$. Moreover let $\hat{\lambda} / \sqrt{\omega}, \hat{\lambda}, \sqrt{\omega} \hat{\lambda}, \omega \hat{\lambda} \in L^{2}\left(\mathbf{R}^{d}\right)$ and $|\alpha| \ll 1$.
Using fundamental estimates (2.5), (2.6) and (2.7), we have

$$
\begin{equation*}
(1-|\alpha| A-|\alpha| B) H_{\mathrm{d}}+|\alpha| A E_{\mathrm{p}}-|\alpha| C \leq H \leq(1+|\alpha| A+|\alpha| B) H_{\mathrm{d}}-|\alpha| A E_{\mathrm{p}}+|\alpha| C, \tag{6.10}
\end{equation*}
$$

where A, B, C are positive constants. Thus we get

$$
\left|E-E_{\mathrm{p}}\right| \leq|\alpha| D,
$$

where $D:=|\alpha| B E_{\mathrm{p}}+|\alpha| C$. Let

$$
\begin{gathered}
\Gamma_{a}:=\left\{k=\left(k_{1}, \ldots, k_{d}\right) \in \mathbf{R}^{d} \mid k_{\mu}=2 \pi n_{\mu} / a, n_{\mu} \in \mathbf{Z}, \mu=1, \ldots, d\right\}, \\
\Gamma(l, a):=\left[l_{1}, l_{1}+2 \pi / a\right) \times \cdots\left[l_{d}, l_{d}+2 \pi / a\right) .
\end{gathered}
$$

By the map

$$
l_{2}\left(\Gamma_{a}\right) \ni\left\{a_{l}\right\}_{l \in \Gamma_{a}} \rightarrow(a / 2 \pi) \sum_{l \in \Gamma_{a}} a_{l} \mathbf{1}_{\Gamma(l, a)}(\cdot) \in L^{2}\left(\mathbf{R}^{d}\right),
$$

we identify $l_{2}\left(\Gamma_{a}\right)$ with a subspace of $L^{2}\left(\mathbf{R}^{d}\right)$. Define

$$
\mathcal{F}_{\mathrm{EM}}^{a}:=\mathcal{F}_{\mathrm{EM}}\left(L_{2}\left(\Gamma_{a}\right)\right):=\underbrace{\mathcal{F}\left(l_{2}\left(\Gamma_{a}\right)\right) \otimes \cdots \otimes \mathcal{F}\left(l_{2}\left(\Gamma_{a}\right)\right)}_{d} \subset \mathcal{F}_{\mathrm{EM}} .
$$

Set

$$
H_{\mathrm{b}}^{m, a}:=d \Gamma_{\mathrm{b}}\left(\omega\left(k_{a}\right)+m\right)
$$

[^14]and
$$
A_{\mu}^{a}:=\frac{1}{\sqrt{2}}\left\{a^{r \dagger}\left(\sum_{l \in \Gamma_{a}} \mathbf{1}_{\Gamma(l, a)} \hat{\lambda}(-l) e^{-i l x} e_{\mu}^{r}(l)\right)+a^{r}\left(\sum_{l \in \Gamma_{a}} \mathbf{1}_{\Gamma(l, a)} \hat{\lambda}(l) e^{i l x} e_{\mu}^{r}(l)\right)\right\}
$$
where $k_{a \mu}:=k_{a \mu}\left(k_{\mu}\right):=2 \pi n / a$ if $k_{\mu} \in[2 \pi n / a, 2 \pi(n+1) / a)$. Note that
$$
\sigma\left(H_{\mathrm{b}}^{m, a}\right)=\sigma_{\mathrm{disc}}\left(H_{\mathrm{b}}^{m, a}\right)
$$

Thus a lattice Hamiltonian with an artificial mass m is defined by

$$
H_{m, a}:=\frac{1}{2}\left(\mathbf{p}-\alpha A^{a}\right)^{2}+V+H_{\mathrm{b}}^{m, a} .
$$

Lemma 6.14 $H_{m, a}$ is reduced by $\mathcal{H}_{a}:=L^{2}\left(\mathbf{R}^{d}\right) \otimes \mathcal{F}_{\text {EM }}^{a}$.
Proof: See [113]
Lemma 6.15 Let $E_{m, a}:=\inf \sigma\left(H_{m, a}\right)$. Then

$$
H_{m, a}\left\lceil_{\mathcal{H}_{\frac{1}{a}}} \geq m+E_{m, a} .\right.
$$

Proof: For instance we set $l_{2}:=l_{2}\left(\Gamma_{a}\right)$. Since $L^{2}\left(\mathbf{R}^{d}\right)=l_{2} \oplus l_{2}^{\perp}$, it is seen that

$$
\begin{equation*}
\mathcal{F}_{\mathrm{EM}} \cong \mathcal{F}_{\mathrm{EM}}^{a} \otimes \mathcal{F}_{\mathrm{EM}}\left(l_{2}^{\perp}\right) \tag{6.11}
\end{equation*}
$$

Let P be the vacuum projection of $\mathcal{F}_{\text {EM }}\left(l_{2}^{\perp}\right)$. Then

$$
\begin{equation*}
\mathcal{F}_{\mathrm{EM}} \cong \mathcal{F}_{\mathrm{EM}}^{a} \oplus\left(\mathcal{F}_{\mathrm{EM}}^{a} \otimes P^{\perp} \mathcal{F}_{\mathrm{EM}}\left(l_{2}^{\perp}\right)\right):=\mathcal{F}_{\mathrm{EM}}^{a} \oplus \mathcal{F}_{\mathrm{EM}}^{a} \tag{6.12}
\end{equation*}
$$

Under identification (6.11) we have

$$
H_{m, a} \cong H_{m, a}\left\lceil\mathcal{H}_{a} \otimes \mathbf{1}+\mathbf{1} \otimes H_{\mathrm{b}}^{m, a} .\right.
$$

Then we obtain that

$$
\begin{gathered}
H_{m, a} \cong\left(H _ { m , a } \lceil \mathcal { H } _ { a } \otimes P) \oplus \left(H_{m, a}\left\lceil\mathcal{H}_{a} \otimes P^{\perp}\right)+\left(\mathbf{1} \otimes H_{\mathrm{b}}^{m, a} P\right) \oplus\left(\mathbf{1} \otimes H_{\mathrm{b}}^{m, a} P^{\perp}\right)\right.\right. \\
\cong\left(H _ { m , a } \lceil \mathcal { H } _ { a } \otimes P) \oplus \left(H_{m, a}\left\lceil\mathcal{H}_{a} \otimes P^{\perp}+\mathbf{1} \otimes H_{\mathrm{b}}^{m, a} P^{\perp}\right)\right.\right. \\
\cong\left(H _ { m , a } \lceil \mathcal { H } _ { a }) \oplus \left(H_{m, a}\left\lceil\mathcal{H}_{a} \otimes \mathbf{1}+\mathbf{1} \otimes H_{\mathrm{b}}^{m, a}\right) P^{\perp}\right.\right.
\end{gathered}
$$

Hence

$$
H_{m, a}\left\lceil_ { \mathcal { H } _ { a } ^ { \perp } } \cong \left(H_{m, a}\left\lceil_{\mathcal{H}_{a}} \otimes \mathbf{1}+\mathbf{1} \otimes H_{\mathrm{b}}^{m, a}\right) P^{\perp} \geq E_{m, a}+m .\right.\right.
$$

Thus we get the desired results.

Lemma 6.16 Let α and m be such that

$$
0<m<(1-|\alpha| A-|\alpha| B)\left(\Sigma-E_{\mathrm{p}}\right)-2|\alpha| D .
$$

Then, for sufficiently large $a>0$,

$$
\left[E_{m, a}, E_{m, a}+m\right) \subset \sigma_{\text {disc }}\left(H_{m, a}\right)
$$

Proof: For sufficiently large a, (6.10) holds true with $\omega, \hat{\lambda}$ replaced by ω_{m}^{a} and $(a / 2 \pi) \sum_{l \in \Gamma_{a}} \hat{\lambda}(l) \mathbf{1}_{\Gamma(l, a)}(\cdot)$. Let $E_{\mathrm{p}}<\Sigma^{\prime}<\Sigma$. Let $l:=1-|\alpha| A-|\alpha| B$ and $\overline{H_{\mathrm{p}}}:=H_{\mathrm{p}}-E_{\mathrm{p}}$. We denote by E_{A}^{T} the spectral projection of an operator T to a Borel set $A \subset \mathbf{R}$. We have, by (6.10)

$$
H_{m, a}\left\lceil\mathcal{H}_{a} \geq l H_{\mathrm{b}}^{m, a}+l \overline{H_{\mathrm{p}}}+E_{\mathrm{p}}-|\alpha| D .\right.
$$

Hence

$$
\begin{gather*}
H_{m, a}\left\lceil\mathcal{H}_{a}-m-E_{m, a} \geq l \overline{H_{\mathrm{p}}}+\left\{l H_{\mathrm{b}}^{m, a}-\left(m+E_{m, a}-E_{\mathrm{p}}+|\alpha| D\right)\right\}\right. \\
\geq l\left(\Sigma^{\prime}-E_{\mathrm{p}}\right) E_{\left[\Sigma^{\prime}-E_{\mathrm{p}}, \infty\right)}^{\overline{H_{\mathrm{p}}}}+\left(E_{\left[0, \Sigma^{\prime}-E_{\mathrm{p}}\right)}^{\overline{H_{\mathrm{p}}}} \oplus E_{\left[\Sigma^{\prime}-E_{\mathrm{p}}, \infty\right)}^{\overline{H_{\mathrm{p}}}}\right)\left\{l H_{\mathrm{b}}^{m, a}-\left(m+E_{m, a}-E_{\mathrm{p}}+|\alpha| D\right)\right\} \\
=E_{\left[0, \Sigma^{\prime}-E_{\mathrm{p}}\right)}^{\overline{H_{\mathrm{p}}}} \otimes\left\{l H_{\mathrm{b}}^{m, a}-\left(m+E_{m, a}-E_{\mathrm{p}}+|\alpha| D\right)\right\}+E_{\left[\Sigma^{\prime}-E_{\mathrm{p}}, \infty\right)}^{\overline{H_{\mathrm{p}}}} \otimes l H_{\mathrm{b}}^{m, a} \\
+\left\{l\left(\Sigma^{\prime}-E_{\mathrm{p}}\right)+E_{\mathrm{p}}-|\alpha| D-m-E_{m, a}\right\} E_{\left[\Sigma^{\prime}-E_{\mathrm{p}}, \infty\right)}^{\overline{H_{\mathrm{p}}}} \\
\geq E_{\left[0, \Sigma^{\prime}-E_{\mathrm{p}}\right)}^{\overline{H_{\mathrm{p}}}} \otimes E_{\left[0,\left(|\alpha| D+m+E_{m, a}-E_{\mathrm{p}}\right) / l l\right.}^{H_{\mathrm{p}}^{m, a}} . \tag{6.13}
\end{gather*}
$$

Since the dimension of the range of the right-hand side of (6.13) is finite, that of $E_{\left[0, m+E_{m, a}\right)}^{H_{m, a} \Gamma_{\mathcal{H}}}$ is also finite. Thus lemma follows.

QED
We define H_{m} by H with ω replaced by $\omega_{m}:=\omega+m$.
Lemma 6.17 Let α and m be as in Lemma 6.16. Then H_{m} has a ground state.
Proof: Let $E_{m}:=\inf \sigma\left(H_{m}\right)$. Let

$$
U_{a}:=\exp \left(i x_{\mu} \otimes d \Gamma_{\mathrm{b}}\left(k_{a, \mu}\right)\right), \quad U:=\exp \left(i x_{\mu} \otimes d \Gamma_{\mathrm{b}}\left(k_{\mu}\right)\right)
$$

Then we have

$$
U_{a} H_{m, a} U_{a}^{-1}=\frac{1}{2}\left(\mathbf{p} \otimes \mathbf{1}-\mathbf{1} \otimes d \Gamma_{\mathbf{b}}\left(\overrightarrow{k_{a}}\right)-\alpha \mathbf{1} \otimes A^{a}(0)\right)^{2}+V \otimes \mathbf{1}+\mathbf{1} \otimes H_{\mathrm{b}}^{m, a} .
$$

It is a direct calculation to show that $U_{a}\left(H_{m, a}-i\right)^{-1} U_{a}^{-1}$ uniformly converges to $U\left(H_{m}-i\right)^{-1} U^{-1}$ as $a \rightarrow \infty$. Hence by Lemma 6.16, we get that $\left[E_{m}, E_{m}+m\right) \subset$ $\sigma_{\text {disc }}\left(H_{m}\right)$. Thus lemma follows.

