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Enhanced binding of an N-particle system
interacting with a scalar field II.Relativistic
version

by

Fumio HIROSHIMA and Itaru SASAKI

Abstract

An enhanced binding of N-relativistic particles coupled to a massless scalar bose field is
investigated. It is not assumed that the system has a ground state for the zero-coupling.
It is shown, however, that there exists a ground state for sufficiently large coupling. The
proof is based on checking the stability condition and showing a uniform exponential
decay of infrared regularized ground states.
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§1. Preliminaries
8§1.1. Introduction

Non-perturbative analysis of eigenvalues embedded in the continuous spectrum
has been developed in the last decade and it has been applied to the mathemati-
cally rigorous analysis of the spectra of self-adjoint Hamiltonians in quantum field
theory. Among other things, stability and instability of a quantum mechanical
particle coupled to a quantum field have been investigated.

The Hamiltonian in quantum field theory is realized as a self-adjoint operator
of the form

(1) Ko+ aKj,
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acting in a Hilbert space over C for each values of coupling constant @ € R. Here
Ky is the subject term and K7 an interaction term. We are concerned with ground
states of Ko+ aK7 in this paper.

Let o(T) be the spectrum of a self-adjoint operator T

Definition 1.1. (Ground state and ground state energy) Let T be a self-
adjoint operator bounded from below. Then the bottom of the spectrum, Ey(T) =
inf o(T), is called a ground state energy of T. Let Eo(T') be an eigenvalue of T
Then the eigenvector f associated with Eo(T) is called a ground state of T, i.e.,

Tf=Eo(T)f.

Generally the bottom of the spectrum of the zero-coupling Hamiltonian Kg
is embedded in the continuous spectrum. Hence the spectral analysis of Ky + aK7
is regarded as the perturbation problem of embedded eigenvalues. Although an
analytic perturbation theory of the discrete spectrum is established for a various
type of self-adjoint operators, the perturbation of embedded eigenvalues are crucial
and it is not straightforward to apply the perturbation theory of discrete spectra.
Then it is subtle to show the existence of a ground state of Ky + oK even for
small values of coupling constant. Moreover it is not necessarily that a ground
state exists for Ky + aKj, a # 0, even when inf o(Ky + K1) > —oo and Ky has
ground state.

The existence and the absence of a ground state for physically reasonable
Hamiltonians of quantum field theory has been however proven so far under some
assumptions. The existence of the ground state of the standard Nelson Hamiltonian
[Neltd] was in particular proven in e.g., [BESIR Spo9&, Ger(0, Sas05], where the
most basic assumptions for proving the existence of a ground state are

(1) infrared regular condition,

(2) the existence of ground state of Kj.

In particular assumption (2) tells us that Hamiltonians Ko+ aK7 also has a ground
state for arbitrary values of a.

It is found however that an interaction with quantum fields enhances the
binding energy, which suggests that a Hamiltonian with sufficiently large coupling
constants may have a ground state whether Ky has a ground state or not. If
Ko+ aKy with sufficiently large coupling constants has a ground state whether K
has a ground state or not, then it is said that enhanced binding occurs. Enhanced
binding is initiated by [HSO1] and in the previous paper [HSO8] enhanced binding is
shown for a system of N-nonrelativistic particles governed by Schodinger operator
and linearly coupled to a massless scalar bose field. In this paper replacing the
nonrelativistic particles with relativistic ones, we show the enhanced binding.
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Finally we give some comments on related works on enhanced binding. The
enhanced binding is studied so far for the various kind of models in quantum field
theory. In [HSOT] the enhanced binding of the Pauli-Fierz model with the dipole
approximation is studied. In [HSSTI] a complement result of [HSOT] is established,
i.e., the absence of ground state for sufficiently small coupling constant is shown.
See also [A KO3, BLVOAS, BVO4, (:‘,HH(JIj7 (:',VV()Ij7 H VVUS] for the related works.

§1.2. Main results

The total Hamiltonian we consider is of the form
(2) HY = Hy + rHi.

The operator Hy = Hy(k) describes the zero coupling Hamiltonian and is given
by

Hy = H, + k*Hj,

Hy = Y (/= =+ Vi)
j=1

where m; > 0 is the mass of the j-th particle, V(x) an external potential, Hy the
free field Hamiltonian, and x > 0 denotes a scaling parameter. The operator H;
describes a particle-boson linear interaction. We notice that there are no pair po-
tentials in H" and V is assumed to be independent of j for simplicity. Introducing
a dressing transformation e’ to derive an effective potential V.g, we transform
HY as

(3) e THY T = WYy + k*Hy + Hg(k),

where hY is the effective particle Hamiltonian given by
N

(4) h&zZ(w/fAijmffijrV(xj)) + Ve (21, ooy TN)
j=1

and Hg(r) a remainder term to be regarded as a perturbation of h¥y + r%Hj.
Compensating for deriving Vg through the dressing transformation, we have the
remainder term Hg (k) which is unfortunately no longer linear and is the compli-
cated form:

N 2
Hy (k)= \/(Nj - iAj(fFj)) +mi - \/Ter? ;

J=1
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where A; denotes some quantum vector field. Nevertheless it turns to be a small
perturbation for sufficiently large x in some sense.

We are interested in the existence of a ground state of HY | equivalently that
of e THV e, We do not however assume the existence of ground states of Hy.
As will be shown below, the enhanced binding is observed by the transformed
Hamiltonian (8) rather than H" itself. Since we consider a massless boson, the
bottom of the spectrum of HY is the edge of the continuous spectrum and the
regular perturbation can not be applied. Then it is not clear whether e=*7 HY ¢'”
has a ground state even when h'; has a ground state.

The conventional approach is to assume an infrared cutoff in the form factor
A in H; by setting 5\(145) (k>0 HY with cutoff S\f‘kbg is denoted by HY, and
to show the existence of a ground state ®, of HY. The vector ®, is called an
infrared-regularized ground state. Then one is left to show that the sequence of
ground states ®, has a non-zero weak limit ® as ¢ — 0, which is the desired
ground state of H"'. We show in this paper:

(A) the stability condition for HY is satisfied (Lemma &),

(B) infrared-regularized ground states @, has exponential decay uniformly with
respect to the infrared cutoff parameter o (Lemma B),

(C) we prove that (1) stability condition and (2) exponential decay imply the
existence of a ground state of H" (Appendix @),

(D) we show that there exist @ > 0 and kg such that for each k > ko, H" has
the unique ground state for |a| € (@, @(x)) with some a&(k) (Theorem E73).

Statement (D) describes the enhanced binding and this is the main theorem in
this paper.

81.3. Strategies

We explain more technical improvement of this paper.

(Reduction to the stability condition of h);) The stability condition is
introduced in [GLLOT] to show the existence of ground state of the non-relativistic
quantum electrodynamics. The key ingredient in this paper is that we reduce the
stability condition of HY to that of hY; in Lemma B Namely we show that
the stability condition of hY; implies that of HY. These are proven by energy
comparison inequality derived by functional integration of the heat semigroup
generated by (B8) (Lemma B™) and a simple variation principle (Lemma B=3), hence
we focus on showing the stability condition on hY; instead of H .

(Uniform exponential localization by functional integrations) Our
method is a minor but nontrivial modification of [HSOR] and a mixture of [Ger(0,
GLLOT]. We do not assume the compactness condition on H}, which is entered in
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[GexO0)]. Instead of this we show an exponential localization of infrared-regularized
ground states, ||®,(z)||# < Cse~°l*! which is derived through functional integra-
tions in Lemma BR. The crucial point is to show that this localization is uniform
on o > 0, i.e., Cs and § are independent of ¢ > 0.

