Ground states of scalar quantum field on pseudo Riemannian manifolds

Fumio Hiroshima

Faculty of Mathematics, Kyushu University, Japan

June 21, 2011, Tokyo University

This is the joint work with

Christian Gérard, Annalisa Panati and Akito Suzuki

- Infrared divergence of a scalar quantum field model on a pseudo Riemannian manifold, IIS 15(2009) 399-421
- Infrared problem for the Nelson mode on a static space-times, to appear in CMP
- Absence of ground state for the Nelson model on a static-space-times, ArXiv 1012.2655
- Removal of UV cutoff for the Nelson model with variable coefficients, preprint 2011
- Existence and absence of ground states for a particle interacting through the quantized scalar field on a static spacetime, RIMS Kôkyûroku Bessatsu B21 (2010) 15-24

Nelson model

- 2 Existence of ground state
- 3 Absence of ground state
- 4 Removal of UV cutoff
- 5 Concluding Remarks

Hilbert Space

$$\mathscr{H} = L^2(\mathbb{R}^{\mathscr{I}}) \otimes \mathscr{F} \quad \mathscr{F} = \bigoplus_{n=0}^{\infty} L^2_{sym}(\mathbb{R}^{\mathscr{I} \ltimes})$$

- (dispersion relation) $\omega = \omega(-i\nabla_x) = \sqrt{-\Delta_x + m^2}$
- $d\Gamma(\boldsymbol{\omega})\Phi^{(n)}(x_1,...,x_n) = (\sum_{j=1}^n \boldsymbol{\omega}(-i\nabla_{x_j}))\Phi^{(n)}(x_1,...,x_n)$
- $\phi(f) = \frac{1}{\sqrt{2}}(a^{\dagger}(\bar{f}) + a(f)), \ [a(f), a^{\dagger}(g)] = (\bar{f}, g)$

•
$$\phi_{\rho}(X) = \phi(\omega^{-1/2}\rho(\cdot - X))$$

• UV cutoff $0 \le \rho \in \mathscr{S}$

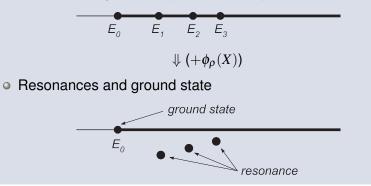
Standard Nelson model

$$H = \left(-\frac{1}{2}\Delta_X + V(X)\right) \otimes 1 + 1 \otimes d\Gamma(\omega) + \phi_{\rho}(X)$$

4

$$\boldsymbol{\sigma}(-\frac{1}{2}\Delta+V) = \{E_j\}, \, \boldsymbol{\sigma}(\mathrm{d}\Gamma(\boldsymbol{\omega})) = [0,\infty) \, (m=0)$$

Embedded eigenvalues(no interaction)



Nelson model

Infrared problem

$$I_{\rm IR} = \int \frac{|\hat{\rho}(k)|^2}{\omega(k)^3} dk$$

- E.g., $\omega(k) = \sqrt{|k|^2 + m^2}$ and $\hat{\rho}(0) > 0$
 - (m > 0) $I_{\rm IR} < \infty$
 - (m = 0) $I_{\rm IR} = \infty$

Bach-Fröhlich-Sigal(98), Gérard(00), Spohn(99), Arai-Hirokawa-H.(99), Derezinski-Gérard(03), Hirokawa(07), Lőrinczi-Minlos-Spohn(03))....

- $I_{\rm IR} < \infty$ (IR regular) $\Longrightarrow \exists$ ground state
- $I_{IR} = \infty$ (IR singular) \Longrightarrow no ground state

Pull-through formula, number operator N,

$$(\Phi_{g},(\mathbb{1}\otimes N)\Phi_{g})_{\mathscr{H}}\leq \frac{1}{2}I_{\mathrm{IR}}\|\Phi_{g}\|^{2}$$

• (m > 0) \exists ground state

• (m = 0) no ground state

How about variable mass m(x)?