QED
Let $\Psi_{\mathrm{g}}^{(m)}$ be the ground state of H_{m}. We fix $r=1, \ldots, d-1$ and $f \in L^{2}\left(\mathbf{R}^{d}\right)$ and set

$$
g_{\mu}:=\frac{1}{\sqrt{2}} \tilde{\hat{\lambda}} e_{\mu}^{r} e^{-i k x}, \quad G_{\mu}:=\left(\bar{f}, g_{\mu}\right), \quad \mu=1, \ldots, d .
$$

Let F be a smooth function on \mathbf{R}^{d}, and l a constant. We have on some domain

$$
\begin{gathered}
{\left[a^{r}(f)+l F, H\right]} \\
=-a^{r}\left(\omega_{m} f\right)+i \alpha G_{\mu}\left(\partial_{\mu}-i \alpha A_{\mu}\right)+l\left\{(1 / 2)\left(\partial_{\mu}^{2} F\right)+\left(\partial_{\mu} F\right)\left(\partial_{\mu}-i \alpha A_{\mu}\right)\right\} .
\end{gathered}
$$

To neglect both of $G_{\mu} A_{\mu}$ and $G_{\mu} \partial_{\mu}$, we define $\theta:=-i \alpha x \cdot G$. We have

$$
\left[a^{r}(f)+\theta, H\right]=-a^{r}\left(\omega_{m} f\right)-i \alpha\left\{(1 / 2) \partial_{\mu}^{2}(x \cdot G)+x_{\nu}\left(\partial_{\mu} G_{\nu}\right)\left(\partial_{\mu}-(i \alpha) A_{\mu}\right)\right\}
$$

Since $\partial_{\mu}^{2}(x \cdot G)=2\left(\partial_{\mu} G_{\mu}\right)+x_{\nu}\left(\partial_{\mu}^{2} G_{\nu}\right)$, finally we have

$$
\begin{equation*}
\left[a^{r}(f)+\theta, H\right]=-a^{r}\left(\omega_{m} f\right)+(-i \alpha) \vartheta \tag{6.14}
\end{equation*}
$$

where

$$
\vartheta:=\left(\partial_{\mu} G_{\mu}\right)+(1 / 2) x_{\nu}\left(\partial_{\mu}^{2} G_{\nu}\right)+x_{\nu}\left(\partial_{\mu} G_{\nu}\right)\left(\partial_{\mu}-i \alpha A_{\mu}\right)
$$

Lemma 6.18 ([34]) Let $V \in V_{\exp }$. Then there exists a constant \mathbf{C} independent of m such that

$$
\left\|N_{\mathrm{b}}^{1 / 2} \Psi_{\mathrm{g}}^{(m)}\right\|^{2} \leq|\alpha| \mathbf{C}\left(\left\||x|^{2} \Psi_{\mathrm{g}}^{(m)}\right\|^{2}+\left\||x| \Psi_{\mathrm{g}}^{(m)}\right\|^{2}+\left\|\Psi_{\mathrm{g}}^{(m)}\right\|^{2}\right)
$$

Remark 6.19 In this lemma we do not assume the infrared cutoff condition: $\hat{\lambda} / \omega \in$ $L^{2}\left(\mathbf{R}^{d}\right)$.

Proof: This proof is due to V.Bach, J.Fröhlich and I.E.Sigal [34]. Since

$$
\left(\left(a^{r}(f)+\theta\right) \Psi_{\mathrm{g}}^{(m)},\left(H_{m}-E\right)\left(a^{r}(f)+\theta\right) \Psi_{\mathrm{g}}^{(m)}\right) \geq 0
$$

we see that

$$
\left(\left(a^{r}(f)+\theta\right) \Psi_{\mathrm{g}}^{(m)},\left[H_{m}, a^{r}(f)+\theta\right] \Psi_{\mathrm{g}}^{(m)}\right) \geq 0
$$

Thus from (6.14) it follows that

$$
\begin{equation*}
\left(\Psi_{\mathrm{g}}^{(m)}, a^{r \dagger}\left(\omega_{m} f\right) a^{r}(f) \Psi_{\mathrm{g}}^{(m)}\right) \leq\left(\left(a^{r}(f)+\theta\right) \Psi_{\mathrm{g}}^{(m)},(-i \alpha) \vartheta \Psi_{\mathrm{g}}^{(m)}\right)-\left(\theta \Psi_{\mathrm{g}}^{(m)}, a^{r}\left(\omega_{m} f\right) \Psi_{\mathrm{g}}^{(m)}\right) \tag{6.15}
\end{equation*}
$$

Substituting $f_{l} / \sqrt{\omega_{m}}$ for f in (6.15) with $\left\{f_{l}\right\}_{l=1}^{\infty}$ CONS of $L^{2}\left(\mathbf{R}^{d}\right)$ and summing up l from one to infinity, we have

$$
\begin{gather*}
\left(\Psi_{\mathrm{g}}^{(m)}, N \Psi_{\mathrm{g}}^{(m)}\right) \leq(-i \alpha)\left\{\left(a^{r}\left(i k_{\nu} g_{\nu} / \omega\right) \Psi_{\mathrm{g}}^{(m)}, \Psi_{\mathrm{g}}^{(m)}\right)\right. \\
\left.+(1 / 2)\left(a^{r}\left(-k_{\mu} k_{\mu} g_{\nu} / \omega\right) \Psi_{\mathrm{g}}^{(m)}, x_{\nu} \Psi_{\mathrm{g}}^{(m)}\right)+\left(a^{r}\left(i k_{\mu} g_{\nu} / \omega\right) \Psi_{\mathrm{g}}^{(m)}, x_{\nu}\left(\partial_{\mu}-i \alpha A_{\mu}\right) \Psi_{\mathrm{g}}^{(m)}\right)\right\} \\
-\alpha^{2}\left\{\left(g_{\nu}, i k_{\mu} g_{\mu} / \omega_{m}\right)\left(x_{\nu} \Psi_{\mathrm{g}}^{(m)}, \Psi_{\mathrm{g}}^{(m)}\right)+(1 / 2)\left(g_{\nu},-k_{\mu}^{2} g_{\nu^{\prime}} / \omega_{m}\right)\left(x_{\nu} \Psi_{\mathrm{g}}^{(m)}, x_{\nu^{\prime}} \Psi_{\mathrm{g}}^{(m)}\right)\right. \\
\left.+\left(g_{\nu}, i k_{\mu} g_{\nu^{\prime}} / \omega_{m}\right)\left(x_{\nu} \Psi_{\mathrm{g}}^{(m)}, x_{\nu^{\prime}}\left(\partial_{\mu}-i \alpha A_{\mu}\right) \Psi_{\mathrm{g}}^{(m)}\right)\right\} \tag{6.16}
\end{gather*}
$$

It is established ([113]) that

$$
\left\|\mathbf{p}_{\mu} \Psi_{\mathrm{g}}^{(m)}\right\| \leq C^{\prime}\left\|\Psi_{\mathrm{g}}^{(m)}\right\|, \quad \mu=1, \ldots, d
$$

with some constant C^{\prime}. Note that

$$
\left\|k_{\mu} k_{\nu} g_{\gamma} / \omega_{m}\right\| \leq\|\omega \hat{\lambda}\|, \quad\left\|k_{\mu} g_{\nu} / \omega_{m}\right\| \leq\|\hat{\lambda}\|, \quad \mu, \nu, \gamma=1, \ldots, d
$$

By inequalities (2.8) and (2.9), there exists constants $C^{\prime \prime}$ and $C^{\prime \prime \prime}$ independent of $\|\hat{\lambda} / \omega\|$ and m such that

$$
\left\|N_{\mathrm{b}}^{1 / 2} \Psi_{\mathrm{g}}^{(m)}\right\|^{2} \leq|\alpha| C^{\prime \prime}\left\|N^{1 / 2} \Psi_{\mathrm{g}}^{(m)}\right\|+|\alpha| C^{\prime \prime \prime}\left(\left\||x|^{2} \Psi_{\mathrm{g}}^{(m)}\right\|^{2}+\left\||x| \Psi_{\mathrm{g}}^{(m)}\right\|^{2}+\left\|\Psi_{\mathrm{g}}^{(m)}\right\|^{2}\right) .
$$

Thus lemma follows.
QED

Lemma 6.20 Let $Q:=E_{\left[E_{\mathrm{p}}+\epsilon, \infty\right)}^{\overline{H_{\mathrm{p}}}} \otimes E_{\{0\}}^{H_{\mathrm{b}}}$ with $\epsilon<\Sigma$. Then there exists a constant D independent of m such that

$$
\left\|Q \Psi_{\mathrm{g}}^{(m)}\right\| \leq|\alpha| \mathbf{D}\left\|\Psi_{\mathrm{g}}^{(m)}\right\| /\left(\Sigma-E_{\mathrm{p}}\right) .
$$

Proof: See [109, 113].
QED

Theorem 6.21 Suppose that V is in Theorems 6.11 and/or 6.12, and $|\alpha| \ll 1$. Then the ground states of H exists.

Proof: Let $\Psi_{\mathrm{g}}^{(m)}$ be the normalized ground state of H_{m}. There exists a subsequence m^{\prime} such that $\Psi_{\mathrm{g}}^{\left(m^{\prime}\right)}$ weakly converges to a vector Ψ as $m^{\prime} \rightarrow \infty$. If $\Psi \neq 0, \Psi$ is the ground state. Let $P:=E_{\left[E_{\mathrm{p}}, E_{\mathrm{p}}+\epsilon\right)}^{\overline{H_{\bar{p}}}} \otimes E_{\{0\}}^{H_{\mathrm{b}}}$. Since $P+Q \geq \mathbf{1}-N_{\mathrm{b}}$, we have

$$
\left(\Psi_{\mathrm{g}}^{\left(m^{\prime}\right)}, P \Psi_{\mathrm{g}}^{\left(m^{\prime}\right)}\right) \geq\left\|\Psi_{\mathrm{g}}^{\left(m^{\prime}\right)}\right\|^{2}-\left\|Q \Psi_{\mathrm{g}}^{\left(m^{\prime}\right)}\right\|^{2}-\left\|N_{\mathrm{b}}^{1 / 2} \Psi_{\mathrm{g}}^{\left(m^{\prime}\right)}\right\|^{2}
$$

From Corollary 6.13 it follows that

$$
\left\||x|^{2} \Psi_{\mathrm{g}}^{\left(m^{\prime}\right)}\right\|+\left\||x| \Psi_{\mathrm{g}}^{\left(m^{\prime}\right)}\right\| \leq C\left\|\Psi_{\mathrm{g}}^{\left(m^{\prime}\right)}\right\|,
$$

where C is independent of m. Thus there exists C^{\prime} independent of m such that

$$
\left\|N_{\mathrm{b}}^{1 / 2} \Psi_{\mathrm{g}}^{\left(m^{\prime}\right)}\right\| \leq C^{\prime}\left\|\Psi_{\mathrm{g}}^{\left(m^{\prime}\right)}\right\|
$$

Since P is a finite rank operator, taking $m^{\prime} \rightarrow \infty$, we get

$$
(\Psi, P \Psi) \geq 1-|\alpha| C^{\prime}-\alpha^{2}\left(\mathbf{D} /\left(\Sigma-E_{\mathrm{p}}\right)\right)^{2}>0
$$

Thus theorem follows.
QED

Corollary 6.22 We assume the same condition as that of Theorem 6.21. Then

$$
s-\lim _{\alpha \rightarrow 0} \Psi_{\mathrm{g}}=\phi_{\mathrm{p}} \otimes \Omega,
$$

where ϕ_{p} is the ground state of H_{p}.
Proof: It follows from the uniqueness of the ground state and Theorem 6.21. QED

6.4 Ground state energy

Let $f \in L^{2}\left(\mathbf{R}^{d}\right)$ be positive. Then, by Corollary 6.7 ,

$$
\begin{equation*}
\left(f \otimes \Omega, \Psi_{\mathrm{g}}\right)=\left(f \otimes \Omega, U \Psi_{\mathrm{g}}\right) \neq 0 . \tag{6.17}
\end{equation*}
$$

Theorem 6.23 ([110]) Let $\hat{\lambda} / \sqrt{\omega}, \hat{\lambda}, \sqrt{\omega} \hat{\lambda}, \omega \hat{\lambda} \in L^{2}\left(\mathbf{R}^{d}\right)$. We assume that there exists the ground state of H. Then

$$
\begin{equation*}
E=E\left(\alpha^{2}\right)=-\lim _{t \rightarrow \infty} \frac{1}{t} \log \int_{\mathcal{W}} d P e^{-\int_{0}^{t} V\left(X_{s}\right) d s} f\left(X_{0}\right) f\left(X_{t}\right) e^{-\left(\alpha^{2} / 2\right) q_{0}\left(\mathbf{K}_{t}(X)\right)} \tag{6.18}
\end{equation*}
$$

In particular $E\left(\alpha^{2}\right)$ is a continuous, monotonously increasing, concave function in α^{2}.

Proof: From (6.17) it follows that

$$
E\left(\alpha^{2}\right):=-\lim _{t \rightarrow \infty} \frac{1}{t} \log \left(f \otimes \Omega, e^{-t H} f \otimes \Omega\right)
$$

By Theorem 4.1, (6.18) follows. By a Hölder inequality we see that $E\left(\alpha^{2}\right)$ is concave, which implies that $E\left(\alpha^{2}\right)$ is continuous in $\alpha^{2}>0$. Since H converges to H_{d} as $\alpha \rightarrow \infty$ uniformly in the sense of resolvent, $\lim _{\alpha^{2} \rightarrow 0} E\left(\alpha^{2}\right)=E(0)$. Hence $E\left(\alpha^{2}\right)$ is continuous in $\alpha^{2} \geq 0$. Concave continuous function $E\left(\alpha^{2}\right)$ can be represented as

$$
E\left(\alpha^{2}\right)=E(0)+\int_{0}^{\alpha^{2}} \phi(t) d t
$$

with some increasing function $\phi(t)$. Moreover we have by a diamagnetic inequality, $\phi(t) \geq 0$. Thus $E\left(\alpha^{2}\right)$ is monotonously increasing. ${ }^{30}$

QED

6.5 Degenerate ground states with singular potentials

In this subsection we give a simple example of external potentials for which H has degenerate ground states. For classical case see [65, 66, 69]. Assume that $\hat{\lambda} / \sqrt{\omega}, \hat{\lambda}, \sqrt{\omega} \hat{\lambda}, \omega \hat{\lambda} \in L^{2}\left(\mathbf{R}^{d}\right)$. Let $D_{j}, j=1, \ldots, J$, be open sets such that

$$
\bigcup_{j=1}^{J} \overline{D_{j}}=\mathbf{R}^{d}, \quad \bigcap_{j=1}^{J} D_{j}=\emptyset,
$$

and the Lebesgue measure of the boundary $S:=\partial\left(\bigcup_{j=1}^{J} D_{j}\right)$ is zero. Let V be such that $V_{+} \in L_{\text {loc }}^{1}\left(\mathbf{R}^{d} \backslash S\right), D(\Delta) \cap D\left(V_{+}\right)$is dense in \mathbf{R}^{d}, and V_{-}is infinitesimally small with respect to the Laplacian in the sense of form. We assume that

$$
\begin{equation*}
\int_{0}^{t} V_{+}\left(X_{s}\right) d s=0 \tag{6.19}
\end{equation*}
$$

if $X_{0} \in D_{i}$ and $X_{t} \in D_{j}, i \neq j$. Moreover we suppose that $H_{\mathrm{p}_{j}}:=H_{\mathrm{p}}\left\lceil_{L^{2}\left(D_{j}\right)}\right.$ is essentially self-adjoint on $C_{0}^{\infty}\left(D_{j}\right)$ and

$$
-\Delta \leq a H_{\mathrm{p}_{j}}+b, \quad j=1, \ldots, J
$$

on $L^{2}\left(D_{j}\right)$ with some constants a and b. Finally we make assumption:

$$
E_{\mathrm{p}_{j}}:=\inf \sigma\left(H_{\mathrm{p}_{j}}\right) \in \sigma_{\mathrm{disc}}\left(H_{\mathrm{p}_{j}}\right), \quad \sigma_{\mathrm{ess}}\left(H_{\mathrm{p}_{j}}\right)-E_{\mathrm{p}_{j}}>0 .
$$