(Scaling parameter) The scaling parameter introduced in this paper can
be obtained by replacing the annihilation operator a and the creation operator a*
with ka and ka*, respectively. This scaling is introduced in [Dav74, Dav79, Hir9d]
and the scaling limit as Kk — oo is called the weak coupling limit. Roughly speaking

1

at least in the nonrelativistic domain Hy, & —5-A + V, and then

HY = mQ(H_QHp + Hy 4+ w1 Hy)
ith
wi 1

_2 Y
) AL
P 2mk2

sy
Thus we interpret that enhanced binding of HY occurs when sufficiently heavy
particle mass and shallow external potential are assumed. Alternate explanation
of the scaling parameter is the tool to derive a Markov process from e~*# YAl
though the scalar product (f ® Q, e_tHVg ® Q) does not define a Markov process,
(f, e ther=Eaias) g) does with generator heg — FEdiag. This can be obtained by the
scaling limit:
(f@Qe M g@Q) - (f,e ! haFameg)

as k — 0o. This can be done in a similar manner to [Hir94]. Precisely speaking,
if hegr has a unique strictly positive ground state ¢, then there exists a diffusion
process (Y3)¢>o such that

(fp, e~ et =Faine) gy = B[ f(Y5)g (V)]

where E denotes the expectation, and (Y});>¢ is the so-called P(¢)1 process. See
e.g. [GHPST?] for the construction of P(¢); process.

The organization of this paper is as follows.

In the remainder of Section 1 we define the Nelson model with a relativistic
kinetic term, and introduce a scaling parameter x > 0. In Section 2 we introduce
a dressing transformation, and mention the stability condition and uniform expo-
nential decay of ®,(z). In Section 3 we prove the stability condition in Section
3.1 and uniform exponential decay in Section 3.2, and in Section 3.3 we show the
enhanced binding.

In Appendix B we show that the relativistic version of the stability condition
also implies the existence of the ground state. In Appendix B we review fundamen-
tal properties of the bottom of the essential spectrum of relativistic Schrédinger

operator. In Appendix B we give the functional integral representation of e *# v
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and show some inequality used in the proof of exponential decay of infrared regu-
larized ground states. In Appendix @ we derive some energy comparison inequality
of the translation invariant Hamiltonian Zj-vzl(w /=N +mj —mj+V(xj)).

§1.4. Definition

We begin with giving the definition of the Nelson model with N-relativistic parti-
cles. Throughout we assume N > 2 and the dimension of state space is d > 3. The
Hamiltonian of the Nelson model can be realized as a self-adjoint operator on the
tensor product of L2(R4V) and the boson Fock space .# over L?(R?),

(5) H =L*RMN) @ Z.
Here .7 is defined by .7 = @52 (L2 ,,(R?"), where L2, (R") is the set of square
integrable functions such that W(xy,---,2,) = ¥(2,(1), -+, Te@n)) for any n-

degree permutation o. A vector ¥ € .F is written as ¥ = {¥}>  with
o) ¢ L2, (R), and the Fock vacuum Q € .Z is defined by Q = {1,0,0,...}.
We denote by a(f) and a*(f), f € L?(R?), the annihilation and creation operator
in %, respectively. They satisfy canonical commutation relations:

(6) [a(f),a*(9)] = (f,9)1, la(f),a(g)] = 0= [a*(f),a"(9)]

and the adjoint relation a*(f) = (a(f))* holds. Throughout this paper (F,G)x
denotes the scalar product on Hilbert space I, which is linear in G and anti-
linear in F. We omit K until confusions arises. We informally write as a* (f) =
[ a¥ (k) f(k)dk, a¥ = a,a*. The second quantization of the closed operator A on
L?(RY) is denoted by dI'(A). The free field Hamiltonian H; is the self-adjoint
operator on %, which is given by the second quantization of the multiplication
operator w(k) = |k| on L?(R9):

(7) Hf = dF(w)
Next we introduce particle Hamiltonian. We suppose that the N-relativistic par-

ticles are governed by the relativistic Schrédinger operator Hy, of the form:

N

(8) Hy =3 (2 +V))

Jj=1

which is acting on L?(R*Y), where

9) Q; = Qj(pj) = /p; +m7 —my,

is the j-th particle Hamiltonian with momentum p; = —iV,, and mass m; > 0.
V; = V(x;) denotes an external potential. In this paper, we assume that there is
no interparticle potential for simplicity.
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The Hamiltonian of the relativistic Nelson model is then defined by
(10) HY = Hy + kHi,
where the zero-coupling Hamiltonian Hj is given by
(11) Hy=H,® 1+ r*1® H;

and k > 0 a scaling parameter. Hy denotes the linear interaction given by

N o
12 H; = i(z;)dX
(12 1 a;/RdN@(x])

®
under the identification: 7 = FdX, where dX = dxy---dvy. Here o > 0 is

RN
a coupling constant, and the scalar field ¢;(x) is given by

(13) ¢;(x) (a*(k)ﬁj(—k)e*ikr + a(k)ﬂj(k)eikz)dk

1

V2 Jra
for each x € R? with ultraviolet cutoff functions 5\]-. Here {-- -} denotes the oper-
ator closure. The standard choice of the ultraviolet cutoff is

Aj(k) = (QW)_d/Qw(k)_lmmgA,

where lx denotes the characteristic function of X. We do not however fix any
special cutoff function.
Throughout this paper we assume the following three conditions:

(V) V(=A +1)"Y2 is compact.

(UV) \j(—k) = \j(k) > 0and \; € L*(R?) for j =1,..., N.

(IR) \;/w e L2(R?) for j =1,..., N.

Assumption (V) implies that V is infinitesimally small with respect to self-adjoint
operator v —A + m?2 —m for all m > 0. Hence, by the Kato-Rellich theorem, H}, is
self-adjoint on D(E?’:l ;) and essentially self-adjoint on any core for Ejvzl Q;,
where D(A) denotes the domain of A. (UV) implies that H; is symmetric. Then
(V), (UV) and (IR) also imply that, for arbitrary o € R and € > 0, it holds that

[HW|| < el[HoW| +bc[[W]], ¥ e D(Ho).

Therefore, by the Kato-Rellich theorem, H" is self-adjoint on D(Hy) for all x > 0
and a > 0. The nonnegativity A;(k) > 0in (UV) implies that the effective potential
is attractive, which is used in Lemma BIT.
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§2. Existence of a ground state
§2.1. Dressing transformation

To derive the effective particle Hamiltonian we introduce the so-called dressing
transformation e, where T'= < Z;\Ll m; and

g ¢ L a* e—i-xjj‘j(fk),a eiij
w= Lo/ ( (Bt oy, — e w(k))‘”“

By (IR), m; is self-adjoint on . and then €'’ is unitary.

Lemma 2.1. The unitary operator ¢7 maps D(H") onto itself and
(14) e THY T = nYe @ 1+ k21 ® Hy + Hr(k),

where the effective Hamiltonian is defined by

N
(15) hee =D (5 + V) + Vesr,
j=1
with the effective pair potential
(16) ‘/eff = 012 WU(J)l - Ij),
1<i<j<N
M(=k)Aj (k) i,

1 g(x) = — [ S8R ke gy
( 7) Wzy(x) /Rd w(k) e dk
Here Hy(k) is the remainder term given by

N o2 .
(13) ) = 3 (895 = SIAVEP?).
j=1
o
(19) ALy =0y (pj + EA]') =95 (p))

with a vector field

Aj = (A1, Aja)

P N L a* efi T; 5\3(_k) a ei ij
Aﬂ—/RdN <ﬁ de‘z( (Wemtbes =L05s 4+ a(k)er w(k)>dk>dX.
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Proof. We directly see that

—i i @
e ije T =DPj + EA]',
a e [ (k)X (=k)

—iT g AT _ o = i VAN 7ik(1:j79:i)dk
¢ e ¢ K ;/Rd w(k) ¢ ’
e T H.T — H. — EH 4 Oi EN: / S‘i(_k)j‘j(k)e—ik(mi—zj)dk

T T T T g2 52 e w(k) '
Together with them, the lemma follows. O

(UV) and (IR) imply that Ve is bounded. Therefore H); is a self-adjoint

operator on D(Z;V:l Q).

§2.2. Main results
Recall that Ey(T') = inf o(T) for a self-adjoint operator 7T

Theorem 2.2. (Existence of ground state) Assume (V), (UV) and (IR). Sup-
pose that Eo(hgﬁ) € adisc(hé/ﬁ). Then there exists kg > 0 such that HY has the
unique ground state for any £ > Kg.

