Schrödinger Operators with random point interactions Takuya MINE (Kyoto Institute of Technology)¹

We consider the Schrödinger operator with point interactions in \mathbb{R}^d (d = 1, 2, 3), defined as

$$H_{\Gamma,\alpha}u = -\Delta|_{\mathbb{R}^d\setminus\Gamma}u \quad (u \in D(H_{\Gamma,\alpha})),$$

$$D(H_{\Gamma,\alpha}) = \{ u \in L^2(\mathbb{R}^d) \cap H^2_{\text{loc}}(\mathbb{R}^d\setminus\Gamma) \mid -\Delta|_{\mathbb{R}^d\setminus\Gamma}u \in L^2(\mathbb{R}^d),$$

$$u \text{ satisfies } (BC)_{\gamma} \text{ for every } \gamma \in \Gamma \},$$

where Γ is a locally finite subset of \mathbb{R}^d , and $\alpha = (\alpha_{\gamma})_{\gamma \in \Gamma}$ is a sequence of real numbers. The boundary conditions $(BC)_{\gamma}$ are defined as follows:

$$\begin{array}{l} d = 1 \\ d = 1 \\ u(\gamma +) = u(\gamma -) = u(\gamma), \ u'(\gamma +) - u'(\gamma -) = \alpha_{\gamma} u(\gamma). \\ \hline d = 2 \\ u(x) = u_{\gamma,0} \log |x - \gamma| + u_{\gamma,1} + o(1) \text{ as } x \to \gamma, \text{ and } 2\pi \alpha_{\gamma} u_{\gamma,0} + u_{\gamma,1} = 0. \\ \hline d = 3 \\ u(x) = u_{\gamma,0} |x - \gamma|^{-1} + u_{\gamma,1} + o(1) \text{ as } x \to \gamma, \text{ and } -4\pi \alpha_{\gamma} u_{\gamma,0} + u_{\gamma,1} = 0. \end{array}$$

It is well-known that $H_{\Gamma,\alpha}$ is a self-adjoint operator on $L^2(\mathbb{R}^d)$ under the condition

$$\inf_{\gamma,\gamma'\in\Gamma,\ \gamma\neq\gamma'}|\gamma-\gamma'|>0,$$

for example, when $\Gamma = \mathbb{Z}^d$ (see e.g. [1]). The self-adjointness of $H_{\Gamma,\alpha}$ is proved under more general assumption; see e.g. Kostenko–Malamud [3] for d = 1, and Kaminaga–M–Nakano [2] for d = 2, 3.

There are numerous results about the spectral or scattering properties of $H_{\Gamma,\alpha}$, and most of the results up to 2004 are summarized in Albeverio et al. [1]. There are also many results in the case that the set Γ or the sequence α is random (some of them will be introduced in the lecture). However, there were no results when d = 2, 3 and Γ_{ω} is the Poisson configuration, up to 2019. In 2020, Kaminaga–M–Nakano [2] give the following result.

Assumption 1. (i) Γ_{ω} is the Poisson configuration with intensity measure ρdx for some constant $\rho > 0$.

(ii) The coefficients $\alpha_{\omega} = (\alpha_{\omega,\gamma})_{\gamma \in \Gamma_{\omega}}$ are real-valued i.i.d. random variables with common distribution measure ν on \mathbb{R} . Moreover, $(\alpha_{\omega,\gamma})_{\gamma \in \Gamma_{\omega}}$ are independent of Γ_{ω} .

Theorem 2 (Kaminaga–M–Nakano 2020). Let d = 2, 3, and suppose $(\Gamma_{\omega}, \alpha_{\omega})$ satisfies Assumption 1. Put $H_{\omega} = H_{\Gamma_{\omega}, \alpha_{\omega}}$. Then,

- (i) H_{ω} is self-adjoint a.s.
- (*ii*) $\sigma(H_{\omega}) = \mathbb{R} \ a.s.$

¹This work is supported by JSPS KAKENHI Grant Number 18K03329. Address: Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan. E-mail: mine@kit.ac.jp

Next, we shall introduce the *integrated density of states (IDS)* $N(\lambda)$ for negative energies λ as follows:

$$N(\lambda) = \lim_{L \to \infty} \frac{N_{Q_L}(\lambda)}{L^d} \quad (\lambda < 0),$$
(1)

where $Q_L = (0, L)^d$ and

$$N_{Q_L}(\lambda) = \#\{\mu \le \lambda \mid \mu \text{ is e.v. of } H_{Q_L \cap \Gamma_\omega, \alpha_\omega|_{Q_L \cap \Gamma_\omega}}\}.$$

It can be proved that RHS of (1) exists a.s. and independent of ω , under Assumption 1. In this talk, we shall give the asymptotics of $N(\lambda)$ as $\lambda \to -\infty$, as follows.

Theorem 3. Let d = 3. Suppose $(\Gamma_{\omega}, \alpha_{\omega})$ satisfies Assumption 1, and assume $\operatorname{supp} \nu$ is a bounded set in \mathbb{R} . Let t_0 be the unique positive solution of $t = e^{-t}$. Then, for sufficiently small $\epsilon > 0$, there exists a constant $\lambda_0 < 0$ dependent on ρ , ϵ and $\operatorname{supp} \nu$ such that

$$\left(\frac{2\pi}{3}t_0^3\rho^2 - \epsilon\right)|\lambda|^{-3/2} \le N(\lambda) \le \left(\frac{2\pi}{3}t_0^3\rho^2 + \epsilon\right)|\lambda|^{-3/2}$$

for any $\lambda \leq \lambda_0$. In other words,

$$\lim_{\lambda \to -\infty} \frac{N(\lambda)}{|\lambda|^{-3/2}} = \frac{2\pi}{3} t_0^3 \rho^2.$$
(2)

Notice that the limit value (2) is independent of $\sup \nu$, though the value λ_0 depends on $\sup \nu$. The result (2) is completely different from the correspondent result for the Schrödinger operator with negative random *scalar* potential of the Poisson type

$$H_{\omega} = -\Delta + \sum_{\gamma \in \Gamma_{\omega}} V_0(x - \gamma),$$

where $V_0 \in C_0^{\infty}(\mathbb{R}^d)$, $V_0(x) \leq 0$, and $V_0(0)$ is the non-degenerate global minimum of V_0 . In this case, $N(\lambda)$ decays super exponentially as $\lambda \to -\infty$ (see e.g. Pastur–Figotin [4]).

References

- S. Albeverio, F. Gesztesy, R. Høegh-Krohn, and H. Holden, Solvable models in quantum mechanics. Second edition. With an appendix by Pavel Exner, AMS Chelsea Publishing, Providence, RI, 2005.
- [2] M. Kaminaga, T. Mine and F. Nakano, A Self-adjointness Criterion for the Schrödinger Operator with Infinitely Many Point Interactions and Its Application to Random Operators, Ann. Henri Poincaré 21 (2020), 405–435.
- [3] A. S. Kostenko, and M. M. Malamud, 1-D Schrödinger operators with local point interactions on a discrete set, J. Diff. Eq. 249 (2010), no. 2, 253–304.
- [4] L. Pastur and A. Figotin, Spectra of Random and Almost-Periodic Operators, Springer-Verlag, Berlin, 1992.