[^15]Lemma 6.24 Let P_{j} be the projection of $L^{2}\left(\mathbf{R}^{d}\right)$ to $L^{2}\left(D_{j}\right)$. Then

$$
e^{-t H} P_{j}=P_{j} e^{-t H}, \quad t \geq 0
$$

Proof: Let $F, G \in C_{0}^{\infty}\left(D_{j}\right) \widehat{\otimes} L_{0}^{2}(Q)$. We extend functional integral representation in Theorem 4.1 to external potentials such as stated above. We see that, by (6.19),

$$
\begin{aligned}
& \left(F, e^{-t H} P_{j} G\right)_{\mathcal{H}}=\int_{\mathcal{W}_{j}} d P e^{-\int_{0}^{t} V\left(X_{s}\right) d s}\left(J_{0} F\left(X_{0}\right), e^{i \alpha \phi_{0}\left(\mathbf{K}_{t}(X)\right)} J_{t}\left(P_{j} G\right)\left(X_{t}\right)\right) \\
& \int_{\mathcal{W}_{j}} d P e^{-\int_{0}^{t} V\left(X_{s}\right) d s}\left(J_{0}\left(P_{j} F\right)\left(X_{0}\right), e^{i \alpha \phi_{0}\left(\mathbf{K}_{t}(X)\right)} J_{t} G\left(X_{t}\right)\right)=\left(P_{j} F, e^{-t H} G\right)_{\mathcal{H}}
\end{aligned}
$$

where \mathcal{W}_{j} is the set of paths $q(\cdot)$ such that $q(s) \in D_{j}$ for $0 \leq s \leq t$. Thus lemma follows.

QED

Lemma 6.25 Let $|\alpha|$ be sufficiently small. Then H_{j} is reduced by $L^{2}\left(D_{j}\right) \otimes L^{2}(Q)$ and

$$
H_{j}:=H \Gamma_{L^{2}\left(D_{j}\right) \otimes L^{2}(Q)}
$$

is essentially self-adjoint on $C_{0}^{\infty}\left(D_{j}\right) \hat{\otimes}\left[L_{0}^{2}(Q) \cap D\left(H_{\mathrm{f}}\right)\right]$. Moreover the ground state of H_{j} exits and it is unique.

Proof: By Lemma 6.24, H_{j} is reduced by $L^{2}\left(D_{j}\right) \otimes L^{2}(Q)$. Since $H_{\mathrm{p}_{j}}$ is essentially self-adjoint on $C_{0}^{\infty}\left(D_{j}\right)$, the Kato-Rellich theorem yields the essential self-adjointness of H_{j}. In the similar way as the proofs of Theorems 6.6 and 6.21 , one can prove the existence and uniqueness of the ground state of H_{j}.

Lemma 6.26 (A.Arai [15]) We have $\sigma_{\text {ess }}(H)=[E, \infty)$.
Let $m(a)$ denote the multiplicity of a point spectrum a of H.
Theorem $6.27([115])$ Set $E_{j}=\inf \sigma H_{j}, j=1, \ldots, J$. Then E_{j} is an eigenvalue of H and

$$
m\left(E_{j}\right) \geq \#\left\{E_{k} \mid E_{k}=E_{j}, k=1, \ldots, J\right\}
$$

Moreover

$$
\lim _{\alpha \rightarrow 0} E_{j}=\inf \sigma\left(H_{\mathrm{p}_{j}}\right)
$$

Proof: Let $\mathcal{H}_{j}:=L^{2}\left(D_{j}\right) \otimes L^{2}(Q)$ and Ψ_{j} be the unique ground state of H_{j}. Since $H \cong \oplus_{j=1}^{J} H_{j}$ on $\mathcal{H} \cong \oplus_{j=1}^{J} \mathcal{H}_{j}$, vectors $\oplus_{j=1}^{J} \delta_{i j} \Psi_{j}$ are eigenvectors with eigenvalues E_{j}. Thus theorem follows.

QED

Corollary 6.28 Define $E:=\min _{k} E_{k}=\inf \sigma(H)$. Let

$$
\bar{H}:=H-E-\sum_{j=1}^{J}\left(E_{j}-E\right) \mathbf{1}_{D_{j}}
$$

Then \bar{H} has J-fold ground states.
A typical example of $\left\{D_{j}\right\}$ and V is as follows: let $d=3, J=3$, and

$$
\begin{aligned}
D_{1} & :=\left\{x \in \mathbf{R}^{3} \mid x_{1}>0, x_{2}>0, x_{3}>0\right\}, \\
D_{2} & :=\left\{x \in \mathbf{R}^{3} \mid x_{1}<0, x_{2}<0, x_{3}<0\right\}, \\
D_{3} & :=\mathbf{R}^{3} \backslash \overline{D_{1} \cup D_{2}}, \quad D:=\cup_{j=1}^{3} D_{j} .
\end{aligned}
$$

Define

$$
V_{\nu}(x):=\frac{\nu}{|x-\partial D|^{3}}+|x|^{2}+m \mathbf{1}_{D_{1}}+n \mathbf{1}_{D_{2}},
$$

where ν, m and n are positive constants. Taking sufficiently large ν, we see that $-\Delta / 2+V_{\nu}\left\lceil_{L^{2}\left(D_{j}\right)}\right.$ is essentially self-adjoint on $C_{0}^{\infty}\left(D_{j}\right)([136])$ and satisfies the assumptions stated in the beginning of this subsection (see [115]). Let

$$
H(\nu):=H_{\mathrm{p}}+H_{\mathrm{f}}+V_{\nu} .
$$

From the functional integral representation it follows that

$$
\begin{aligned}
& \lim _{\nu \rightarrow 0}\left(F, e^{-t H(\nu)} G\right)=\int_{\mathcal{W}_{j}} d P e^{-\int_{0}^{t} V_{0}\left(X_{s}\right) d s}\left(J_{0} F\left(X_{0}\right), e^{i \alpha \phi_{0}(K(X))} J_{t} G\left(X_{t}\right)\right) \\
& \neq \int_{\mathcal{W}} d P e^{-\int_{0}^{t} V_{0}\left(X_{s}\right) d s}\left(J_{0} F\left(X_{0}\right), e^{i \alpha \phi_{0}(K(X))} J_{t} G\left(X_{t}\right)\right)=\left(F, e^{-t H(0)} G\right) .
\end{aligned}
$$

Namely

$$
s-\lim _{\nu \rightarrow 0} e^{-t H(\nu)} \neq e^{-t H(0)} .
$$

This phenomena carries an interesting consequence that once turned on the effects of the singular potential cannot be completely turned off. See [144, 65, 66, 69, 187, the Klauder phenomena].

6.6 The Kato-Mugibayashi-H.Krohn type scattering theory

For instance we let $\hat{\lambda} / \sqrt{\omega}, \hat{\lambda}, \sqrt{\omega} \hat{\lambda}, \omega \hat{\lambda} \in L^{2}\left(\mathbf{R}^{d}\right)$,

$$
V(x):=x^{2}, \quad|\alpha| \ll 1
$$

in this subsection. Let

$$
a_{t}^{r \sharp}(f):=e^{i t H} e^{-i t H_{0}} a^{r \sharp}(f) e^{i t H_{0}} e^{-i t H}, \quad r=1, \ldots, d-1 .
$$

We want to consider the strong limit of $a_{t}^{r \sharp}$ as $t \rightarrow \pm \infty$. We will focus on $s-$ $\lim _{t \rightarrow \infty} a_{t}^{r \dagger}$ in what follows. The other statements are similar. From the definition of $a_{t}^{r \dagger}$ and fundamental limiting arguments ${ }^{31}$, we have

$$
\begin{equation*}
a_{t}^{r \dagger}(f) \Psi=a_{T}^{r \dagger}(f) \Psi-i \int_{T}^{t} e^{i s H} \alpha K_{\mu}^{r}(s, x, f)\left(\mathbf{p}_{\mu}-A_{\mu}(x)\right) e^{-i s H} \Psi d s \tag{6.20}
\end{equation*}
$$

where

$$
K_{\mu}^{r}(s, x, f):=\left[A_{\mu}(\hat{\lambda}, x), a^{r \dagger}\left(e^{-i s \omega} f\right)\right]=\left(\frac{\overline{\hat{\lambda} e_{\mu}^{r} e^{-i k x}}}{\sqrt{2}}, e^{-i s \omega} f\right)
$$

Let \mathcal{E} be as follows: $f \in \mathcal{E}$ if

$$
\lim _{t \rightarrow \infty} t^{\frac{d-1}{2}} \sup _{x \in \mathbf{R}^{d}}\left|\int_{\mathbf{R}^{d}} f(k) h(k) e^{i k x-i t \omega(k)} d k\right|<\infty \quad \text { for all } h \in C_{0}^{\infty}\left(\mathbf{R}^{d}\right) .
$$

Lemma 6.29 Let $\hat{\lambda}, \partial_{\mu} \hat{\lambda} \in \mathcal{E}$ and $f \in C_{0}^{\infty}\left(\mathbf{R}^{d}\right)$. Then $s-\lim _{t \rightarrow \infty} a_{t}^{r \sharp}(f) \Psi$ exits for $\Psi \in D(H)$.

Proof: By virtue of (6.20) it is enough to prove that

$$
\begin{equation*}
\left\|K_{\mu}^{r}(t, x, f)\left(\mathbf{p}_{\mu}-\mathbf{A}_{\mu}(x)\right) e^{-i t H} \Psi\right\|_{\mathcal{H}} \in L^{1}([T, \infty), d t) \tag{6.21}
\end{equation*}
$$

Using

$$
e^{i t \omega(k)}=\frac{\omega(k)}{k_{\mu}} \frac{1}{i t} \frac{\partial}{\partial k_{\mu}} e^{i t \omega(k)}, \quad k \in \mathbf{R}^{d} \backslash\{0\}
$$

and integrating by parts, one sees that that

$$
\text { L.H.S. }(6.21) \leq C_{1} t^{-(d+1) / 2}
$$

[^16]$$
a_{t}^{r \sharp} \Psi=a_{T}^{r \sharp}(f) \Psi+i \int_{T}^{t} e^{i s H}\left[-\alpha \mathbf{p} A(x)+\alpha^{2} A^{2}(x), a^{r \dagger}\left(e^{-i s \omega} f\right)\right] e^{-i s H} \Psi d s .
$$
\[

$$
\begin{equation*}
\times\left(\left\|x_{\mu} \mathbf{p}_{\mu} e^{-i t H} \Psi\right\|+\left\|\mathbf{p}_{\mu} e^{-i t H} \Psi\right\|+\left\|x_{\mu} A_{\mu}(x) e^{-i t H} \Psi\right\|+\left\|A_{\mu}(x) e^{-i t H} \Psi\right\|\right) \tag{6.22}
\end{equation*}
$$

\]

with some constant C_{1}. Since $V(x)=x^{2}$, we have

$$
\left\|x_{\mu} \mathbf{p}_{\mu} e^{-i t H} \Psi\right\| \leq C_{2}(\|H \Psi\|+\|\Psi\|)
$$

with some constant C_{2}. The other terms in (6.22) are estimated similarly and we have, with some constant C_{3},

$$
\text { L.H.S. }(6.21) \leq C_{3} t^{-(d+1) / 2}(\|H \Psi\|+\|\Psi\|) \in L^{1}([T, \infty), d t) .
$$

QED
We define, for $\Psi \in D(H)$,

$$
s-\lim _{t \rightarrow \pm} a_{t}^{r \sharp}(f) \Psi:=a_{ \pm}^{r \sharp}(f) \Psi .
$$

It is immediately seen that

$$
\left\|a_{ \pm}^{r \sharp}(f) \Psi\right\| \leq C_{4}(\|f / \sqrt{\omega}\|+\|f\|)\left(\left\||H|^{1 / 2} \Psi\right\|+\|\Psi\|\right)
$$

with some constant C_{4}. Hence we extend $a_{ \pm}^{r \sharp}(f)$ to $f, f / \sqrt{\omega} \in L^{2}\left(\mathbf{R}^{d}\right)$. The closure of $a_{ \pm}^{r \sharp}(f)$ is written as the same symbol. Then $D\left(a_{ \pm}^{r \sharp}(f)\right) \supset D\left(|H|^{1 / 2}\right)$. Moreover we have

$$
\left[a_{ \pm}^{r}(f), a_{ \pm}^{s \dagger}(g)\right]=\delta_{r s}(\bar{f}, g), \quad\left[a_{ \pm}^{r \sharp}(f), a^{s \sharp}(g)_{ \pm}\right]=0,
$$

and

$$
\begin{align*}
e^{i t H} a_{ \pm}^{r \dagger}(f) e^{-i t H} & =a_{ \pm}^{r \dagger}\left(e^{i t \omega} f\right), \\
e^{i t H} a_{ \pm}^{r}(f) e^{-i t H} & =a_{ \pm}^{r}\left(e^{-i t \omega} f\right) \tag{6.23}
\end{align*}
$$

on $D(H)$. Let Ψ_{g} be the ground state of H. Then

$$
a_{ \pm}^{r}(f) \Psi_{\mathrm{g}}=0, \quad \text { for all } f, f / \sqrt{\omega} \in L^{2}\left(\mathbf{R}^{d}\right)
$$

We define an asymptotic Hilbert space $\mathcal{H}_{\text {tasy }}$ by

$$
\mathcal{H}_{ \pm \text {asy }}:=\overline{\left\{a_{ \pm}^{r_{1} \dagger}\left(f_{1}\right) \cdots a_{ \pm}^{r_{n} \dagger}\left(f_{n}\right) \Psi_{\mathrm{g}}, \Psi_{\mathrm{g}} \mid f_{j} \in C_{0}^{\infty}\left(\mathbf{R}^{d}\right), r_{j}=1, \ldots, d, j=1, \ldots, n, n \in \mathbf{N}\right\}}
$$

Let $W_{ \pm}: \mathcal{H}_{ \pm \text {asy }} \rightarrow \mathcal{F}_{\text {EM }}$ be defined by

$$
\begin{aligned}
W_{ \pm} a_{ \pm}^{r_{1} \dagger}\left(f_{1}\right) \cdots a_{ \pm}^{r_{n} \dagger}\left(f_{n}\right) \Psi_{\mathrm{g}} & :=a^{r_{1} \dagger}\left(f_{1}\right) \cdots a^{r_{n} \dagger}\left(f_{n}\right) \Omega_{\mathrm{b}} \\
W_{ \pm} \Psi_{\mathrm{g}} & :=\Omega_{\mathrm{b}}
\end{aligned}
$$

Thus $W_{ \pm}$uniquely extends to a unitary operator of $\mathcal{H}_{ \pm \text {asy }}$ to $\mathcal{F}_{\text {EM }}$.