In order to show the enhanced binding, we introduce an assumption on V.
(EN)
(1) inf V(z)> —oo and liminf V(z) = 0;

z€R4 |z]—o00
(2) V—A + NV acting in L?(R?%) has a negative energy ground state;

(3) V is d-dimensional relativistic Kato-class, i.e.,

t

lim sup Ep {/ V(Xs)ds] =0,
t0 yeRrd 0

where Ef denotes the expectation on a probability space (D,B,P?), and

(Xt)i>0 denotes the d-dimensional Lévy process with the characteristic func-
tion Ef; [eiU‘X‘] = e_t(\/m—m)eiux.

Assumption (EN)(1) is used only to show spatial exponential decay of the infrared
regularized ground state ®,. The second assumption (EN)(2), which is used in (B3),
is a crucial assumption for showing the enhanced binding. Intuitively a sufficiently
strong interaction engages IN particles through linear interaction of the quantum
field, and consequently the total Hamiltonian can be regarded as v/—A + NV.
This intuitive description is justified in this paper. (EN)(3) is used to show the
continuity of ground state energy of a translation invariant Hamiltonian in Lemma

BT
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We state the main results in this paper.

Theorem 2.3. (Enhanced binding) Let us suppose (V), (UV) and (IR). As-
sume (EN) and N > 2. Then there exist @ > 0 and k¢ > 0 such that for each
Kk > ko, H" has the unique ground state for || € (@, @(x)) with some constant
a(k).

Remark 2.4. In Theorem 22, hY; has a ground state. In Theorem 23 we do not
assume the existence of a ground state of Hy, i.e., the zero-coupling Hamiltonian
Hjy does not necessarily have a ground state.

Remark 2.5. In the case of N = 1, we can not apply our method to show the
enhanced binding. Although in this case the enhanced binding may also occur,
it is crucial to estimate dressing transformed Hamiltonian (). We do not then
discuss this case.

Example 2.6. We give examples of V satisfying (V) and (EN), but v—-A 4+ 1 —
1+ V has no ground state in the dimension d > 3. Suppose that V satisfies

V()] < e(1+[a])~¢

with some ¢ > 0 and € > 0. It involves V = —e=2". Then (V) is satisfied with
V =6V for all constant § > 0. Let V # 0, V < 0 and V € L4R%) N L¥?(R?). Let
0 > 0 be sufficiently small constants and set

(20) Hs=vV-A+1-1+6V.

Let Es(-) be the spectral measure of Hs. Since ‘N/(\/ —A +1)~! is compact, the
essential spectrum of Hs is 0ess(Hs) = [0,00) for all 6 > 0. By the relativistic
version of the Lieb-Thirring bound [Daug3], we have

(21) dim RanEs((—00,0]) < ¢16¢ /Rd |V (2)|%dx + c20%/? /}Rd V()| ?de,

where ¢; and ¢ are positive constants independent of V. Hence Hy has no ground
state for sufficiently small 0 such that the right-hand side of (21) is strictly smaller
than one. Similarly cegs(v/—A + N(SV) = [0, 00) follows. vV—A + NGV has how-
ever a negative eigenvalue for sufficiently large N, since inf o(v/—A + N 5‘7) <0
for sufficiently large N, which implies that v/—A + N 8V has a ground state for
sufficiently large N. Therefore for sufficiently small §, V = 6V satisfies (V) and
(EN), but v/—=A +1 — 1+ 6V has no ground state.



ENHANCED BINDING IT 11

§2.3. Stability condition and exponential decay

In order to prove Theorems 22 and PZ3 we investigate the stability condition.

First of all we introduce cluster Hamiltonians. Let Cy = {1,2,--- , N}. For each
B C Cn, (B # 1), we define
(22) H(B) = Z(Q] + kag;) + k*H,
JjEB
(23) HY (8) = H'(B) + ) _ Vi,
JjEB

acting on L*(R¥P) @ Z, where ¢; = fﬂgiw ¢j(x;)dXp, Xg = (x;);ep. Clearly
HY = HY (Cy). Let

(24) E°(B) = inf o (H"(8)), EY(8)=info(H"(8)).

For the case of 8 = ), we set E°(()) = EV () = 0. The lowest two cluster threshold
is defined as the minimal energy of systems such that only the particles involved
in 8 are bound by the origin but others are sufficiently remote from the origin. It
is defined by

(25) 2V = min{E"(8) + E°(5°)18 & Cn}

The gap between the ground state energy EV and the lowest two cluster threshold
YV is related to the existence of ground state by the proposition below. Let HY
be defined by HY with A; replaced by A (B) N>

Proposition 2.7. (Case ¢ > 0) Suppose that EV < %V. Then HY has the
unique ground state. We denote the ground state by ®,,.

(Case o = 0) Suppose that £V < XV and there exists 0 < ¢ independent of o
such that supy_, ., [|(€’*! ® 1)@, || s < oo with some & > 0. Then H has a
ground state.

Proof. The proof is a minor modification of [Ger(l, GLLOI], and it is given in
Appendix B for the case o > 0, and in Appendix B2 for the case o = 0. O

The condition ¥V > EV is called the stability condition. For our model
the uniform exponential decay of ||®,(z)||# may be derived from the stability
condition, but we do not check it. So we need not only stability condition but also
uniform exponential decay.

83. Proof of the main theorem

In order to show Theorems P2 and P23, by Proposition P77 it is enough to show
both (1) stability condition and (2) the uniform exponential decay of | ®,(z)||.z.
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§3.1. Stability condition

It is however not straightforward to show the stability condition, so we will make a
detour and the discussion will be reduced to that of effective particle Hamiltonian
hY:. Let us define the lowest two cluster threshold of hY; in a similar way to
HY and we shall compare it with £V. For 8 C Cu, we define effective cluster
Hamiltonians by

(26) hea(B) =) Q—a® Y Wilai—ay),

JjeB 4,J€BI<]
(27) he(B) = hig(B) + Y _ V.
JEB
We set
(28) £(p) =infa(hg(8),  £Y(8) =info(hg(8))
and €Y = EY(Cy). Then the lowest two cluster threshold of hly is defined by
(29) 2" =min{e" (8) +£°(8°)|8 & Cn}-

Constants ¢V and d¥ are such that || Z;VZI Q0| < VA + dV|| ¥ and set

(30)
N N
G(t) = | S IA /NI ) £+ | 30 V2my A /el | 1t + VAN (¥ IEY] + ).

j=1
The next lemma is a key ingredient of this paper.

Lemma 3.1. We assume that Z¥ — &Y > 0, and a and & satisfy 2V — &V >
G(a/k). Then the stability condition =V — EV > 0 holds.

In order to prove Lemma BT, we prepare two lemmas. We set
9 N
(31) Baing = 5 3 1%/ Ve
j=1
Lemma 3.2. For all 8 C Cy, it follows that

) BHE) < £#(0)+ 5 S INVEIP, #=0.V,
jeB

In particular, it holds that ZY < XV + Egyja.

Proof. See Proposition B3 in Appendix B. O
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Lemma 3.3. For all x > 0 it follows that EY < &Y + G(a/k) — Ediag,

Proof. For arbitrary e > 0, we can choose a normalized vector v € C§°(R4) such
that [[(hY; — EV)v|| <e. Set ¥ = v @ . Then, by Lemma 21, we have

N
EV <& +4e+ |V, | —Bang + »_ AQ; | U

Jj=1

Since 7; commutes with p;, i # j, by setting T; = an;/k, we can see that AQ; =
e"TiQ;etTi — Q; and

| (U, AQ;U) | = | (( — 1), Q;e" W) + (T, (e — 1)T) |.
Hence we have
|a

| i |
(2, A0;9) | < = |m; @] - [| Qe @] + = |m; ]l - 2, 9]).