Conjecture

- $m(x) \downarrow 0$ fast \implies no ground state
- $m(x) \downarrow 0$ slowly $\Longrightarrow \exists$ ground state

Nelson model

Nelson model on static pseudo Riemannian manifold

•
$$e^{-itH}(\mathbb{1} \otimes \phi(f))e^{itH} = \int \phi(t,x)f(x)dx$$

• $e^{-itH}(X \otimes \mathbb{1})e^{itH} = X_t$

Standard Nelson model (formally) satisfies that

$$(\partial_t^2 - \Delta_x + m^2)\phi(t, x) = \rho(x - X_t)$$

$$\partial_t^2 X_t = -\nabla V(X_t) - \int \phi(t, x) \nabla_X \rho(x - X_t) dx$$

8

Static (time independent) Lorenzian manifold

$$g = (g_{\mu\nu}) = \begin{pmatrix} \lambda & \\ & -\gamma \end{pmatrix}$$

 $\lambda(x) > 0$, $\gamma(x)$ is a Riemannian metric on \mathbb{R}^{\nvDash} .

$$\Box_g = \sum |g|^{-1/2} \partial_\mu |g|^{1/2} g^{\mu\nu} \partial_\nu + \theta \eta$$

where $\theta \in \mathbb{R}$, η scalar curvature.

$$(\Box_g + m^2)\phi(t, x) = 0 \quad on \ L^2(\mathbb{R}^{\nvDash}, |g|^{1/2} dx)$$

Transform to the equation from $L^2(\mathbb{R}^{\nvDash}, |g|^{1/2} dx)$ to $L^2(\mathbb{R}^{\nvDash})$:

$$(\partial_t^2 + h)\phi(t, x) = 0$$

$$h = -\sum_{ij} \frac{1}{c} \partial_i a^{ij}(x) \partial_j \frac{1}{c} + m(x)^2$$

Variable mass m(x) appears even when m = 0.

Nelson model on static Lorenzian manifold

$$H = K \otimes 1 + 1 \otimes \mathrm{d}\Gamma(\omega) + \phi_{\rho}(X)$$

where

•
$$K = -\sum \partial_i A^{ij}(X) \partial_j + V(X)$$

•
$$\boldsymbol{\omega} = h^{1/2}$$

•
$$\phi(X) = \phi(\omega^{-1/2}\rho(\cdot - X))$$

Existence of ground state

Assumptions

(P) •
$$C_0 \mathbb{1} \le [A^{ij}(X)] \le C_1 \mathbb{1}$$

• $V(X) \ge C_0 \langle X \rangle^{2\delta} - C_1$

Theorem (GHPS) Existence of ground state

Suppose $m(x) \ge a \langle x \rangle^{-1}$ for some a > 0, and $\delta > 3/2$. Then *H* has a ground state.

Proposition (Bruneau-Dereziński) general ω and K

Suppose that

V

(1) $\omega > 0$, Ker $\omega = 0$ (2) $\sup_{X} \| \omega^{-1/2} \rho(\cdot - X) \| < \infty$ (3) $(K+1)^{-1/2}$ is compact (4) $\omega^{-1}\rho(\cdot - X)(K+1)^{-1/2}$ is compact (5) $\omega^{-3/2}\rho(\cdot - X)(K+1)^{-1/2}$ is compact (general IR regularity). Then $K \otimes 1 + 1 \otimes d\Gamma(\omega) + \phi_{\rho}(X)$ has a ground state.