Theorem 6.30 We assume that the ground state of H exists. Then we have

$$
\sigma_{\mathrm{ac}}(H)=[E, \infty)
$$

Proof: It is seen that $e^{i t H}$ is reduced by $\mathcal{H}_{\text {tasy }}$. Then $H=\left(H \Gamma_{\mathcal{H}_{\text {土asy }}}\right) \oplus\left(H \Gamma_{\mathcal{H}_{\neq \text {asy }}^{\perp}}\right)$ under identification $\mathcal{H} \cong \mathcal{H}_{\text {土asy }} \oplus \mathcal{H}_{ \pm \text {asy }}^{\perp}$. By the definition of W and (6.23), we have

$$
W_{ \pm}\left(e^{i t H\left[\mathcal{H}_{ \pm \text {asy }}\right.}\right) W_{ \pm}^{*}=e^{i t\left(H_{\mathrm{f}}+E\right)}
$$

Hence

$$
H \cong\left(H_{\mathrm{f}}+E\right) \oplus H \Gamma_{\mathcal{H}_{\ddagger \text { asy }}}
$$

under identification $\mathcal{H} \cong \mathcal{F}_{\text {EM }} \oplus \mathcal{H}_{\not \pm \text { asy }}^{\perp}$. Since $\sigma_{\mathrm{ac}}\left(H_{\mathrm{f}}+E\right)=[E, \infty)$, theorem follows.

Remark 6.31 A.Arai [19] proved independently of the existence of the ground states of H that $\sigma_{\text {ess }}(H)=[E, \infty)$ under some weaker conditions.

7 Gibbs measures

In this section we assume that $V \in V_{0}$ and $\hat{\lambda}, \omega \hat{\lambda} \in L^{2}\left(\mathbf{R}^{d}\right)$. Related work of this section are V.Betz, F.Hiroshima, J.Lőrinczi, R.Minlos, H.Osada, H.Spohn [39, 38, 111, 116, 114, 158, 160, 168, 195].

7.1 The existence of an infinite time Gibbs measure

For positive $f \in L^{2}\left(\mathbf{R}^{d}\right)$, we define a finite-time Gibbs measure on the measure space $W_{T}:=C([-T, \infty)) \times \mathbf{R}^{d}$ by

$$
d W_{2 T}^{f}:=\frac{1}{Z_{2 T}} f\left(q_{-T}\right) f\left(q_{T}\right) e^{\int_{-T}^{T} V\left(q_{s}\right) d s} e^{-\left(\alpha^{2} / 2\right) q_{0}\left(\mathbf{K}_{t}(X)\right)}
$$

where $q_{s}:=x+b(T+s), Z_{2 T}$ is normalizing constant such as $\int d W_{2 T}^{f}=1$. Let $-T \leq t_{1} \geq \cdots t_{m} \leq T$. Set

$$
\mu_{A_{1}, \ldots, A_{m}}^{t_{1}, \ldots, t_{m}}:=\int_{W_{T}} \mathbf{1}_{A_{1}}\left(q_{t_{1}}\right) \cdots \mathbf{1}_{A_{m}}\left(q_{t_{m}}\right) d W_{2 T}^{f}
$$

From Theorem 4.1 it follows that

$$
\mu_{A_{1}, \ldots, A_{m}}^{t_{1}, \ldots, t_{m}}=\frac{\left(f \otimes \Omega, e^{-\left(T+t_{1}\right) H} \mathbf{1}_{A_{1}} e^{-\left(t_{2}-t_{1}\right) H} \cdots e^{-\left(t_{m}-t_{m-1}\right) H} \mathbf{1}_{A_{m}} e^{-\left(T-t_{m}\right) H} f \otimes \Omega\right)}{\left(f \otimes \Omega, e^{-2 T H} f \otimes \Omega\right)} .
$$

Thus $\mu_{A_{1}, \ldots, A_{m}}^{t_{1} \ldots, t_{m}}$ is consistent. By Kolmogorov's construction, there exists a probability measure $\left(\Xi_{T}, \mathcal{B}\left(\Xi_{T}\right), \mu_{T}\right)$ such that

$$
\mu_{A_{1}, \ldots, A_{m}}^{t_{1}, \ldots, t_{m}}=\int_{\Xi_{T}} \mathbf{1}_{A_{1}}\left(q_{t_{1}}\right) \cdots \mathbf{1}_{A_{m}}\left(q_{t_{m}}\right) \mu_{T}(d q)
$$

where $\Xi_{T}:=\left(\mathbf{R}^{d}\right)^{[-T, T]}$ and $\mathcal{B}(\cdot)$ denotes the smallest σ-field containing cylinder sets. Let Π_{T} be the projection of Ξ_{∞} to Ξ_{T}. We define

$$
\mu_{T}^{\mathrm{ex}}(A):=\mu_{T}\left(\Pi_{T}(A)\right), \quad A \in \mathcal{B}\left(\Xi_{\infty}\right)
$$

We shall prove that

- there exists a continuous version of $\left(\Xi_{\infty}, \mathcal{B}\left(\Xi_{\infty}\right), \mu_{T}^{\mathrm{ex}}\right)$;
- there exists a subsequence T^{\prime} such that $\mu_{T^{\prime}}^{\mathrm{ex}}$ weakly converges to a measure μ on $\left(\Xi_{\infty}, \mathcal{B}\left(\Xi_{\infty}\right)\right)$.

Note that there exists a constant C_{n} such that

$$
\mathbf{E}|b(t)-b(s)|^{2 n}=C_{n}|t-s|^{n}, \quad n \geq 0
$$

Lemma 7.1 Let $\bar{H}=H-E$. Then we have ${ }^{32}$

$$
\left|\int_{\Xi_{\infty}}\right| q(t)-\left.q(s)\right|^{2 n} \mu_{T}^{\mathrm{ex}}(d q)\left|\leq|t-s|^{n} C_{n} e^{|t-s|(E-\inf V)}\left(\frac{\|f\|}{\left\|e^{-T \bar{H}} f \otimes \Omega\right\|}\right)^{2} .\right.
$$

Proof: Let $q^{a}(s)$ and X_{s}^{a} are truncated paths defined by

$$
\begin{aligned}
q_{\nu}^{a}(s) & := \begin{cases}q_{\nu}(s), & \left|q_{\nu}(s)\right| \leq a, \\
-a, & q_{\nu}(s)<-a, \\
a, & q_{\nu}(s)>a,\end{cases} \\
X_{\nu, s}^{a} & := \begin{cases}X_{\nu, s}, & \left|X_{\nu, s}\right| \leq a \\
-a, & X_{\nu, s}<-a \\
a, & X_{\nu, s}>a .\end{cases}
\end{aligned}
$$

Moreover we define

$$
h_{\nu}^{a}(x):= \begin{cases}x_{\nu}, & \left|x_{\nu}\right| \leq a \\ -a, & x_{\nu}<-a \\ a, & x_{\nu}>a\end{cases}
$$

[^17]We put

$$
\psi:=e^{-(T+t) \bar{H}}(f \otimes \Omega) /\left\|e^{-T \bar{H}} f \otimes \Omega\right\|, \quad \phi:=e^{-(T-s) \bar{H}}(f \otimes \Omega) /\left\|e^{-T \bar{H}} f \otimes \Omega\right\| .
$$

Then we have

$$
\begin{gathered}
\int_{\Xi_{\infty}}\left|q^{a}(s)-q^{a}(t)\right|^{2 n} \mu_{T}^{\mathrm{ex}}(d q)=\sum_{k=0}^{2 n}{ }_{2 n} C_{k}(-1)^{k} \int_{\Xi_{\infty}} q_{\nu}^{a}(s)^{k} q_{\nu}^{a}(t)^{2 n-k} \mu_{T}^{\mathrm{ex}}(d q) \\
=\sum_{k=0}^{2 n}{ }_{2 n} C_{k}(-1)^{k} \frac{\left(f \otimes \Omega, e^{-(T+t) \bar{H}}\left(h_{\nu}^{a}\right)^{k} e^{-(t-s) \bar{H}}\left(h_{\nu}^{a}\right)^{2 n-k} e^{-(T-s) \bar{H}} f \otimes \Omega\right)}{\left(f \otimes \Omega, e^{-2 T \bar{H}} f \otimes \Omega\right)} \\
=\sum_{k=0}^{2 n}{ }_{2 n} C_{k}(-1)^{k}\left(\phi,\left(h_{\nu}^{a}\right)^{k} e^{-t(t-s)}\left(h_{\nu}^{a}\right)^{2 n-k} \psi\right) \\
=\sum_{k=0}^{2 n}{ }_{2 n} C_{k}(-1)^{k} \int_{\mathcal{W}} d P\left(X_{\nu, 0}^{a}\right)^{k}\left(X_{\nu, t-s}^{a}\right)^{2 n-k} e^{-\int_{0}^{t-s} V\left(X_{s^{\prime}}\right) d s^{\prime}}\left(\phi\left(X_{0}\right), \mathbf{J}_{t-s} \psi\left(X_{t-s}\right)\right) e^{|t-s| E} \\
\leq \int_{\mathcal{W}} d P|\mathbf{b}(0)-\mathbf{b}(t-s)|^{2 n}\left\|\phi\left(X_{0}\right)\right\|\left\|\psi\left(X_{t-s}\right)\right\| e^{|t-s|(E-\inf V)} \\
\leq C_{n}|t-s|^{n}\|\phi\|\left(\int_{\mathcal{W}} d P\left\|\psi\left(X_{t-s}\right)\right\|^{2}\right)^{1 / 2} e^{|t-s|(E-\inf V)} \\
\leq C_{n}|t-s|^{n}\|\phi\|\|\psi\| e^{|t-s|(E-\inf V)} .
\end{gathered}
$$

Note that

$$
\|\phi\| \leq\|f\| /\left\|e^{-T \bar{H}} f \otimes \Omega\right\|, \quad\|\psi\| \leq\|f\| /\left\|e^{-T \bar{H}} f \otimes \Omega\right\|
$$

Since $\left|q_{\nu}^{a}(t)-q_{\nu}^{a}(s)\right| \uparrow\left|q_{\nu}(t)-q_{\nu}(s)\right|$ as $a \uparrow \infty$, lemma follows by the Lebesgue monotone convergence theorem.

QED
By this lemma there exists a continuous version of $\left(\Xi_{\infty}, \mathcal{B}\left(\Xi_{\infty}\right)\right.$, $\left.\mu_{T}^{\text {ex }}\right)$, i.e., there exists $\Xi^{\text {cont }} \in \mathcal{B}\left(\Xi_{\infty}\right)$ such that $\mu_{T}^{\text {ex }}\left(\Xi^{\text {cont }}\right)=1$ and $\Xi^{\text {cont }} \ni q(\cdot)$ is continuous. Define a probability measure $\bar{\mu}_{T}$ on $\left(\mathrm{C}\left(\mathbf{R} ; \mathbf{R}^{d}\right), \mathcal{B}\left(\mathrm{C}\left(\mathbf{R} ; \mathbf{R}^{d}\right)\right)\right.$ by

$$
\bar{\mu}_{T}(A):=\mu_{T}^{\mathrm{ex}}\left(A^{\prime}\right)
$$

where $A^{\prime} \in \mathcal{B}\left(\Xi_{\infty}\right)$ such that $A^{\prime} \cap \mathrm{C}\left(\mathbf{R} ; \mathbf{R}^{d}\right)=A$. It is immediate to see that $\bar{\mu}_{T}$ is well defined. Thus we had the following lemma:

Lemma 7.2 We see that $\left(\mathrm{C}\left(\mathbf{R} ; \mathbf{R}^{d}\right), \bar{\mu}_{T}\right)$ and $\left(W, d W_{2 T}^{f}\right)$ have the same finite dimensional distributions.

Theorem 7.3 We assume that there exists the ground state of H. Then there exists a subsequence T^{\prime} such that $\bar{\mu}_{T^{\prime}}$ weakly converges to a probability measure μ on $\left(\mathrm{C}\left(\mathbf{R} ; \mathbf{R}^{d}\right), \mathcal{B}\left(\mathrm{C}\left(\mathbf{R} ; \mathbf{R}^{d}\right)\right)\right.$) as $T^{\prime} \rightarrow \infty$.