The right-hand side above is identical with

1/2
o] s o, \? 1/2
= EH)\J‘/WH v, (pj+ 7141 4 + (T,p30)

Then we have

V2o

o ~ ~
(2, 20,9)| < 25, 0 <2||Qj«v| am 4 |k|Aj/w||>

V2 K
and
N
. V2|al .
EV <&V e+ ﬂ)\-w 2m,; + k|, /w
< ;ﬁﬁll i@l | 2mg + ——[[k|A;/w]
N
V2ol <
# 30 R ] (2 1+ ) ~ Bt
J:
Since € > 0 is arbitrary, the lemma follows. O

Proof of Lemma B: By Lemmas B2 and B33, we have

(33) »Y—EV >

[1]

V&V —G(a/r) > 0.

Then the lemma is proven. O
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§3.2. Exponential decays

It is proven that the functional integration is a strong tool to show an exponential
localization of bound state in quantum mechanics. That can be also applied in
quantum field theory.

Let (X¢)i>0 = (X¢,..., X )i>0 be the N independent d-dimensional Lévy
processes on a probability space (D, B, P*), x € R with the characteristic func-
tion

(34) E%[e‘i“'x‘] — et TNy "-?er-?*mj), u=(ug,...,un) € R,

Here and in what follows EZ [- - -] denotes the expectation with respect to a path
measure m® starting from z. Let Weg = Weg (21, .., 2n) = Zjvzl V(xj) + Vegr ().

Proposition 3.4. There exists gy > 0 such that for all o < gy,
1/2
(35) B0 (X)|| 5 < et(EY +Bains+e(@) (]Ef)f [e—2f0 Wesr (X, )dSD 1@ ||

for each X € R where €(0) > 0 satisfies lim,_, €(c’) = 0.

Proof. See Proposition B4. O
From Proposition B3 it suffices to estimate

et(EV+Edi&g)E§ =2 [} Wege ( ds] 1/2
in order to show the exponential decay of ||®,(X)||.#. To estimate this we divide
Weg into two parts. Let
Br = {z = (21, ...,xn5) € R¥||z| > 2R and min{|z; — z;|,i # j} < |2|/2}.

Define VE

eff, 00

(36) Weeg =V + Vil 0 + Vil oo

= Veglp, and VlcfO = V;ﬂ]ch Then

By the Riemann Lebesgue lemma lim ;o Wjj(2z) = 0. Then notice that
lim (V(z) + Vefi o(2)) =0,

|z] =00
(k)X (—
Vil < 5 3 [ AR
i#£j
The Lévy measure v;(dz) = v;(x)dz associated with the Lévy process (X7 )i>o is
given by

mJ

(37) Vj(x):2( w | |d+1/ ¢t e b Imilal ge 4 e RY.
T
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We note that vj(z) < Ce~¢l*l with some constants C, ¢ > 0.

Proposition 3.5. There exist n > 0, C; > 0 and Cs > 0 such that

(38) P ( sup |Xg| > a) < Cre et

0<s<t

for all a > 0.

Proof. We see that

0 _ WO —naz0 sup Xs
p ( Sup |XS| > a> =Ep {]lsupo<s<t |Xs|—a>0} <e MEp |:€7I oot Xl |
0<s<t =T=

It is known that EQ[e7(tPo<s<e [XsD] < 02! for sufficiently small 0 < 7 [CMSYM].,

Hence the proposition follows. O
We define # = {X, € Bf for all 0 < s < t}. Since V,§ (X,) = 0 for on %,

we have

(39)

EY [e—ZfJ Weff<Xs>dS} = E¥ {n%e—2f5<\/+ve’?f,o)(xs>ds} T EY {ﬂ@ce—zf; Weff(xs)ds}

By the Schwartz inequality

El))( [ﬂ@ce_z I Weff(Xs)dSi|

(40) <Ep [ﬂggce—“fot Ve’f:‘f,oo(xs)dsr/z EX [ﬂ@ce—4fJ(V+v;§f,o><Xs)ds} 12

We will estimate terms in (B9) and (E0). Set

Wii(x) = nf{V (y) + Vet oo W)l — 9| < a},

WE = il (V(2) + Vi (o))
Lemma 3.6. Suppose (1) of (EN). Let R > 0 and a > 0. Then for all X € RV
and ¢t > 0 it follows that

(41) ]Eff [6_2 fg(V(Xs)Jrv;;‘fm(Xs))ds] < e—ztwf(x) + Cle—gtwg eCzte—na7
where C, Cy and 7 are given in (B3).

Proof. Set A = {supy<,<;|Xs| < a} C D. Since (X;)¢>o under the probability
measure PX and (X; + X);>0 under P? are identically distributed, we have the
identity:

EX [e—zfJ<V<Xs)+V£m<XS>>ds} —E} {6—2fJ<V<Xs+X>+v£f,oo(xs+X>>ds} .
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Then we have

]EO []1,4672 JEHV (X4 X)+ Cffoo(XerX))ds} < 672tW§(w)7

£ {llAce 2 [H(V( X+ X)+ effoo()(SJFX))uls} < efztng% M) < 672tWOIZCleCQtefna
by Proposition BA. Then the lemma follows. O
Lemma 3.7. Let X € R™ and set R = |X|. Then it follows that
(42) EX [1gee™ Jo Vclf?f',oo(Xs)dS} < HlVertelloot 0y (Cate—nR
where C4,Cy and n are given in (38).
Proof. Since Ef [e™* Jo Vi, oo (Xo)ds] < BX [l Vertcolloo Jo 125 (Xo)ds) e can see that

EP[ 4[5 Vel 00 (X )ds]

0 1 n P Be BR

n=0 j=1
= 4 € o [ o0 t t -
_EX (1] Z ||vﬁ loc)” /dsl.../dsnEg e [ 15 (X + X))
0 0 .
n=1 j=1
We see that

EX [1g:] < P°( sup |X, + X| > 2R)

0<s<t
(43) <P sup |X,|>2R—|X|) =P sup |X,|> R).
0<s<t 0<s<t

By the definition of By in a similar way to above we have

]E [ _4fo eff oo(XS)ds]
X ey 1 N AlVettoolloo)”
R

t i
X /dsl- . / ds,P°(|X,, + X| > 2R; -+ |X,, + X| > 2R)

N 4”%300”00) i i
< PX(#°) Z /dsl--./ ds,P°(|X,,| > R,---,|X,, | > R).
0 0
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By P°(|Xs,| > R,---,|X
we have

> R) < P (supy<,<; |Xs| > R) and Proposition B3,

Sn

EP[ _4f0 eff oo (Xs )dg]

<P° ( sup |X,| > R>

0<s<t
= 4||\Veff ooHoo) ! ! 0
Z / dsq - / ds, P sup |X¢| >R
_ 0 0 0<s<t
; Z Voo s -om
— 64”|V0ff’ooHmt01602t67’qR.
Hence the lemma follows. O

Lemma 3.8. Let &, be the infrared regularized ground state. Suppose (1) of
(EN) and EV + Egjag < 0. Furthermore we assume that EV + Egiag + €(0) < —7
with some v > 0 for o < &, where €(o) is given in Proposition B4. Then there
exist > 0 and Cs > independent of o such that

(44) sup ||y (X)| 5 < CgedmintrmIX],

0<o<&
where 7 > 0 is given in Proposition B33.
Proof. We set E = EV + Egiag + €(0). Tt is enough to estimate

eztEE%( o2 J5 Wet( ds:|

by Proposition B4. Recall that W2 (z) = inf{WF(y)||z — y| < a}. Then

(45) lim Wt (2) = 0.

|| =00

Hence there exists a positive constant R* such that \Wf‘l))((“m( )| < |E|/2 for all X
such that | X| > R*. Suppose that |X| > R* and let R = |X|. We divide Weg as

n (BB) for R. We have
thEE§ [ JE Wege (X )ds}
< HEEX [3%6—2 fJ(V+V§f,o)<Xs)ds}

1/2

1 2B (IEff []1%64fg(v+v;§f~0)(xs)ds}) (]EX [1@ e~ 4o (VHVE ,,o)(Xs)dle/Q
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Two terms EX |:]lgg6_2 f(f(VJrVeIf{f,o)(Xﬂ)ds} and B |:]lggc€_4f(f(v+velgf,0)(XS)dS:| can be
estimated as
R R R
(46) EX [1@672 fo‘(VJrVCffTO)(XS)ds} < e 2WE@) | e 2WE (Catg—na
(47) ord [ﬂ@c6_4 fg(v+ve’§f70)(xs)ds} < oMW (@) + Cle—4tW£ ¢Catp—na

by Lemma BE. Let us set t = t(X) = €|X| and a = |X|/2. Then we can see that

Wll))((‘l/2 (X)—E>—FE/2>0, since E < 0 by assumption. Hence

thEEl))( [ﬂﬂe—zfg(v+vef;‘f,0)(xs)ds} < eBIXI 4 026602|X\—W\X\/2—25Wg§||X|

< =X 4 e (n/2+2eW I —eCa) X

Similarly we have

€4tEE%( {11:%674J§(V+V£,0 (Xs)ds} < e—2e71X| +C¢267(n/2+4eW§|75C2)‘X|.