Proof of Thm: Check (5).

$$\begin{split} m(x) &\geq a \langle x \rangle^{-1} \Longrightarrow \omega^{-3/2} \langle x \rangle^{-3/2-\varepsilon} \text{ is bounded} \\ &\Longrightarrow \omega^{-3/2} \langle x \rangle^{-3/2-\varepsilon} \langle x \rangle^{3/2+\varepsilon} \rho(x-X) \langle X \rangle^{-3/2-\varepsilon} \langle X \rangle^{3/2+\varepsilon} (K+1)^{-1/2} \\ \text{is compact, since } \langle X \rangle^{3/2+\varepsilon} (K+1)^{-1/2} \text{ is compact by} \\ V(X) &> \langle X \rangle^{3+\varepsilon'}. \end{split}$$

Absence of ground state

Probabilistic approach

- e^{-tK} is positivity preserving.
- Let $\Phi_p > 0$ be the ground state of K, $\Phi_p(x) \le C_0 e^{-C_1 |x|^{\delta+1}}$
- (ground state transform) $U: L^2(\Phi_p^2 dx) \rightarrow L^2(dx), f \mapsto \Phi_p f$
- $L = U(K \inf \sigma(K))U^{-1}$

Feynman-Kac formula $\mathscr{X} = C(\mathbb{R}, \mathbb{R}^{\nvDash})$

There exists a diffusion process $(X_t)_{-\infty < t < \infty}$ on a probability space $(\mathscr{X}, B(\mathscr{X}), \exists P^x)$ such that

$$(f, e^{-tL}g) = \int \mu_0(dx) \mathbb{E}_{\mathbb{P}}^{\mathcal{T}}[\overline{\mathcal{O}(\mathbb{X}_{\mathcal{F}})} \eth(\mathbb{B}_{\approx})]$$

where $\mu_0(dx) = \Phi_p^2(x) dx$ is the probability measure on $\mathbb{R}^{\#}$.

 $\mathscr{F} \cong L^2(Q, dv)$, v Gaussian measure such that

$$\int e^{\alpha\phi(f)}d\nu = e^{\alpha^2/4\|f\|^2}$$

$$H = L \otimes 1 + 1 \otimes \mathrm{d}\Gamma(\omega) + \phi_{\rho}(X)$$

on $L^2(\mathbb{R}^{\nvDash}, d\mu_0) \otimes L^2(Q, d\nu) \cong L^2(\mathbb{R}^{\nvDash} \times Q, d\mu_0 \otimes d\nu)$

- e^{-TH} is positivity preserving.
- If *H* has a ground state $\Phi_g \Longrightarrow \Phi_g > 0$.

•
$$1 = 1_{L^2(\mathbb{R}^{\mu})} \otimes \Omega$$
. Then $\Phi_g^T = e^{-TH} 1/||e^{-TH} 1|| \to \Phi_g \ (T \to \infty)$.
 $\gamma = \lim_{T \to \infty} (1, \Phi_g^T)^2 = \lim_{T \to \infty} \frac{(1, e^{-TH} 1)^2}{(1, e^{-2TH} 1)}$

Lemma (Lőrinczi-Minlos-Spohn)

- $(\gamma > 0)$ *H* has a ground state
- $(\gamma = 0) H$ has no ground state

Theorem (GHPS) Absence of ground state

Suppose $m(x) \le a \langle x \rangle^{-1-\varepsilon}$. Then *H* has no ground state.

$$(\mathbb{1}, e^{-TH} \mathbb{1}) = \int \mu_0(dx) \mathbb{E}_{\mathbb{P}}^{\mathcal{T}} [\int_{\mathcal{F}}^{\mathbb{T}} \approx \int_{\mathcal{F}}^{\mathbb{T}} \sim \mathbb{W}(\mathbb{X}_{\approx}, \mathbb{X}_{\sim}, |\approx -\sim|)]$$
$$W = W(X, Y, |t|) = \frac{1}{2} (\rho(\cdot - X), \omega^{-1} e^{-|t|\omega} \rho(\cdot - Y)).$$