Proof: Let $\Pi:=\left\{\bar{\mu}_{T^{\prime}}\right\}_{T>0}$. From Lemma 7.1 it follows that

$$
\int_{\mathrm{C}\left(\mathbf{R} ; \mathbf{R}^{d}\right)}|q(t)-q(s)|^{2 n} \bar{\mu}_{T}(d q) \leq|t-s|^{2 n} C_{n} e^{|t-s|(E-\inf V)}\left(\sup _{T>0} \frac{\|f\|}{\left\|e^{-T \bar{H}} f \otimes \Omega\right\|}\right)^{2}
$$

Since

$$
\lim _{T \rightarrow \infty}\left\|e^{-T \bar{H}} f \otimes \Omega\right\|=\left\|\Psi_{\mathrm{g}}\right\| \neq 0
$$

there exists a positive constant D_{n} independent of T such that

$$
\int_{\mathrm{C}\left(\mathbf{R} ; \mathbf{R}^{d}\right)}|q(t)-q(s)|^{2 n} \bar{\mu}_{T}(d q) \leq|t-s|^{2 n} D_{n} .
$$

Thus Π is tight ([138]). Hence Π is precompact by [172], i.e., there exists a subsequence T^{\prime} such that $\bar{\mu}_{T^{\prime}}$ weakly converges to a probability measure μ.

QED

Remark 7.4 In Theorem 7.3 we do not explicitly assume $|\alpha| \ll 1$.

7.2 Expectation values and a boson-localization

In this subsection we assume that there exists the ground state of H. Let the expectation value of T with respect to the normalized ground state Ψ_{g} be defined by

$$
\langle T\rangle:=\left(\Psi_{\mathrm{g}}, T \Psi_{\mathrm{g}}\right)_{\mathcal{H}} .
$$

Corollary 7.5 Let $h_{j} \in L^{\infty}\left(\mathbf{R}^{d}\right), j=1, \ldots, m$. Then

$$
\begin{equation*}
\left\langle h_{1} e^{-\left(t_{2}-t_{1}\right) \bar{H}} h_{2} \cdots h_{m-1} e^{-\left(t_{m}-t_{m-1}\right) \bar{H}} h_{m}\right\rangle=\int_{\mathrm{C}\left(\mathbf{R} ; \mathbf{R}^{d}\right)} h_{1}\left(q\left(t_{1}\right)\right) \cdots h_{m}\left(q\left(t_{m}\right)\right) \mu(d q) \tag{7.1}
\end{equation*}
$$

Proof: We directly see that

$$
\begin{gathered}
\text { L.H.S.(7.1) }=\lim _{T \rightarrow \infty} \frac{\left(f \otimes \Omega, e^{-\left(T+t_{1}\right) H} h_{1} e^{-\left(t_{2}-t_{1}\right) H} h_{2} \cdots h_{m} e^{-\left(T-t_{m}\right) H} f \otimes \Omega\right)}{\left(f \otimes \Omega, e^{-2 T H} f \otimes \Omega\right)} \\
\left.\quad=\lim _{T \rightarrow \infty} \int_{\mathrm{C}\left(\mathbf{R} ; \mathbf{R}^{d}\right)} h_{1}\left(q\left(t_{1}\right)\right) \cdots h_{m}\left(q\left(t_{m}\right)\right) \bar{\mu}_{T}(d q)=\text { R.H.S.(7.1 }\right)
\end{gathered}
$$

Thus corollary follows.

Corollary 7.6 We have

$$
\lim _{|t-s| \rightarrow \infty} \int_{\mathrm{C}\left(\mathbf{R} ; \mathbf{R}^{d}\right)} q(t) q(s) \mu(d q)=\langle x\rangle^{2} .
$$

Proof: By a limiting argument we have

$$
\int_{\mathrm{C}\left(\mathbf{R} ; \mathbf{R}^{d}\right)} q(t) q(s) \mu(d q)=\left\langle x e^{-|t-s| H} x\right\rangle .
$$

Thus corollary follows.
QED

Corollary 7.7 Let V be as that of Theorem 6.11. Then, for sufficiently small $\delta>0$,

$$
\begin{equation*}
\int_{\mathrm{C}\left(\mathbf{R} ; \mathbf{R}^{d}\right)} e^{\delta|q(t)|^{m+1}} \mu(d q)=\left\langle e^{\delta|x|^{m+1}}\right\rangle<\infty \tag{7.2}
\end{equation*}
$$

Proof: By Corollary 7.5, we have

$$
\left\langle e^{\delta|x|^{m+1}} \Gamma_{n}\right\rangle=\int_{\mathrm{C}\left(\mathbf{R} ; \mathbf{R}^{d}\right)} e^{\delta|q(t)|^{m+1}} \Gamma_{n} \mu(d q)
$$

where $f(x) \Gamma_{n}:=f(x)$ if $f(x) \leq n$, otherwise $f(x) \Gamma_{n}=n$. Since $e^{\delta \mid \cdot \|^{m+1}}\left\|\Psi_{\mathrm{g}}(\cdot)\right\| \in$ $L^{2}\left(\mathbf{R}^{d}\right)$, the Lebesgue monotone convergence theorem yields (7.2).

QED

Corollary 7.8 Let V be as that of Theorem 6.12. Then

$$
\begin{equation*}
\int_{\mathrm{C}\left(\mathbf{R} ; \mathbf{R}^{d}\right)} e^{\delta|q(t)|} \mu(d q)=\left\langle e^{\delta|x|}\right\rangle<\infty \tag{7.3}
\end{equation*}
$$

Proof: The proof is similar to that of Corollary 7.7.
QED
By means of (4.8) we have

$$
\left(\Psi_{\mathrm{g}}, e^{-\beta N} \Psi_{\mathrm{g}}\right)=\lim _{T \rightarrow \infty} \int_{\mathrm{C}\left(\mathbf{R} ; \mathbf{R}^{d}\right)} e^{\left(\alpha^{2} / 2\right) F_{T}(q)} \mu_{T}(d q)
$$

where

$$
F_{T}(q):=2 q_{1}\left(\oplus_{\mu=1}^{d} \int_{-T}^{0} \xi_{0} \lambda\left(\cdot-q_{s}\right) d q_{\mu}(s), \oplus_{\mu=1}^{d} \int_{0}^{T} \xi_{\beta} \lambda\left(\cdot-q_{s}\right) d q_{\mu}(s)\right)
$$

Since $N=d \Gamma(\mathbf{1})$ (i.e., $h(k)=1$), formally we can write down $F_{T}(q)$ as

$$
F_{T}(q)=\left(1-e^{-\beta}\right) \int_{-T}^{0} d q_{\mu}(s) \int_{0}^{T} d q_{\nu}\left(s^{\prime}\right) \int_{\mathbf{R}^{d}} d_{\mu \nu}(k) e^{-\left|s-s^{\prime}\right| \omega(k)} e^{i k\left(q_{s}-q_{s^{\prime}}\right)}|\hat{\lambda}(k)|^{2} d k
$$

(See Remark 4.5). Our conjecture is as follows:

Conjecture 7.9 There exist a function F_{∞} on $\mathrm{C}\left(\mathbf{R} ; \mathbf{R}^{d}\right)$ and $a>0$ such that

$$
\int_{\mathrm{C}\left(\mathbf{R} ; \mathbf{R}^{d}\right)} e^{z F_{\infty}(q)} \mu(d q)
$$

is analytic in $\Re z<a$ and

$$
\left(\Psi_{\mathrm{g}}, e^{-\beta N} \Psi_{\mathrm{g}}\right)=\int_{\mathrm{C}\left(\mathbf{R} ; \mathbf{R}^{d}\right)} e^{\left(\alpha^{2} / 2\right)\left(1-e^{-\beta}\right) F_{\infty}(q)} \mu(d q)
$$

for $\alpha \in \mathbf{R}$ and $\beta \in \mathbf{C}$ such that $\Re\left(\alpha^{2} / 2\right)\left(1-e^{-\beta}\right)<a$.

8 The dipole approximation

Let $\hat{\lambda}$ be sufficiently smooth and rotation invariant ${ }^{33}$, and V also sufficiently smooth for simplicity. Let M be the mass of the electron in this section. The Pauli-Fierz Hamiltonian with the dipole approximation is defined by $A(\hat{\lambda}, x) \rightarrow A(0):=A(\hat{\lambda}, 0)$, i.e.,

$$
H_{\text {dip }}:=\frac{1}{2 M}(\mathbf{p} \otimes \mathbf{1}-\alpha \mathbf{1} \otimes A(0))^{2}+V \otimes \mathbf{1}+\mathbf{1} \otimes H_{\mathrm{f}} .
$$

The Pauli-Fierz Hamiltonian with the dipole approximation is solvable [7]-[16], namely, we can concretely construct a Bogoliubov transformation ([36]) $T[8,9$, 10,11] which diagonalize $H_{\text {dip }}$.

Let K be a Hilbert space. We say that a pair of bounded operators $\{A, B\}$ is of symplectic group $S_{\mathrm{ym}}(K)$ if the following operator equation holds on $K \oplus K$: ${ }^{34}$

$$
\left(\begin{array}{cc}
A & B \\
\bar{B} & \bar{A}
\end{array}\right)^{*}\left(\begin{array}{cc}
\mathbf{1} & 0 \\
0 & -1
\end{array}\right)\left(\begin{array}{cc}
A & B \\
\bar{B} & \bar{A}
\end{array}\right)=\left(\begin{array}{cc}
A & B \\
\bar{B} & \bar{A}
\end{array}\right)\left(\begin{array}{cc}
\mathbf{1} & 0 \\
0 & -\mathbf{1}
\end{array}\right)\left(\begin{array}{cc}
A & B \\
\bar{B} & \bar{A}
\end{array}\right)^{*}=\left(\begin{array}{cc}
\mathbf{1} & 0 \\
0 & -\mathbf{1}
\end{array}\right),
$$

where $\bar{T} f:=\overline{T \bar{f}}$.
Proposition 8.1 (A.Arai $[8, \mathbf{9}, 10,11])$ There exists a pair of bounded operators $\left\{\mathbf{W}_{+}, \mathbf{W}_{-}\right\} \in S_{\mathrm{ym}}\left(\oplus^{d-1} L^{2}\left(\mathbf{R}^{d}\right)\right)$ and a vector $L \in \oplus^{d-1} L^{2}\left(\mathbf{R}^{d}\right)$ such that \mathbf{W}_{+}is a Hilbert-Schmidt operator on $\oplus^{d-1} L^{2}\left(\mathbf{R}^{d}\right)$, and

$$
\begin{aligned}
B^{s \dagger}(f) & :=a^{r \dagger}\left(\mathbf{W}_{+r s} f\right)+a^{r}\left(\mathbf{W}_{-r s} f\right)-\alpha \mathbf{p}_{\nu}\left(L_{\nu}, f\right), \\
B^{s}(f) & :=a^{r \dagger}\left(\overline{\mathbf{W}}_{+r s} f\right)+a^{r}\left(\overline{\mathbf{W}}_{-r s} f\right)-\alpha \mathbf{p}_{\nu}\left(\bar{L}_{\nu}, f\right),
\end{aligned}
$$

[^18]satisfies
$$
\left[B^{r}(f), B^{\dagger s}(g)\right]=\delta_{r s}(\bar{f}, g), \quad\left[B^{\sharp r}(f), B^{\sharp s}(g)\right]=0
$$
and
\[

$$
\begin{aligned}
& e^{i t H_{\text {dip }}} B^{s \dagger}(f) e^{-i t H_{\text {dip }}}=B^{s \dagger}\left(e^{i t \omega} f\right), \\
& e^{i t H_{\text {dip }}} B^{s}(f) e^{-i t H_{\text {dip }}}=B^{s \dagger}\left(e^{-i t \omega} f\right) .
\end{aligned}
$$
\]

Thus by E.A.Berezin [37] we can concretely construct a Bogoliubov transformation T diagonalizing $H_{\text {dip }}$. Also see S.N.M.Ruijsenaars [174, 173].

Theorem $8.2([8,9,10,11,117])$ For all $\alpha \in \mathbf{R}$. There exists a unitary operator T of \mathcal{H} such that

$$
T H_{\mathrm{dip}} T^{-1}=-\frac{1}{2 M_{\mathrm{eff}}} \Delta+H_{\mathrm{b}}+\alpha^{2} g+V_{\mathrm{eff}},
$$

where

$$
\begin{gathered}
M_{\mathrm{eff}}:=M+\alpha^{2}\|\hat{\lambda} / \sqrt{\omega}\|^{2}, \\
g:=\frac{d-1}{2 \pi} \int_{-\infty}^{\infty} \frac{t^{2}\left\|\sqrt{\omega} \hat{\lambda} /\left(t^{2}+\omega^{2}\right)\right\|^{2}}{M+\alpha^{2}(d-1) / d\left\|\sqrt{\omega} \hat{\lambda} / \sqrt{t^{2}+\omega^{2}}\right\|^{2}} d t
\end{gathered}
$$

and

$$
V_{\mathrm{eff}}(x):=V(x-A(K))
$$

with some $K \in \oplus^{d} L^{2}\left(\mathbf{R}^{d}\right)$.
Proof: See $[117]^{35}$.
Remark 8.3 Operators $\mathbf{W}_{ \pm}$can be extended to a negative mass $M<0$. In this case $\left\{\mathbf{W}_{+}, \mathbf{W}_{-}\right\} \notin S_{\mathrm{ym}}\left(\oplus^{d-1} L^{2}\left(\mathbf{R}^{d}\right)\right)([102])$.

Corollary 8.4 Let $V=0$. Then $\inf \sigma\left(H_{\text {dip }}\right)=\alpha^{2} g$.
Let $d=3$ and $V \leq 0$. Set

$$
N(V):=a_{3} \int_{\mathbf{R}^{3}}|V(x)|^{3 / 2} d x
$$

[^19]where a_{3} is a universal constant, and $a_{3} \leq 0.116$ is established in [152, p.269],[151]. It is known as the Lieb-Thirring inequality that
$$
N(V) \leq \#\{\text { negative eigenvalues of }-\Delta / 2+V\}
$$

In particular H_{p} for V with $N(V)<1$ has no ground state and $\sigma\left(H_{\mathrm{p}}\right)=[0, \infty)$. Moreover $H_{\mathrm{d}}=H_{\mathrm{p}}+H_{\mathrm{f}}$ has no ground state.