Finally by Lemma B~ we have
e4tEEl))( []1@674 I Weff(Xs)d5:| < Cle4eE~'+4HVeff,ooHoo6+026777)‘X|

< (o= 4er=41Vest oo oo e—Cactm)| X

Note that WX — 0 as |X| = oo. Take sufficiently small ¢ > 0 such that n/2 +
W = Cy)e >0, n/2+ @AW = Cy)e > 0 and (4y — 4||Vegr oo oo — Ca)e+1 > 0,
then ||®,(X)|# < Die” ™in{n}DP:21X1 follows. Then the lemma is proven. O

Corollary 3.9. Suppose (1) of (EN). Then (£4) holds for sufficiently small |o/&]|.

Proof. Notice that EY < €Y + G(a/k) — Ediag in Lemma B33. Since £¥ < 0 and
lim;_,0 G(t) = 0, the corollary follows. O

§3.3. Proofs of Theorem 222 and Theorem 23

3.3.1. Proof of Theorem 2. Proof of Theorem 22:
Note that 0 < &V — EV is equivalent to inf o(HY;) € oaisc(HY;). Uniform
exponential decay

@y (z)].# < Cse 0l

is shown for sufficiently small |a/k| in Lemma BXR. Then by lim,_, G(a/k) =0
and XV — EV > EY — £V — G(a/k), there exists kg such that for arbitrary & > g
the stability condition EYV < £V holds. Therefore, by Proposition 224, HY has a
ground state. O
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3.3.2. Proof of Theorem ZZ3. Now we show the enhanced binding. It is enough
to show €Y < EY, since the uniform exponential decay || ®,(z)|# < Cse=01l is
established by Proposition 272

Lemma 3.10. Let 3 G Cy but § # (). Then there exists a; > 0 such that, for all
a with |a| > a1, 2 < EV(B) + £°(B¢). In particular £° < ZV holds for |a| > ;.

Proof. We have

€0 =a”Y Wy (0)+o(a®), EV(B)=0a" Y Wi;(0)+o(a?),

1<j i<j

i,jEB
O(ﬁc) = 042 Z W”(O) + O(&2).
Since  » Wy(0)+ > Wi;(0) <0, the lemma holds. O
iepyepe iepegen

To see the enhanced binding we want to investigate the center of motion of
hY. Notice that h%; commutes with the total momentum Py = Z;‘V:1 p;. Then it
can be decomposable with respect to the spectrum of P;. Let % = e Xl P,
which diagonalize Piot as % Piot% ~' = p1. Hence it also diagonalize hs, and we
obtain that

%hoﬁ% 1 =0 p1— ij +ZQ Dj +ZO& le ’IJ

j>2
+ Z « W” (x; —xj),
2<i<j<N
N
UG ™" =hds +V(x) + > _ V(s + ;).
=2
Then we have
D
Uhdgw ' = / k(P)dP,
R4
N N
KP) =1 | P= p; |+ Q(p))
=2 =2
+Za2le(mj)+ Z OtQWZ'j(LL'l‘ —,Tj).
j>2 2<i<j<N

Lemma 3.11. It follows that £° = info (k(0)).
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Proof. Set info(k(P)) = E(P) for notational simplicity. It can be seen in Appendix
[@ that

(48) E(0) < E(P)

holds for all P, and that E(P) is continuous in P. Then it follows that (&, H®) =

/ (®(P),k(P)®(P))dP > E(0)||®|* for ® € D(H). Then F(0) < £° On the
Rd

other hand let us set &, = fﬂg ®(P)1jo,¢)(P)dP. We have

@] < (@, HO) < Sup E(P)|®.|.
<e

Take € | 0 on both sides we have £° < F(0) + § for arbitrary § > 0, since E(P) is
continuous in P. Hence E(0) > £° and then £° = E(0) follows. O

Lemma 3.12. There exists as(P) > 0 such that info(k(P)) € oqisc(k(P)) for
every P € R? for |a| > az(P). In particular k(0) has a ground state for |a| > ay
with some as > 0.

Proof. Notice that Wy;(0) < 0, Wi;(x) > Wi;(0) for  # 0, and im0 Wij(x) =
0. Set X = (xg,...,2n). Let a = {2,...,N}. Let {jz}sca be the Ruelle-Simon
partition of unity [CFKSS7, Definition 3.4], i.e., js(AX) = jz(X) for all A > 1,
|X| =1, and there exists a constant C' > 0 such that

suppjp N {X[X| > 1} € {X||X; — X;| = C|X[for all (ij) ¢ 5}.
We set jg(X) = }B(X/R). Then

(49) k(P) = joak(P)jo + Y _ jsk(P)js + o(1),
BCa

where o(1) denotes a bounded operator such that limpg_, |[[o(1)|| = 0. We set

kg = Z(Q (pj) + WlJ ;) Z « WZJ ;)

JEB 1,5€8
ke = > Qilpy) + Y &P Wij(a — ;)
jEBe ijepe

With the identification L?(R*N-1) = L2(R¥A) @ L2(RUFN), we can write

N

(50)  Jsk(P)js =g | P =Y _pj | ds +is(ks ® 1+ 1@ kge)js + Ipj3
j=2
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where Iz = Z]eﬁfoz Wij(zj) + Zlegjegc oa?*W;j(z; — x;). Hence, (29) and (B0)
i€BC,]
imply

k(P) > Eo(k(P))j2 + Y js(ks @ 1+ 1@ kge + 15)js + o(1).
BCa

Note that j2 and I 8 jfg are relatively compact with respect to k(P). Thus we have
inf 0o (k(P)) > max{Eo(kg) + Fo(kge)|8 < a}.
For all  C a it holds that

(51) algrgow =D Wi(0) < Y Wi (0) + > Wi (0)+ > Wij(0)

i
Ey(k Eo(kge
_ iy Bl 5)+2 o(kge)
a— oo o
Therefore there exist aa(P) such that for all & > as(P), inf e (k(P)) > Eo(k(P)).

O

Lemma 3.13. Let |a| > a9, where as is given in Lemma BI2, and u, be a
normalized ground state of k(0). Then |uy (22, ...,2x)[*> = §(z2) - d(zy) as a —

oo in the sense of distributions.

Proof. Tt suffices to show that for all € > 0,

(52) lim [ua (X)|?dX = 0,
a—00 IX|>e
where X = (z2,--- ,zn), since (B2) implies that
lim FX)ua(X)[?dX = £(0)

a—0 RA(N—1)

for all f € C§°(RUN=1). We write ko (0) to emphasize the a dependence of k(0).