Lemma (GHPS)

$$\gamma \leq \lim_{T \to \infty} \mathbb{E}_{\mu_{\mathbb{T}}} [{}^{\neq \int_{-\mathbb{T}}^{\mathcal{F}} \int_{\mu}^{\mathbb{T}} \mathbb{W}}]$$

where

$$\mu_T(\mathscr{O}) = \frac{1}{Z_T} \int \mu_0(dx) \mathbb{E}_{\mathbb{P}}^{\widehat{}}[\mathscr{O}^{\int_{-\mathbb{T}}^{\mathbb{T}} \int_{-\mathbb{T}}^{\mathbb{T}} \mathbb{W}}]$$

Proof
$$\gamma = \lim_{T \to \infty} \frac{(1, e^{-TH} 1)^2}{(1, e^{-2TH} 1)}$$

Denominator:

$$(1, e^{-2TH} 1) = \int \mu_0(dx) \mathbb{E}_{\mathbb{P}}^{\mathcal{A}} [f_{\mathbb{P}}^{\mathbb{P}^T} f_{\mathbb{P}}^{\mathbb{P}^T} \mathbb{W}] = \int \mu_{\mathbb{P}}(\mathcal{A}) \mathbb{E}_{\mathbb{P}}^{\mathcal{A}} [f_{-T}^{\mathbb{T}} f_{-T}^{\mathbb{T}} \mathbb{W}]$$

Numerator:

$$(\mathbf{1}, e^{-TH} \mathbf{1})^{2} = \left(\int \mu_{0}(dx) \mathbb{E}_{\mathbb{P}}^{\widehat{}} [\int_{\mu}^{\mathbb{T}} \int_{\mu}^{\mathbb{T}} \mathbb{W}] \right)^{2}$$

$$\leq \int \mu_{0}(dx) \mathbb{E}_{\mathbb{P}}^{\widehat{}} [\int_{\mu}^{\mathbb{T}} \int_{\mu}^{\mathbb{T}} \mathbb{W}] \mathbb{E}_{\mathbb{P}}^{\widehat{}} [\int_{-\mathbb{T}}^{\mu} \approx \int_{-\mathbb{T}}^{\mu} \sim \mathbb{W}]$$

$$= \int \mu_{0}(dx) \mathbb{E}_{\mathbb{P}}^{\widehat{}} [\int_{-\mathbb{T}}^{\mu} \int_{-\mathbb{T}}^{\mathbb{T}} \int_{\mu}^{\mathbb{T}} \mathbb{W}]$$

$$= \int \mu_{0}(dx) \mathbb{E}_{\mathbb{P}}^{\widehat{}} [\int_{-\mathbb{T}}^{\mathbb{T}} \int_{-\mathbb{T}}^{\mathbb{T}} -\not \in \int_{-\mathbb{T}}^{\mu} \int_{\mu}^{\mathbb{T}} \mathbb{W}]$$

Lemma (GHPS) Harnack type estimate

Suppose $m(x) \leq a \langle x \rangle^{-1-\varepsilon}$. Then

$$C_1 e^{C_2 t \Delta}(x, y) \le e^{-t\omega^2}(x, y) \le C_3 e^{C_4 t \Delta}(x, y)$$

Corollary

 $C_1 W_{\infty}(x, y, C_2|t|) \le W(x, t, |t|) \le C_3 W_{\infty}(x, y, C_4|t|)$

where

$$W_{\infty}(X,Y,|t|) = \frac{1}{4\pi^2} \int \frac{\rho(x)\rho(y)}{|x-y+X-Y|^2 + t^2} dx dy$$

Proof of Thm: $\mathbb{E}_{\mu_{\mathbb{T}}}[\stackrel{-\not{\models}}{\rightarrow} \int_{-\pi}^{T} \int_{\mu}^{T} \mathbb{W}] = \mathbb{E}_{\mu_{\mathbb{T}}}[\mathbb{1}_{\mathbb{A}_{\mathbb{T}}}\cdots] + \mathbb{E}_{\mu_{\mathbb{T}}}[\mathbb{1}_{\mathbb{A}_{\mathbb{T}}}\cdots]$ where • $A_{T} = \{(x,w) | \sup_{|s| \leq T} |X_{s}(w)| \leq T^{\lambda}, |X_{0}(w)| = |x| \leq T^{\lambda} \}$ • $\frac{1}{1+\delta} < \lambda < 1$ By • $\int_{-T}^{T} dt \int_{-T}^{T} dsW \leq \int_{-T}^{T} dt \int_{-T}^{T} dsW_{\infty} \leq CT ||\hat{\rho}/|k|||_{L^{2}(\mathbb{R}^{\mu})}^{2}$ • $P(\mathcal{O}) = \int \mu_{0}(dx) \mathbb{E}_{\mathbb{P}}^{\infty}[\mathcal{O}]$