Theorem 8.5 (F.Hiroshima and H.Spohn [117])

Let V be as above. Then there exist $\alpha_{0}>0$ and $\alpha_{1}>0$ such that $H_{\text {dip }}$ for $\alpha_{1}>$ $|\alpha|>\alpha_{0}$ has a ground state and it is unique.

9 Concluding remarks

(A boson-localization)
For the Nelson model it is established in [38] that there exists $F_{\infty}(q)$ such that

$$
\begin{gather*}
\left|F_{\infty}(q)\right| \leq\|\hat{\lambda} / \omega\|^{2} \text { for all } q \in \mathrm{C}\left(\mathbf{R} ; \mathbf{R}^{d}\right) \tag{9.1}\\
\left(\Psi_{\mathrm{g}}, e^{-\beta N} \Psi_{\mathrm{g}}\right)=\int_{\mathrm{C}\left(\mathbf{R} ; \mathbf{R}^{d}\right)} e^{-\left(\alpha^{2} / 2\right)\left(1-e^{-\beta}\right) F_{\infty}(q)} \mu(q) . \tag{9.2}
\end{gather*}
$$

Actually

$$
F_{\infty}=\int_{-\infty}^{0} d t \int_{0}^{\infty} d s \int_{\mathbf{R}^{d}}|\hat{\lambda}(k)|^{2} e^{-|t-s| \omega(k)} e^{i k\left(X_{s}-X_{t}\right)} d k
$$

Thus we can see, by an analytic continuation argument, that for all $\beta \in \mathbf{C}$

$$
\Psi_{\mathrm{g}} \in D\left(e^{\beta N}\right)
$$

and (9.2) holds for all $\beta \in \mathbf{C}$. Moreover we explicitly express both of the average momentum density $\left\langle a^{\dagger}(k) a(k)\right\rangle$ and the average spatial density $\left\langle a^{\dagger}(x) a(x)\right\rangle$ by the measure μ. Hence we have pointwise bounds of the densities. The key point of a proof of (9.2) is the uniform estimate (9.1) on paths. In the case of the Pauli-Fierz model, we, up to moment, do not have such uniform estimate and can not shed any light on this problem.
(Essential self-adjointness)
Essential self-adjointness of the Pauli-Fierz Hamiltonian H is proved only for oneparticle Hamiltonian. For the Z-particle Hamiltonian (see footnote18), it has not been established. For the Z-particle case, an invariant domain exists. It is, however, not so small. See [112].
(The Zeeman effect)
Let $d=3$. The Hamiltonian with spin $1 / 2$ is defined on Hilbert space $\mathbf{C}^{2} \otimes \mathcal{H}$ by

$$
H_{\sigma}:=\mathbf{1} \otimes H-(\alpha / 2) \sigma \otimes B(\hat{\lambda}),
$$

where

$$
B(\hat{\lambda})=\int_{\mathbf{R}^{d}}^{\oplus} B(\hat{\lambda}, x) d x
$$

and

$$
B(\hat{\lambda}, x):=\operatorname{rot} A(\hat{\lambda}, x)=\frac{i}{\sqrt{2}}\left\{a^{r \dagger}\left(\left(k \times e^{r}\right) e^{-i k x} \tilde{\hat{\lambda}}\right)+a^{r}\left(\left(-k \times e^{r}\right) e^{i k x} \hat{\lambda}\right)\right\}
$$

and $\sigma:=\left(\sigma_{1}, \sigma_{2}, \sigma_{3}\right)$ denotes the Pauli matrices. In this case PI-argument does not work. The uniqueness of the ground state of H_{σ} is not yet established ${ }^{36}$.

In the classical case a paramagnetic inequality of a Pauli operator

$$
(\mathbf{p}-A)^{2}+V+\sigma \cdot B
$$

is known under some conditions by L.Erdős [62]. Does there exist the paramagnetic inequality of H_{σ} ?
(Semi-classical limits)
We can define a partial trace $\operatorname{Tr}_{\Psi} e^{-t H}$ for each $\Psi \in L^{2}(Q)$ in terms of functional integral representations. In [115], a semi-classical limit [50, 190] of the partial trace is shown:

$$
\lim _{\hbar \rightarrow 0} \hbar^{d} \operatorname{Tr}_{\Psi} e^{-t H}=(2 \pi)^{-d} \int_{\mathbf{R}^{2 d}} e^{-t\left(p^{2} / 2+V(x)\right)} d p d x\|\Psi\|_{L^{2}(Q)} .
$$

Acknowledgments

I am very grateful to S.Albeverio, A.Arai, V.Bach, V.Betz, H.Ezawa, J.Fröhlich, M.Hirokawa, K.R.Ito, J.Klauder, E.Lieb, J.Lőrinczi, M.Loss, R.A.Minlos, T.Nakamura, H.Siedentop, H.Spohn, K.Watanabe, for variable comments and useful discussions.

References

[1] L.Accardi and Y.G.Lu, The Wigner semi-circle law in quantum electro dynamics, Comm. Math. Phys. 180 (1996), 605-632.
[2] S.Albeverio, Scattering theory in a model of quantum fields. I, J. Math. Phys. 14 (1972), 1800-1816.