Since kq(0)/a? > > ic; Wij(0) and lima—o0 inf o (ka(0)) Ja? = > icj Wis(0), we
have

ZW” = hm a2 (e, ko (0)ug)
i<j
> lim inf (ua, (ZWU (x;)+ Z Wij(z »))ua) > ZWij(O)-
oo i>2 2<i<j<N i<y
Then

(53) ZWW( = lim inf (ua, (ZWM () + Z Wij(x; — :cj)>ua)

i<j j>2 2<i<j<N
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follows. Suppose that ¢, = lim inf |t (X)X > 0. Then

a— 00 IX|>e

a— 00

liminf/Rd(NDZ:z(le(xj) W (0))] o (X) PAX
> Ce Z sup (le(l'j) — le(O)) > 0,

j>2 |X]|>e€

which contradicts (B3). Therefore (62) holds. O

Proof of Theorem EZ3:

First we assume that V € C$°(R9). It is enough to show £ < =V since the
uniform exponential decay | ®,(z)|| < Cse=?l*l is established in Lemma B for
sufficiently small |«/k|. Assume |a| > max{aj,as} > 0. Let u, be a normalized
ground state of k(0). By Q(a + b) < |a| + Q4 (b) for a,b € R?, we have

(54) UN%uU ' < /—A1 +k(0).
By (2) of (EN), there exists a normalized vector v € C§°(R?) such that
(55) (v,(V-A+ NV)v) <0.

We set U(z1,---,2n) = v(x1)ua(x2, - ,2n5). Then, by (B2)

N
(56) €Y < (W, %hGu ') < (v,(V=A+V)0) + £+ (8, V(wy +,)P).
j=2
Let Vi nearea (1) = /d< ) V(z; + 21)|ue(X)[?dX. By Lemma BI3, we have
RA(N-—1

ali_)H;O(\I/, V(xj +21)¥) = ah_?;o(vﬂ Vj(,]smearedv) = (v, V)

and then by (B3) and (B8),
(57) EV < (v,(V=A+NV)v)+E° < &°

follows for a@ > a3 with some a3 > 0. By this inequality and Lemma BT1, we
conclude that for a with |a| > @ = max{ay, as, asz},

YW -EV>2Y &Y —G(a/r) > E° - £V — G(a/k)
> —(v,(V-A+ NV)v) = G(a/K).
Notice that G(a/k) — 0 as K = oo and —(v, (vV—A+ NV)v) > 0. Then the right-

hand side above is positive for sufficiently small |«|/x. Since G is monotonously
increasing, it is trivial to see that ko = /G~ 1(a), where a = —(v, (vV—=A+ NV)v)
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and a(k) = G~ 1(a)k. Then the theorem follows for V € C§°(R%). For general V/
we can prove the theorem by the same limiting argument as [HSO8, Appendix].
See Appendix B O

Appendix

84. Stability condition:relativistic version

In this section we shall prove Proposition ZZd. We only show an outline of the
proof. The detail is left to the reader.

84.1. Case 0 >0

Since the scaling parameter x does not play any role in this section we set k = 1.
Let 0 > 0. We decompose the single boson Hilbert space into high energy part and
low energy part as L*(R?) 2 K-, & K<,, where K<, = L?({k € R4w(k) < o})
and K~, = L2({k € RYw(k) > o}). Correspondingly, we have the identification:

(58) H=2Hoe @ F (Keo),
where /2, = L2 (R™) ® #(K~,). We define the regularized Hamiltonian by
(59) HY = Hy+ Hy,.

Here Hi, is the regularized interaction defined by

N @
HI,O' = Za]/ ¢]70’($J)dX’
° RAN
7=1
and ¢; - (x) is given by ¢;(z) with cutoff \;(k) replaced by A; (k)1 x)>o (k). Then
H)Y approximates H" in the following sense:
Lemma 4.1. HY converges to H" as o — 0 in the norm resolvent sense.

Let EY =info(HY) and ©Y be a lowest two cluster threshold for HY | which
is defined in the same way as V. From Lemma B0, we can show that EY and
»Y converges to EV as ¥V as o — 0, respectively. Therefore for sufficiently small
o > 0, it follows that

(60) >V > EY.
Under the identification (68), HY can be decomposed as

HY 2 HY e, ®lgzp.,)+ Lw, ® He[z(c.,)
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Since Ht[ z(x -.) has a ground state, H, Y also may have a ground state if and only
if HY [, does. We shall prove the existence of a ground state of HY [ .  for
sufficiently small o > 0 in what follows. For ¢ > 0, we truncate w as

|| for |k| >0
wo (k) =
o for |k| <o,
and we set Hr , = dI'(w,). Then
HY [#.,= Hoo + Hi,

with Hy , = H,® 1+ 1® H¢ ,. We denote the Fourier transformation from L? (Rg)
to L2(RY) by F. We set Ks, = {f = F~'f € L*(R})|f € Kso}. We introduce a
notation. Let T : K1 — K3 be a contraction operator from a Hilbert space Ky to
another one Ky. Then we define I'(T) = ®°2, ®" T with ®°T = 1, which is also
a contraction operator from .# (K1) to % (Kq). Let

f{;/ = F(Fil)H;/[%%aF(F):

which is defined on JZ, = L>(R*™) ® Z(Ks,). Let x, ¥ € C=(R) be a cutoff
function such that x(X)2+x(X)? = 1 with x(X) = 1 for | X| < 1 and x(X) = 0 for
|X| > 2. Then the following statement holds: For R > 0, we set xr(X) = x(X/R),
Xr(X) = X(X/R).

Lemma 4.2. It follows that

H) = xgH) xr+XrHY Xr+O(R™),

where O(R™') is an operator such that [|O(R™1)|| < C/R for some constant C' > 0.

Proof. The operator equality

(61)
N

N
1
HY = xrH) xr+XrH) Xr+ 5 Z XR, [XR, 52 Xr, [Xr, 25 (p;)]]-

] 1

holds. By the Fourier transformation, we have

e, 03)) = (27) 2 [ ()N () = 0 oy — by [R)IK

where K = (ki,--- ,ky) € RV, By the triangle inequality, we have
k; k;
195(p) = Q5(p; = I =I5y m)llcs = 15 = 25 m)lles
k; 1
< (55 0)lles = & lk;1-

= E7
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Hence, [xr, 2,(p;)] is a bounded operator with the bound

(62) e (ol < 20 [ [R(E)]- .

RAN

Similarly, by noting that 1 —y € C5°(R%) and Xr,Qi(p;)] = 1 — xr, Qi(pj)],
we have

I ) < 5202 [ J@RE) - byl

RAN

Then the lemma follows. O
Let 7,7 € C§°(RY) be another cutoff function such that j(y)2 + j(y)? = 1

for every y € R? with j(y) = 1 for |y| < 1 and j(y) = 0 for |y| > 2. We set

jr(y) = j(y/P), jr(y) = j(y/P) for P > 0. The map
up: Koo = LR G L*(RY), [ jpf @ jpf

is isometry, since ||jpf @ jpfl|> = |f]|>. We also note that adjoint u} maps
f@ge LA(RY) & L*(RY) to jpf + jpg € L*(R?). The operator

Up = lp2gany @ T(up) : Sy — H @ F(L*(RY))
is also an isometry, where # = L*(R*) @ .% (L? (R)). Let
Hoo =T(F ")Ho,I(F), Hi,=T(F"")He,I(F).
Lemma 4.3. (1) For every o > 0, we have
XrH) xr = xrUp{Hy ® 1+ 1® H ,}Upxr + (1),

as operators in % ,, where 6(1) denotes an operator such that 6(1)(Hy,, + 1)~
is bounded and limp_, o limp_ o0 [|6(1)(Ho,» +1)7|| = 0. (2) We have

XrHY Xr > S X% + o(RO),
where o(R?) is a number such that limg_, o(R") = 0.
Proof. See [GLLOI, Lemma A.1]. O
Proposition 4.4. There exists a ground state of HY .
Proof. By Lemma B and Lemma B=3,

HY = xrUp{HY @ 1+ 1® H; ,}Upxr + XrHY Xr + 6(1).