we have

$$\mathbb{E}_{\mu_{\mathbb{T}}}[1\!\!1_{\mathbb{A}_{\mathbb{T}}}\cdots] \leq \mathbb{C}^{\mathbb{T}\mathbb{C}} \left(\int 1\!\!1_{\mathbb{A}_{\mathbb{T}}}\mathbb{P}\right)^{\aleph'/\varkappa}$$

By exponential decay $\Phi_{\rm p}(x) \leq C_0 e^{-C_1|x|^{\delta+1}}$ we have

Lemma (Kipnis-Varadhan)

$$\int 1_{A_T^c} dP \le T^{-\lambda} (a+bT)^{1/2} e^{-T^{\lambda(\delta+1)}}$$

Since $\lambda(\delta+1) > 1$, $\mathbb{E}_{\mu_{\mathbb{T}}}[\mathbb{1}_{\mathbb{A}_{\mathbb{T}}}\cdots] \to \nvDash (T \to \infty)$.

UV problem

Theorem (E. Nelson 1964) Removal of UV cutoff

Let

$$\hat{
ho}_{\Lambda}(k) = (2\pi)^{-3/2} \chi_{\Lambda} = \left\{ egin{array}{cc} (2\pi)^{-3/2} & |k| \leq \Lambda \ 0 & |k| > \Lambda \end{array}
ight.$$

and

$$E_{\Lambda} = -\frac{1}{2} (2\pi)^{-3} \int \frac{|\chi_{\Lambda}(k)|^2}{|k|(|k|^2/2 + |k|)} dk$$

Then

$$\lim_{\Lambda\to\infty}e^{-t(H_{\Lambda}-E_{\Lambda})}=e^{-t\exists H_{\infty}}$$

$$\rho_{\Lambda}(\cdot) = \Lambda^{3}\rho(\Lambda \cdot). \ \rho_{\Lambda}(x-X) \rightarrow \delta(x-X) \int \rho(y) dy.$$

Symbols:

$$h_0(X,\xi) = \sum \xi_i a^{ij}(X)\xi_j \quad K(X,\xi) = \sum \xi_i A^{ij}(X)\xi_j$$

$$E(X) = -\frac{1}{2}(2\pi)^{-3} \int (h_0(X,\xi) + 1)^{-1/2} \frac{K(X,\xi)}{(K(X,\xi) + 1)^2} |\hat{\rho}(\xi/\Lambda)^2| d\xi$$

Theorem (GHPS) Removal of UV cutoff

There exists a self-adjoint operator H_{ren} bounded from below such that $e^{-t(H_{\Lambda}-E_{\Lambda}(X))} \rightarrow e^{-tH_{\text{ren}}}$ ($\Lambda \rightarrow \infty$).

Concluding Remarks

Critical ratio

 $a\langle x \rangle^{-1} \le m(x)$ *H* has a ground state $m(x) \le a\langle x \rangle^{-1-\varepsilon}$ *H* has no ground state.

- Condition $V(x) \ge \langle x \rangle^{2\delta} \varepsilon$ can be changed to "binding condition" by Griesemer-Lieb-Loss (Inv Math 01), which include Coulomb potentials.
- The standard Nelson model without UV cutoff also has a ground state (Hirokawa-H.-Spohn, Adv Math 05). However it is unknown the uniqueness of the ground state.