[^20]［3］S．Albeverio，Scattering theory in a model of quantum fields．II，Helvetica Physica Acta 45 （1972），303－321．
［4］S．Albeverio，An introduction to some mathematical aspects of scattering theory in models of quantum fields，Scattering theory in mathematical physics eds．J．A．LaVita and J．P． Marchand（1974），299－381．
［5］J．Aguilar and J．M．Combes，A class of analytic perturbations for one－body Schrödinger Hamil－ tonians，Comm．math．Phys． 22 （1971），269－279．
［6］Z．Ammari，Asymptotic completeness for a renormalized non－relativistic hamiltonian in quan－ tum field theory：the Nelson model，Ecole Polytechnique preprint 2000.
［7］A．Arai，Self－adjointness and spectrum of Hamiltonians in nonrelativistic quantum electrody－ namics，J．Math．Phys． 22 （1981），534－537．
［8］A．Arai，On a model of a harmonic oscillator coupled to a quantized，massless，scalar field．I， J．Math．Phys． 22 （1981），2539－2548．
［9］A．Arai，On a model of a harmonic oscillator coupled to a quantized，massless，scalar field．II， J．Math．Phys． 22 （1981），2549－2552．
［10］A．Arai，Rigorous theory of spectra and radiation for a model in quantum electrodynamics， J．Math．Phys． 24 （1983），1896－1910．
［11］A．Arai，Note on scattering theory in non－relativistic quantum electrodynamics，J．Phys．A： Math．Gen． 16 （1983），49－70．
［12］A．Arai，Spectral analysis of a quantum harmonic oscillator coupled to infinitely many scalar bosons，J．Math．Anal．Appl． 140 （1989），270－288．
［13］A．Arai，Perturbation of embedded eigenvalues：A general class of exactly soluble models in Fock spaces，Hokkaido Math．J． 19 （1990），1－34．
［14］A．Arai，Long－time behavior of two－point functions of quantum harmonic oscillator interacting with bosons，J．Math．Phys． 30 （1989），1277－1288．
［15］A．Arai，An asymptotic analysis and its applications to the nonrelativistic limit of the Pauli－ Fierz and a spin－boson model，J．Math．Phys． 31 （1990），2653－2663．
［16］A．Arai，Long－time behavior of an electron interacting with a quantized radiation field， J．Math．Phys． 32 （1991），2224－2242．
［17］A．Arai，Noninvertible Bogoliubov transformations and instability of embedded eigenvalues， J．Math．Phys． 32 （1991），1838－1846．
［18］A．Arai，A theorem on essential self－adjointness with application to Hamiltonians in nonrela－ tivistic quantum field theory，J．Math．Phys． 32 （1991），2082－2088．
［19］A．Arai，Essential spectrum of a self－adjoint operator on an abstract Hilbert space of Fock type and applications to quantum field Hamiltonians，J．Math．Anal．Appl． 246 （2000），189－216．
［20］A．Arai，A particle－field Hamiltonian in relativistic quantum electrodynamics，J．Math．Phys． 41 （2000），4271－4283．
［21］新井朝雄，フォツク空間と量子場 全 2 巻，日本評論社 2000 。
［22］新井朝雄，江沢洋，場の量子論と統計力学，日本評論社 1988，1999．
［23］A．Arai and M．Hirokawa，On the Spin－Boson Model，RIMS Kokyuroku 957 （1996），16－35．
[24] A.Arai and M.Hirokawa, On the existence and uniqueness of ground states of a generalized spin-boson model, J. Funct. Anal. 151 (1997), 455-503.
[25] A.Arai and M.Hirokawa, Ground states of a general class of quantum field Hamiltonians, to be published in Rev. Math. Phys.
[26] A.Arai and M.Hirokawa, Stability of ground states in sectors and its application to the WignerWeisskopf model, to be published in Rev. Math. Phys.
[27] A.Arai, M.Hirokawa, and F.Hiroshima, On the absence of eigenvectors of Hamiltonians in a class of massless quantum field models without infrared cutoff, J. Funct. Anal. 168 (1999) 470-497.
[28] J.E.Avron, I.W.Herbst, B.Simon, Schrödinger operators with magnetic fields. I. General interactions, Duke Math. J. 45 (1978), 847-883.
[29] J.E.Avron, I.W.Herbst, B.Simon, Schrödinger operators with magnetic fields. II. Separation of center of mass in homogeneous magnetic fields, Ann.Phys. 114 (1978), 431-451.
[30] J.E.Avron, I.W.Herbst, B.Simon, Schrödinger operators with magnetic fields. III. Atoms in homogeneous magnetic field, Comm. Math. Phys. 79 (1981), 529-572.
[31] V.Bach, J.Fröhlich, I.M.Sigal, Mathematical theory of non-relativistic matter and radiation, Lett. Math. Phys. 34 (1995), 183-201.
[32] V.Bach, J.Fröhlich, I.M.Sigal, Quantum electrodynamics of confined nonrelativistic particles, Adv. Math. 137 (1998), 205-298.
[33] V.Bach, J.Fröhlich, I.M.Sigal, Renormalization group analysis of spectral problems in quantum field theory, Adv. Math. 137 (1998), 299-395.
[34] V.Bach, J.Fröhlich, I.M.Sigal, Spectral Analysis for systems of atoms and molecules coupled to the quantized radiation field, Comm. Math. Phys. 207 (1999), 249-290.
[35] V.Bach,J.Fröhlich, I.M.Sigal, and A.Soffer, Positive commutators and the spectrum of PauliFierz Hamiltonian of atoms and molecules, Comm. Math. Phys. 207 (1999), 557-587.
[36] E.A.Berezin, Second quantization, Academic press 1966.
[37] H.A.Bethe, The electromagnetic shift of energy levels, Phys. Rev. 72, (1947) 339-342.
[38] V.Betz, F.Hiroshima, J.Lorinczi, R.Minlos and H.Spohn, Gibbs measure associated with particle-field system, TU München preprint, 1999.
[39] V.Betz and J.Lőrinczi, A Gibbsian description of $P(\phi)_{1}$-processes, TU München preprint, 1999,
[40] P.Blanchard, Discussion mathématique du modéle de Pauli et Fierz relatif á catastrophe infrarouge, Comm.Math.Phys. 15 (1969), 156-172.
[41] F.Bloch and A.Nordsieck, Note on the radiation field of the electron, Phys. Rev. 52 (1937), 54-59.
[42] F.Bloch, The low frequency radiation of a scattered electron, Phys. Rev. 52 (1937), 59-62.
[43] D.Brydges, J.Fröhlich and E.Seiler, On the construction of quantized gauge fields. I. General results, Ann. Phys. 121 (1979), 227-284.
[44] J.Cannon, Quantum field theoretic properties of a model of Nelson: Domain and eigenvector stability for perturbed linear operators, J.Funct. Anal. 8 (1971), 101-152.
[45] J.Cannon, Continuous sample paths in quantum field theory, Comm. Math. Phys. 35 (1974), 215-233.
[46] R.Carmona, Pointwise bounds for Schrödinger operators, Comm. Math. Phys. 62 (1978), 97-106.
[47] P.Chernoff, Note on product formulas for operator semigroups, J. Funct. Anal. 2 (1968), 238-242.
[48] P.Chernoff, Product formula, nonlinear semigroups and addition of unbounded operator, Amer. Math. Soc. Providence, R.I., 1974.
[49] J. M. Cook, The mathematics of second quantization, Trans. Amer. Math. Soc. 81 (1952), 222-245.
[50] J.M.Combes, R.Schrader, and R.Seiler, Classical bounds and limits for energy distributions of Hamilton operator in electromagnetic fields, Ann. Phys. 111 (1978), 1-18.
[51] J.M. Combes and L. Thomas, Asymptotic behavior of eigenfunctions for multiparticle Schrödinger operators, Comm. Math. Phys. 34 (1973), 251-270.
[52] H.L.Cycon,R.G.Froese,W.Kirsch,and B.Simon, Schrödinger Operator, Text and Monographs in Physics, 1987.
[53] E.B.Davies, Asymptotic analysis of some abstract evolution equations, J. Funct. Anal. 25 (1977), 81-101.
[54] E.B.Davies, Particle-boson interactions and the weak coupling limit, J. Math. Phys. 20 (1979), 345-351.
[55] J.Dereziński and C.Gérard, Asymptotic completeness in quantum field theory. Massive PauliFierz Hamiltonian, Rev. Math. Phys. 11 (1999), 383-450.
[56] P.Deift, W.Hunziker, B.Simon, and E.Vock, Pointwise bounds on eigenfunctions and wave packets in N-body quantum systems IV, Comm. Math. Phys. 64 (1978), 1-34.
[57] A.Devinatz, On an inequality of Tosio Kato for degenerate-elliptic operators, J. Funct. Anal. 32 (1979), 312-335.
[58] M.D.Donsker and S.R.S.Varadhan, Asymptotic for the polaron, Comm. Pure Appl.Math. 36 (1983), 505-528.
[59] R.Dümcke, Convergence of multitime correlation functions in the weak and singular coupling limits, J. Math. Phys. 24 (1983), 311-315.
[60] J. P. Eckmann, A model with persistent vacuum, Comm. Math. Phys. 18 (1970), 247-264.
[61] L. Erdős, Gaussian decay of the magnetic eigenfunctions, Geometric and Funct. Anal. 6 (1996), 231-248.
[62] L. Erdős, Dia-and paramagnetism for nonhomogeneous magnetic fields, J. Math. Phys. 38 (1997), 1289-1317.
[63] L. Erdős, M.Loss and V. Vougalter, Diamagnetic behavior of sums of Dirichlet eigenvalues, preprint 1999.
[64] H. Ezawa, A note on the van Hove-Miyatake catastrophe, Prog. Theoret. Phys. 30 (1963), 545-549.
[65] H.Ezawa, J.Klauder, L.A.Shepp, Vestigial effects of singular potentials in diffusion theory and quantum mechanics, J.Math.Phys. 16 (1975), 783-799.
[66] H.Ezawa, J.Klauder, L.A.Shepp, On the divergence of certain integrals of the wiener progress, Ann. Inst. Fourier, Grenoble 24 (1974), 189-193.
[67] W.Faris, The product formula for semigroups defined by Friedrichs extensions, Pacific J. Math. 22 (1967), 47-70.
[68] W.Faris, Invariant cones and uniqueness of the ground state for Fermion systems, J. Math. Phys. 13 (1972), 1285-1290.
[69] W. Faris and B. Simon, Degenerate and nondegenerate ground states for Schrödinger operators, Duke Math. J. 42 (1975), 559-567.
[70] R.Feynman, Mathematical formulation of the quantum theory of electromagnetic interaction, Phys. Rev. 80 (1950), 440-457.
[71] R.Feynman, Slow electrons in a polar crystal, Phys. Rev. 97 (1955), 660-665.
[72] C.Fefferman, On electrons and nuclei in a magnetic field, Adv. Math. 124 (1996), 100-153.
[73] C.Fefferman,J.Fröhlich,G.M.Graf, Stability of ultraviolet-cutoff quantum electrodynamics with non-relativistic matter, Comm. Math. Phys. 190 (1997), 309-330.
[74] J.Fröhlich, On the infrared problem in a model of scalar electrons and massless, scalar bosons, Ann. Inst. Henri Poincaré 19 (1973), 1-103.
[75] J.Fröhlich, Existence of dressed one electron states in a class of persistent models, Fortschritte der Physik 22 (1974), 159-198.
[76] J.Fröhlich, Schwinger functions and their generating functionals, I, Helvetica Phys. Acta 47 (1974), 265-306.
[77] J.Fröhlich, Schwinger functions and their generating functionals, II. Markovian and generalized path space measures on $\mathcal{S}^{\prime}, A d v$. Math. 23 (1977), 119-180.
[78] J.Fröhlich, E.Lieb and M.Loss, Stability of Coulomb system with magnetic fields I, Comm. Math. Phys. 104 (1986), 251-270.
[79] J.Fröhlich and Y.M.Park, Correlation inequalities and thermodynamic limit for classical and quantum continuous systems, Comm. Math. Phys. 59 (1978), 235-266.
[80] J.Fröhlich and Y.M.Park, Correlation inequalities and thermodynamic limit for classical and quantum continuous systems II. Bose-Einstein and Fermi-Dirac statistics, J.Stat. Phys. 23 (1980), 701-753.
[81] B.Gerlach and H.Löwen, Analytical properties of polaron systems or: Do polaronic phase transition exit or not?, Rev. Mod. Phys. 63 (1991), 63-90.
[82] C.Gérard, Asymptotic completeness for the spin-boson model with a particle number cut-off, Rev. Math. Phys. 8 (1996), 549-589.
[83] C.Gérard, On the existence of ground states for massless Pauli-Fierz Hamiltonians, preprint, 1999.
[84] J.Glimm and A.Jaffe, The $\lambda\left(\phi^{4}\right)_{2}$ quantum field theory without cutoffs.I. Phys. Rev. 176 (1968), 1945-1951.
[85] J.Glimm and A.Jaffe, The $\lambda\left(\phi^{4}\right)_{2}$ quantum field theory without cutoffs:II. The field operators and approximate vacuum, Ann. Math. 91(1970), 362-401.
[86] J.Glimm and A.Jaffe, The $\lambda\left(\phi^{4}\right)_{2}$ quantum field theory without cutoffs:III. The physical vacuum, and approximate vacuum, Acta Math. 125(1970), 203-267.
[87] J.Glimm and A.Jaffe, The $\lambda\left(\phi^{4}\right)_{2}$ quantum field theory without cutoffs:IV. Perturbations of the Hamiltonians, J. Math. Phys. 13 (1972), 1568-1584.
[88] J.Glimm and A.Jaffe, Quantum Physics, Springer-Verlag, 1987.
[89] M.Griesemer, E.Lieb and M.Loss, Ground states in non-relativistic quantum electrodynamics, preprint 2000.
[90] L.Gross, Existence and uniqueness of physical ground states, J. Funct. Anal. 10 (1972), 52109.
[91] L.Gross, The relativistic polaron without cutoffs, Comm. Math. Phys. 31 (1973), 25-73.
[92] L.Gross, The free euclidean Proca and electromagnetic fields, Functional integral and its application, Proceedings of the international conference, the Cumberland Lodge, Windsor Great Park, London in 1974. A.M.Arthurs (editor), Clarendon Press, Oxford, 1975
[93] A. Grossmann and A.Tip, Hydrogen atoms interacting with a quantised radiation mode, J. Phys. A: Math. Gen. 13 (1980), 3381-3397.
[94] Z.Haba, Feynman integral in regularized nonrelativistic quantum electrodynamics, J. Math. Phys. 39 (1998), 1766-1787.
[95] I.Herbst, Translation invariance of N-particle Schrödinger operators in homogeneous magnetic fields, Lecture Notes in Physics 130 (1980), 169-174.
[96] H.Hess, R.Schrader and D.A.Uhlenbrock, Domination of semigroups and generalization of Kato's inequality, Duke Math. J. 44 (1977), 893-904.
[97] T. Hida, Brownian motion, Springer, 1980.
[98] T.Hida, H.H.Kuo, J.Potthoff, and L.Streit, White noise: An infinite dimensional calculus, Kluwer Academic publisher, 1993.
[99] P.D.Hislop and I.M.Sigal, Introduction to Spectral Theory, Applied Mathematical Sciences 113, Springer-Verlag, 1996.
[100] M.Hirokawa, An expression of the ground state energy of the Spin-Boson model, J. Funct. Anal. 162 (1999), 178-218.
[101] M.Hirokawa, Remarks on the ground state energy of the Spin-Boson model. An application of the Wigner-Weisskopf model, to be published in Rev. Math. Phys.
[102] F.Hiroshima, Scaling limit of a model of quantum electrodynamics, J. Math. Phys. 34 (1993), 4478-4518.
[103] F.Hiroshima, Diamagnetic inequalities for systems of nonrelativistic particles with a quantized field, Rev. Math. Phys. 8 (1996), 185-203.
[104] F.Hiroshima, Scaling limit of a model of quantum electrodynamics with many nonrelativistic particles, Rev. Math. Phys. 9 (1997), 201-225.
[105] F.Hiroshima, Functional integral representation of a model in quantum electrodynamics, Rev. Math. Phys. 9 (1997), 489-530.
[106] F.Hiroshima, Asymptotic behaviors of an interaction Hamiltonian, Nonlinear Analysis, Theory, Methods and Application 30 (1997), 4863-4874.
[107] F.Hiroshima, Weak coupling limit and a removal of an ultraviolet cut-off for a Hamiltonian of particles interacting with a massive scalar field, Infinite Dimensional Analysis, Quantum Probability and Related Topics 1 (1998), 407-423.
[108] F.Hiroshima, Weak coupling limit removing an ultraviolet cut-off for a Hamiltonian of particles interacting with a quantized scalar field, J. Math. Phys. 40 (1999), 1215-1236.
[109] F.Hiroshima, Ground states of a model in nonrelativistic quantum electrodynamics I, J. Math. Phys. 40 (1999), 6209-6222.
[110] F.Hiroshima, Ground states of a model in nonrelativistic quantum electrodynamics II, J. Math. Phys. 41 (2000), 661-674.
[111] F.Hiroshima., Euclidean Gell-Mann-Low formula and double stochastic integrals, to be published in Stochastic Processes, Geometry and Physics. New Interplays, 1999.
[112] F.Hiroshima, Essential self-adjointness of translation-invariant quantum field models for arbitrary coupling constants, Comm. Math. Phys. 211 (2000), 585-613.
[113] F.Hiroshima, Ground states and spectrum of quantum electrodynamics of non-relativistic particles, to be published in Trans. Amer. Math. Soc.
[114] H.Hiroshima, Ground state measure and its application, to be published in RIMS Kokyuroku.
[115] F.Hiroshima, Point spectra and asymptotics of models coupled to quantum fields: a functional integral approach, preprint, 1999.
[116] F.Hiroshima, A Gibbs measure associated with the nonrelativistic quantum electrodynamics, in preparation.
[117] F.Hiroshima and H.Spohn, Binding through a coupling to a field, preprint 1999.
[118] F.Hiroshima and H.Spohn, Two-fold ground states of the Pauli-Fierz Hamiltonian, in preparation.
[119] L.van Hove, Les difficultés de divergences pour un modéle particulier de champ quantifié, Physica 18 (1952), 145-159.
[120] R.H ϕ egh-Krohn, Asymptotic fields in some models of quantum field theory I, J. Math. Phys. 9 (1968), 2075-2080.
[121] R.H ϕ egh-Krohn, Asymptotic fields in some models of quantum field theory II, J. Math. Phys. 10 (1969), 639-643.
[122] R.H H egh-Krohn, Asymptotic fields in some models of quantum field theory III, J. Math. Phys. 11(1969), 185-189.
[123] R.Hфegh-Krohn, On the scattering theory for quantum fields, Comm. Math. Phys. 18 (1970), 109-126.
[124] R.Hфegh-Krohn, Boson fields with bounded interaction densities, Comm. Math. Phys. $\mathbf{1 7}$ (1970), 179-193.
[125] R.H ϕ egh-Krohn, Boson fields under a general class of cut-off interactions with bounded interaction densities, Comm. Math. Phys. 12 (1969), 216-225.
[126] R.H ϕ egh-Krohn and B.Simon Hypercontractive semigroup and two dimensional self-coupled Bose fields, J.Funct.Anal. 9 (1972), 121-180.
[127] M. Hübner and H.Spohn, Radiative decay: nonperturbative approaches, Rev. Math. Phys. 7 (1995), 363-387.
[128] M.Hübner and H.Spohn, Spectral properties of the spin-boson Hamiltonian, Ann. Inst. Henri Poincaré 62 (1995), 289-323.
[129] M.Hübner and H.Spohn, The spectrum of the spin-boson Hamiltonian, Operator Theory Adv. Appl. 70(1996), 233-338.
[130] T. Ichinose, Kato's inequality and essential self-adjointness for the Weyl quantized relativistic Hamiltonian, Proc. Japan Acad.Ser. A 64 (1988), 367-369.
[131] T. Ichinose, Essential self-adjointness of the Weyl quantized relativistic hamiltonian, Ann. Inst. Henri Poincaré 51 (1989), 265-298.
[132] T.Ichinose and H.Tamura, Propagation of Dirac particle. A path integral approach, J. Math. Phys. 25 (1984), 1810-1819.
[133] T.Ichinose and H.Tamura, The Zitterbewegung of a Dirac particle in two-dimensional spacetime. J. Math. Phys. 29 (1988), 103-109.
[134] K.R.Ito, Construction of two-dimensional quantum electrodynamics, J. Math. Phys. 21 (1980), 1473-1494.
[135] K.R.Ito, Construction of two-dimensional quantum electrodynamics, Comm. Math. Phys. 83 (1982), 537-561.
[136] H. Kalf and J. Walter, Strongly singular potentials and essentially self-adjointness of singular elliptic operators in $C_{0}^{\infty}\left(\mathbf{R}^{n} \backslash\{0\}\right)$, J.Funct.Anal. 10 (1972), 114-130.
[137] N.van Kampen, Contribution to the quantum theory of light scattering, Det Kongeliege Danske Videns. Selskab, Matt. Fys. Medd. 26 (1951), 1-77.
[138] I. Karatzas and S.E.Shreve, Brownian Motion and Stochastic Calculus, Graduate Texts in Mathematics 113, Springer-Verlag, 1997.
[139] T.Kato, Perturbation Theory for Linear Operators, Springer-Verlag, 1966.
[140] T.Kato, Schrödinger operator with singular potentials, Israel J. math. 13 (1972), 135-148.
[141] T.Kato, Remarks on Schrödinger operators with vector potentials, Integral Eq. Op. Theory 1 (1978), 103-113.
[142] T.Kato and K.Masuda, Trotter's product formula for nonlinear semigroups generated by the subdifferentiables of convex functionals, J. Math. Soc. Japan 30 (1978), 169-178.
[143] Y.Kato and Mugibayashi, Regular perturbation and asymptotic limits of operators in quantum field theory, Prog. Theoret. Phys. 30 (1963), 103-133.
[144] J. Klauder, Field structure through model studies : Aspects of nonrenormalizable theories, Acta Phys. Austriaca Suppl. 11 (1973), 341-387.
[145] Z.Koba, Semi-classical treatment of the reactive corrections.I, Prog.Theoretical Phys. 4 (1949), 319-330.
[146] P.Kristensen, L. Mejlbo and E.T. Poulsen, Tempered distributions in infinitely many dimensions I. Canonical field operator, Comm. Math. Phys. 1(1965), 175-214.
[147] P.Kristensen, L. Mejlbo and E.T. Poulsen, Tempered distributions in infinitely many dimensions II. Displacement operator, Math. Scand. 14 (1964), 129-150.
[148] P.Kristensen, L. Mejlbo and E.T. Poulsen, Tempered distributions in infinitely many dimensions III. Linear transformations of field operators, Comm. Math. Phys. 6(1967), 29-48.
[149] A.J.Leggett, S.Chakravarty, A.T.Dorsey, M.P.A.Fisher, A.Garg and W.Zwerger, Dynamics of the dissipative two-system, Rev. Mod. Phys. 59 (1987), 1-85
[150] H.Leinfelder and C.G.Simader, Schrödinger operators with singular magnetic vector potentials, Math. Z. (1981), 1-19.
[151] E.Lieb, Bounds on the eigenvalues of the Laplace and Schrödinger operators, Bull. Amer. Math. Soc. 82 (1976), 751-753.
[152] E.Lieb, The stability of matter: From atoms to stars, eds. W.Thirring, Springer, 1997.
[153] E.Lieb and M.Loss, Stability of Coulomb system with magnetic fields II, Comm. Math. Phys. 104 (1986), 271-282.
[154] E. Lieb and M. Loss, Self-energy of electrons in non-perturbative QED, preprint, 1999.
[155] E. Lieb and L.E.Thomas, Exact ground state energy of the strong-coupling polaron, Comm. Math. Phys. 183 (1997), 511-519.
[156] E.Lieb and K.Yamazaki, Ground-state energy and effective mass of the polaron, Phys. Rev. 111(1958), 728-733.
[157] M.Loss and H.T.Yau, Stability of Coulomb system with magnetic fields III, Comm. Math. Phys. 104 (1986), 283-290.
[158] J.Lőrinczi and R. Minlos, Gibbs measures for Brownian paths under the effect of a pair potential, preprint, 1999.
[159] R.Minlos, Lower branch of the spectrum of fermion interacting with a boson gas (polaron), Teoreticheskaya i Matematicheskaya Fizika 92 (1992), 255-268.
[160] R.Minlos and H.Spohn, Existence and uniqueness of ground states of a system: a scalar field interacting with particles, in preparation.
[161] O. Miyatake, On the non-existence of solution of field equations in quantum mechanics, J. Inst. Poly. Osaka City Univ. 2 (1952), 89-99.
[162] E.Nelson, Schrödinger particles interacting with a quantized scalar field, Analysis in Function Space, Proceedings U.S.A. 1963.
[163] E.Nelson, Feynman integrals and the Schrödinger equation, J. Math. Phys. 5 (1964), 332-343.
[164] E.Nelson, Interaction of nonrelativistic particles with a quantized scalar field, J. Math. Phys. 5 (1964), 1190-1197.
[165] E.Nelson, Construction of quantum fields from Markoff fields, J. Funct. Anal. 12 (1973), 97-112.
[166] E.Nelson, The free Markoff field, J. Funct. Anal. 12 (1973), 211-227.
[167] T.Okamoto and K.Yajima, Complex scaling technique in non-relativistic massive QED, Ann. Int. Henri. Poincaré 42 (1985), 311-327.
[168] H.Osada and H.Spohn, Gibbs measures relative to Brownian motion, to be published in Ann. Probab.
[169] P.F.Palmer, The singular coupling and weak coupling limits, J. Math. Phys. 18 (1977), 527-529.
[170] W.Pauli and M. Fierz, Zur Theorie der Emmision langwelliger Lichtquanten, Nuovo Cimento 15 (1938), 167-188.
[171] J. Potthoff and L.Streit, Invariant states on random and quantum fields: \varnothing-bounds and white noise analysis, J. Funct.Anal. (1993), 295-311.
[172] Y.V.Prohorov, Convergence of random processes and limit theorem in probability theory, Theory Probab. Appl 1 (1956), 157-214.
[173] S.N.M. Ruijsenaars, On Bogoliubov transformations for systems of relativistic charged particles, J. Math. Phys. 18 (1977), 517-526.
[174] S.N.M. Ruijsenaars, On Bogoliubov transforms. II. The general case. Ann. Phys. 116 (1978), 105-134.
[175] M.Reed and B.Simon, Method of Modern Mathematical Physics I, Academic press, 1980.
[176] M.Reed and B.Simon, Method of Modern Mathematical Physics II, Academic press,1975.
[177] M.Reed and B.Simon, Method of Modern Mathematical Physics III, Academic press, 1979.
[178] M.Reed and B.Simon, Method of Modern Mathematical Physics IV, Academic press, 1978.
[179] K.Rzazewski and W.Zakowicz, Initial value problem and causality of radiating oscillator, J. Phys. A: Math. Gen. 9 (1976), 1159-1170.
[180] I. Segal, Construction of non-linear local quantum process: I, Ann. Math. 92 (1970), 462481.
[181] I. Segal, Construction of non-linear local quantum process: II, Invent. Math. 14 (1971), 211-241.
[182] D. Shale, A note on the scattering of boson fields, J. Math. Phys. 5 (1962), 915-921.
[183] B. Simon, Ergodic semigroups of positivity preserving self-adjoint operators, J. Funct. Anal. 12 (1973), 335-339.
[184] B.Simon, Quadratic forms and Klauder's phenomenon: A remarks on very singular perturbations, J.Funct.Anal. 14 (1973), 295-298.
[185] B.Simon, The $P(\phi)_{2}$ Euclidean (Quantum) Field Theory, Princeton Univ. Press, 1974.
[186] B.Simon, An abstract Kato's inequality for generators of positivity preserving semigroups, Indiana Univ. Math. J. 26 (1977)1065-1073.
[187] B.Simon, Classical boundary conditions as a technical tool in modern mathematical physics, Adv. Math. 30 (1978), 268-281.
[188] B.Simon, Functional Integral representation and Quantum Physics, Academic Press, 1979.
[189] B.Simon, Kato's inequality and the comparison of semigroup, J. Funct. Anal. 32 (1979), 97-101.
[190] B.Simon, Trace ideal methods, Cambridge Univ.Press, London and New York, 1979.
[191] E. Skibsted, Spectral analysis of N-body system coupled to a bosonic field, Rev. Math. Phys. 10 (1998), 989-1026.
[192] H.Spohn, Roughening and pinning transitions for the polaron, J. Phys. A: Math. Gen. 19 (1986), 533-545.
[193] H. Spohn, The polaron at large total momentum, J. Phys. A: Math. Gen. 21 (1988), 11991211.
[194] H.Spohn, Effective mass of the polaron: A functional integral approach, Ann. Phys. $\mathbf{1 7 5}$ (1987), 278-318.
[195] H.Spohn, Ground state(s) of the spin-boson Hamiltonian, Comm. Math. Phys. 123 (1989), 277-304.
[196] H.Spohn, Asymptotic completeness for Rayleigh scattering, J.Math,Phys. 38 (1997), 22812296.
[197] H.Spohn, Ground state of quantum particle coupled to a scalar boson field, Lett. Math. Phys. 44 (1998), 9-16.
[198] H.Spohn, R.Stükl and W.Wreszinski, Localisation for the spin J-boson Hamiltonian, Ann. Inst. H. Poincaré 53 (1990), 225-244.
[199] T.A.Welton, Some observable effects of the quantum-mechanical fluctuations of the electromagnetic field, Phys. Rev. 74 (1948), 1157-1167.
[200] K.Yoshida, Functional Analysis, Springer-Verlag, Berlin-Heidelberg-New York, 1980.