26 Fumio HIROSHIMA AND ITARU SASAKI

Since w, > o, we have Hf,(, > o(l1 — Py), where P, denotes the orthogonal
projection on the vacuum space {CQ}. By this inequality and Lemma B3,

HY > (E) +0)x%+ X)Xk — K +6(1),

where K = JXRUgl(ﬂ ® Po)Upxr = X% ® I'(jp). K is relatively compact with
respect to Z;\;l Q; + Hy . Since, by (V), Z;\;l Q; + Hy , is also relatively bounded
with respect to HY, K is then relatively compact with respect to Hc‘,/ By the

o

definition of 6(1), there is a constant C' independent of P and R such that 6(1) >
—o(1)(HY + C). Thus, we have the operator inequality

(1+o(M)H, — B +o(1) = K > oxg, + (85 — By )¥h > min{o, %) — £} }.
Since K does not change the essential spectrum of HY , for all P and R, we have
(1 + o(1)) inf(0ess(HY)) — EY + o(1) > min{o, XY — EV}.

Hence, by (E0),
inf ooss(HY) — EY > min{o, %Y — EV} > 0.

Therefore o(HY) N [EY, EY + min{o, XY — EY}) is purely discrete spectrum. In
particular HY has a ground state. 0

84.2. Case 0 =0

Next we prove the existence of ground state of HY. For o > 0, let ®, € J# be a
normalized ground state of HY . Let {0,,} be a sequence such that lim,,_,o, 0, = 0
and ®,, converges weakly to some vector ® € JZ. It is well known in [AHYT]
that if ® # 0 then ® is a ground state of HY. In the following we prove that a
subsequence of {®,}, converges to some non-zero vector ®.

Lemma 4.5. The energy bound supg,; (P, Ho®,) < oo holds. In addition
we suppose EV < ¥V Then sup ., (@0, N®,) < 00.

Proof. The former follows from the definition of ®,, and the later from [Ger(0,
Lemma IV2]. O

We denote the set of bounded operator on a Hilbert space K by B(K). For
each k € R, let

v(k) i(—k)e~ s,

;¢
= 7)\]
V2
Then v(k) € B(L?*(RYY)). For each k € R?, we set

T(k) = (H — EY +w(k)) " (v(k) ® 15).



ENHANCED BINDING IT 27

Then T'(k) € (%) for every k € R, (¥, T(k)®) is measurable for all &, ¥ € 7,
and [, [|T(k HB () @k < 00. Hence T'(-) can be regarded as a vector in the Banach
space L?(R?; B()). Since ®, € D(N'/?), a(k)®, is well defined for almost every
k € R Let 05, s € R, be the shift on L2(R%; B(s#)), i.e., for B € L?>(R%; B(#)),

(0,B)(k) = B(k — s), a.e.k € R%

Lemma 4.6. The map R% 5 s +— H05T675| € R is continuous.

IIHLz(Rd;B(ﬁ))

Proof. Since 6, is a translation, it is enough to show that [|0;7€%®!|| is continuous
—Olzl _ pe—dlzl converges to 0 as s — 0. We have

at s =0, i.e., HLZ’(RCL;B(%))

H¢9 Te 0kl _ Te—dlz]

L2(R4; B(#))

(o ho e s ]
|k|<Ch |k|>Cy  Joi<|k|<Ca

B(s2)
for 0 < C; < Cs. For Cy < |k| < Cy, we write

T(k — s)e 0=l — T(k)e 0]
N

= (HY = EY + w(k) (ZQ +11)(Z ) (w(k — 5) — v(k))eIe!

+ (HY = EY +w(k))” 1(H —EV 4wk —s)) "k —s)(wk —s) —w(k))e

Since for all k with C; < |k| < Cs

N
sup [(HY — BV 4 w(k))™! Q;+ 1) < oo,
LA k)~ (2o +1)

we have

HT(k — s)e—élw\ _ T(k)e—‘”ﬂc\

B(#)

(ﬁ: Q; + 11)716_‘5‘“(1}(16 —s) —u(k)) e He—élxlv(k - S)H

B(o#)

B(H)

for some constant C' > 0 depending on C7 and Cs. Note that

(ZN:Q + n)fle—é‘xl
=7
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is compact. By Proposition EZ4 below, we have

2

N
—1
(64 lim Q4+ 1) ek —s) —v(k)) dk = 0.
) Mmoo (g ;+1) (v(k — 5) = (k)
B(#)
Next we see that
2
lim T(k — s)e 01l — T (k)e 0] dk
s—0 \k\gCl B(%)
()2 N(_ 2 (1|2
< 21lim AR Mk +o)f dk§4/ RERE g,
520 Ji<ey \ [w(k)] lw(—k + )] k<c, w(k)

and the right-hand side above converges to zero as C; — 0. Similarly,

2

(65) lim lim T(k — s)e 01l — T(k)edle! dk = 0.
Ca—00 5—0 IklZCQ B(”)
Therefore, by combining (64) — (63), we complete the proof. O

Proposition 4.7. [Gerf, proof of Lemma 3.2] Suppose that map R? > k
m(k) € B(L?(R%)) is a weakly measurable map such that for all 0 < C; < Oy,

2
‘/Cl<k<02 ||m(k)||B(L2(]RdN)) dk < oo,
and R be a compact operator on L*(R™). Then for all 0 < C} < Cs,

. 2 B
g o TRl =) = ) s ey = 0

Lemma 4.8. Let F € C§°(R?) be a cutoff function with 0 < F < 1, F(s) = 1 for
|s| <1/2, F(s) =0 for |s| > 1. Let Fg = Fr(—iV}y) = F(—iVy/R). Then

(66) lim sup (®,,dT'(1— Fr)®,) =0
R—=0 <okl

Proof. Tt is shown in [Ger(, proof of Proposition IV.3] that

lim | ak)®y — T(k) Dy, dk = 0.

o—0 Rd

Then

(B, dT (1 — Fr)®,) ,, = /R (T(k)®,, (1 — Fr)T(k)®,) ,, dk + 0(c°),
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where 0(c”) denotes a constant converges to 0 as ¢ — 0. By Cauchy-Schwarz
inequality yields that the right-hand side above has the upper bound by

(67) T2 geiomy - || (1= ER)T (R}

. Heé\zlq)UH +0(O.O)
L2(RE;B()) H

Note that supg.,<1 ||€’1%1®,]|» < oo for some § > 0 by assumption. By the
Fourier transformation, we have

(68) H(ll — F)T(k)e= |

L2 (R4 B(#))

< @n 7 [ RGP |16y Te

2

dk
B(o#)

(2m) =42 y dsE(s)(1— Q,S/R)T(k)ef‘;‘z‘

ds.
L2(R%;B())

Notice that

< [E(s) - 207z /el

ja 2'H]170_ Tedlel
L |

and the right-hand-side above is integrable in s and independent of R. Moreover,
Lemma BB implies that the integrand of the last term in (6R8) converges to 0
as R — oo. Therefore, by the Lebesgue dominated convergence theorem, (B3)
converges to 0 as R — oo, and hence (B8) holds. O

Proposition 4.9. (Proof of Proposition EZ7) H" has a ground state.

Proof. The proof is parallel with that of [Ger(ll, Lemma IV.5]. By (1—T'(Fg))? <
dI'(1 — Fr) and Lemma IR, we have

(69) I(X = D(Fr) o || < 0o(R°) + o(c”).

Let {0y, }», be the subsequence such that hm on =0and & = w-lim,, P, .

By Lemmas B3 and B3R, (B9), for all ¢ > 0, there exist Ry > 0, A\g > 0, ng > 0
such that for all R > Ry, Ao > A and n > ny,

(1= x(Ho < A)®0, [ <&, (1= x(N <), [| <5,
1= Xx(IX] < AP, [| <&, [[(I-T(Fr))P0, | <e,

where x(s < A) denotes a characteristic function of support {s € R|s < A}. Note
that K = x(Ho < AM)x(N < Mx(|X| < MT'(Fr) is a compact operator. For all
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large R > 0, A > 0, we have
[ = K@ —[(1- K)2|
> Tim [|K®,, |~ (1 K)2|
> timinf (|, | — (1 K)®,, ) - (1 - K)®
>1—4e—||(1-K)P|.