[^0]: ${ }^{1}$ See e.g., $[28,29,30,78,153,157]$ for a classical Pauli operator $(\mathbf{p}-A)^{2}+V+\sigma \cdot B$.
 ${ }^{2}$ Some relation between the van Hove-Miyatake phenomenon and an infrared divergence is discussed by H.Ezawa [64]. The Hida space $(\mathcal{S})^{*}([98])$ is a dual space of a subspace (\mathcal{S}) in a Fock space. The van Hove-Miyatake phenomenon is investigated by J.Potthoff and L.Streit [171] in the Hida space. However the phenomenon still survives in the Hida space.

[^1]: ${ }^{3}$ E.Nelson established imaginary-time path integrals. T.Ichinose and H.Tamura $[132,133]$ constructed a distribution-valued countably additive measure presenting a real-time evolution of a Dirac Hamiltonian in two space-time dimensions.
 ${ }^{4}$ From the point of view of the constructive quantum field theory, K.R. Ito [134, 135], and D.Brydges, J.Fröhlich and E.Seiler [43] considered QED in two space-time dimensions.

[^2]: ${ }^{5}$ The problem whether the ground state of the spin-boson model exists or not in the original Hilbert space had not yet been solved in [195]. H.Spohn actually shown the existence of its ground states in the Hilbert space in his "unpublished note" dated 26 June 1989!
 ${ }^{6}$ GSB-model.

[^3]: ${ }^{7}$ A.Arai and M.Hirokawa [25] gave a sufficient condition for the existence of the ground states in some domain with an infrared divergence for a GSB model. See also A.Arai, M.Hirokawa and F.Hiroshima [27].
 ${ }^{8}$ Asymptotic completeness for the massive Nelson model is established in [55, 6].
 ${ }^{9}$ A.Arai and M.Hirokawa [26] found a non-perturbative ground state of the Wigner-Weisskopf model for large coupling constants. Also see [101].

[^4]: ${ }^{10}$ Formally we write $a^{\sharp}(f)=\int a^{\sharp}(k) f(k) d k$.

[^5]: ${ }^{11}$ The summation of repeated indexes are understood (the Einstein rule).
 ${ }^{12}$ Formally one writes

[^6]: ${ }^{16} D(T)$ denotes the domain of T.

[^7]: ${ }^{19}$ Actually we can construct the Gaussian measure ν on "the Schwartz distribution space of transverse vector potentials" ([73, 105])

 $$
 \mathcal{S}^{T}:=\{\Psi \in \underbrace{\mathcal{S}_{\text {real }}^{\prime}\left(\mathbf{R}^{d}\right) \times \cdots \times \mathcal{S}_{\text {real }}^{\prime}\left(\mathbf{R}^{d}\right)}_{d} \mid \operatorname{div} \Psi=0\}
 $$

 by the Minlos theorem (e.g., [97]).

[^8]: ${ }^{20} \Gamma$ is a functor from the set of contractive operators on $L^{2}\left(\mathbf{R}^{d}\right)$ to that on $L^{2}(Q)$. See [164].
 ${ }^{21} \mathcal{H}$ is the set of $L^{2}(Q)$-valued L^{2}-functions on \mathbf{R}^{d}. Thus, for $F \in \mathcal{H}, F(x) \in L^{2}(Q)$ a.e. $x \in \mathbf{R}^{d}$ and $\int_{\mathbf{R}^{d}}\|F(x)\|_{L^{2}(Q)}^{2} d x=\|F\|_{\mathcal{H}}^{2}$.

[^9]: ${ }^{24}$ Let $E_{s}:=J_{s} J_{s}^{*}$. Thus E_{s} is a projection of $L^{2}\left(Q_{0}\right)$. Define $Q_{[a, b]}:=\mathcal{L}\left\{F \in L^{2}\left(Q_{0}\right) \mid F \in\right.$ $\left.\operatorname{Ran} E_{s}, s \in[a, b]\right\}$. Let $\Sigma_{[a, b]}$ be the smallest σ-field generated by $Q_{[a, b]}$. Let Ψ be measurable with respected to $\Sigma_{[a, b]}$ and Ψ with respect to $\Sigma_{[c, d]}$, where $a \leq b \leq c \leq d$. Then, for $b \leq s \leq c$, $\left(\Psi, E_{s} \Phi\right)=(\Psi, \Phi)$.

[^10]: ${ }^{25}$ The Kato inequality is studied and applied in e.g., $[57,63,96,103,105,130,131,140,141$, $150,189,186]$ etc.

[^11]: ${ }^{26}$ Let $V=0$. It follows that on some domain $\left[\mathbf{P}_{\mu}, H\right]=0, \quad \mu=1, \ldots, d$.

[^12]: ${ }^{27}$ We feel that $e^{i \pi_{0}(f)}$ is a shift operator in the space $L^{2}\left(Q_{0}\right)$ of the infinite degrees of freedom. Intuitively $\phi_{0}(f) \sim x, \pi_{0}(f) \sim \mathbf{p}, U \sim$ the Fourier transformation, in $L^{2}\left(\mathbf{R}^{d}\right)$.

[^13]: ${ }^{28}$ See for classical cases $[46,52,56,61]$

[^14]: ${ }^{29}$ Let A and B be self-adjoint operators in a Hilbert space K. We say that $A \leq B$ if $D(B) \subset D(A)$ and $(f, A f) \leq(f, B f)$ for all $f \in D(B)$.

[^15]: ${ }^{30}$ For the Nelson model and a spin-boson model, we can get the similar expression of the ground state energy in terms of probability measures. For a spin-boson model M.Hirokawa [100] directly expands its pair potential term and get a bound of its ground state energy.

[^16]: ${ }^{31}$ Formally it follows that

[^17]: ${ }^{32}$ Note that $E-\inf V \geq E-\inf \sigma\left(H_{\mathrm{p}}\right) \geq 0$.

[^18]: ${ }^{33} \hat{\lambda}(k)=\hat{\lambda}(|k|)$.
 ${ }^{34}$ See e.g.,[146, 147, 148].

[^19]: ${ }^{35}$ By this transformation, several scaling limits of $H_{\text {dip }}$ are investigated. In particular, taking a scaling limit, A.Arai obtained an effective potential which had been found by Welton [199]. This work was continued in F.Hiroshima [102, 104]. Another aspects of such scaling limits are investigated in [1, 53, 54, 59, 169].

[^20]: ${ }^{36}$ Recently F.Hiroshima and H.Spohn [118] proved that the ground state of the Pauli-Fierz polaron with spin $1 / 2$ had at least two-fold ground states.