Clearly 1— K strongly converges to 0 when R and A goes to infinity. Since € > 0 is
arbitrary, we have ||®|| = 1. Therefore H" has a normalized ground state ®. [J

§5. Essential spectrum

We give general lemmas given in [HSOR] without proofs.

Lemma 5.1. Let K, € > 0, and K be self-adjoint operators on a Hilbert space
and oess(Kc) = [€e,00). Suppose that lin%) K. = K in the uniform resolvent sense,
e—

and lin%) & = &. Then 055 (K) = [€, 00). In particular lin%) infoess(Ke) = infoess (K).
e— e—

Lemma 5.2. Let A be the d-dimensional Laplacian. Assume that V(—A4-1)~1/2
is a compact operator. Then there exists a sequence {V¢}cso such that V¢ €
Ce°(R?) and lim_,o VE(—A +1)"Y2 = V(=A 4 1)~ /2 uniformly.

Set

ko(B) = —Z V=4 + Z Vij,  kv(B) = ho(B) + ZVJ

JEB ©,jEB Jjes

with V;, Vi; € L2, (R) such that V;(—A+1)"%/2 and V;;(—A+1)~1/2 are compact

loc

operators. We define K = ky (Cy). Let

(70) Ev = min {info (ko(B)) + info (kv (6))}
BECnN

be the lowest two cluster threshold of K.

Lemma 5.3. There exist sequences {V}¢, {V}j}e C C° (R, i,j =1,...,N, such
that
(1) im=Zy(e) =Ey, (2) liH(l) infoess (K (€)) = infoess (K),

e—0 e—
where Zy (¢) (resp. K(¢) ) is Ev (resp. K) with V; and V;; replaced by V€ and V5,
respectively.
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86. Functional integration and energy comparison inequality

In this Appendix we shall show Lemma B™ and Proposition B4 by functional
integrations. In order to do that we take a Schrédinger representation instead of
the Fock representation. We quickly review the Schrodinger representation.

Let 2 = .7} (R%) be the set of real-valued Schwartz distributions on R%. The
boson Fock space .Z can be identified with L?(2, 1) with some Gaussian measure
w such that

B[00 =0, EJo(No(0)] = 5(/.9)

for f,g € L3(R?). Then the scalar field operator in .Z is unitarily equivalent to
the Gaussian random variable ¢(f) in L?(2):

1 s .
o(f) ~ 7 (a* (k) f(=F) + a(k) f(k))dk

for f € L3(R?). Moreover H can be unitarily transformed to the self-adjoint
operator in L?(2). We denote it by the same notation, Hj.

Furthermore we need the Euclidean quantum field to construct the functional
integral representation of the one-parameter semigroup generated by the Nelson
Hamiltonian HY . Set 25 = .74(R¥*1). Thus L?(2g, ur) be the L? space endowed
with a Gaussian measure such that

Euplop(F)] =0, E.[op(F)op(G)] = %(F» G) L2 (mit)-

Let j; : L2(R?) — LZ(R¥1) be the family of isometries connecting L?(2) and
L?(2g), which satisfies that

]:]t _ €7|t75|w(7iV)

for all s,t € R. Let J; = I'(j,) be the second quantization of js. Then J, : L?(2) —
L*(2g) is also the family of isometries such that J*.J; = e~I*=5IH for all 5.t € R.
We identify 5 with the set of L?(2)-valued L? function on RN, [ [?(2)dX,
and HY can be expressed as

N e
(71) Hy,@ 1+ £*1@ Hy + koY PN — z;))dX
in the Schrodinger representation.
Next we prepare a probabilistic description of the self-adjoint operator H,.
Let (X¢)i>0 = (X2, ..., XtN)tZO be the RN -valued Lévy processes on a probability
space (D, B,P*) starting from z = 0 with the characteristic function (B2). Set
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W(z1,...,xN) = Zjvzl V(z;). Then we have the Feynman-Kac formula:

(e thg) = [ BRI a)gxe S vOo)

\% . .
—tH” can be obtained in the same

The functional integral representation of e
way as the standard Nelson model. Only the difference is the process associated
with kinetic term. Instead of the Brownian motion the Lévy process (X7 )i>o is

entered for e=t#" . The Feynman-Kac type formula of e~ " is then given by
(F,e Q) =

/ Ao} [e‘ Jo WXa)ds (13 P (X), e 08 (T3 Jo de2o i (X)) 1oy (X)) 120 | -

RAN

Next we also consider the Feynman-Kac formula of
exp(—te THY e'T).

It is given by the composition of dN dimensional Brownian motion (B}, ..., BY );>0

on a probability space (C, B, W*) and N independent subordinators (7} );>¢, j =

L,...,N, on (Qu, By, p) such that B7; has the same distribution of X}. Set Br, =
t

J

Proposition 6.1. Let F,G € 5. Then

)t>0,j=1,..,n- We have the proposition below:

efiTHVeiT

(F,e™t G)

— (tFdiag dzEE0 {e* JHW+Vere) (Bry )ds
W X i
RAN

x (JoF(BTo)ae_iH71¢E(Kt)JH2tG(BTt))LZ(Q ):| .

Here K; = Z;\Ll fOTtJ Jeri-vy 5 A — BJ) o dBJ denotes the L?(R%!)-valued

Stratonovich integral and jip;-1y, is some isometries defined by (T7)i>o0-

Proof. See [HirTd, Theorem 3.15]. O
By using Proposition Bl we can compute the scaling limit of e =7 HY ¢’ as

k — oo. Note that (Jo®, J.2,¥) — (D, Pa®) as K — oo for t # 0. Then by the

functional integral representation Proposition B we immediately see that

e—zTHVelT

(72) lim (F, e G) = (F,e = Fains) @ Py@).

KR— 00

Since h'; has a ground state, this suggests that H" also has a ground state for
sufficiently large . This has been indeed done in Section 3.
By functional integral representation we have the energy comparison bound.
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Proposition 6.2. It follows that info(H") < info(hY;) + Ediag-
Proof. By Proposition 61 we have
(et TG < e (|, e e |G,

Then the proposition follows. O
In the same way as Proposition E2 but H" is replaced by H" (8) or H°(B)
we have the lemma below.

Proposition 6.3. (Lemma B2) It follows that
2
. . [S2TE
(73)  info(H#(8)) < info(hy(9) +D_ 1A/ Vel®, #=0.V.
JjeB

Next we show Proposition B. We can also construct the functional integral
representation of e~tHs in the quite same as that of e 7t# v Only the difference is
to replace \j with Aj[yk)>o-

Proposition 6.4. Proposition B4 follows.

Proof. Notice that &, = e~t¢ " Hs¢" =E)@ _ Then by Proposition B we can
see that

O, (r) = et(EX"'Ed‘ag)IE%\’,OXH [e_ I Weff(BTs)dSJ(’;e—if%E(Kt)JHQt(ba(BTt) )

Thus it is straightforward to see by the Schwartz inequality that
. ¢ 1/2
@0 ()l < 7 Fa) (B, [em2 o Wl [ ) 75 g

Note that lim, o EY = EV. Then the proposition follows, since By, has the same
distribution with Xj. O

§7. Bound E(0) < E(P) and continuity of E(-)

We next consider a fiber decomposition of the translation invariant relativistic
Schrédinger operator H, = Ejvzl Q; + Veg in L2(RIN).

For notational convenience and generalizations, we consider the Schrédinger
operator of the form H, = Z;V:O Q; + v in L2(RUNFD) where

N
v=) vilei - ;)
=0

and we assume that v is relativistic Kato-class. Let X; = (Xg)tzo, 7 =0,...,N,
be N + 1 independent Lévy processes with Ef [ei“'Xg] = e %W and set X; =
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(Xg)tzo,jzly__’N. Let Pot = Z;V Opj be the total momentum. Then H,, commutes

with Py, and then H, fRd P)dP, where k(P) is a self-adjoint operator on
L2(R4N). Let E(P) = info(k(P)).

Theorem 7.1. (1) E(0) < E(P) for all P € R%. (2) R? > P — E(P) € R is
continuous.

We shall prove this theorem by making use of a path integral representation.
Let us set 2 = (wg,x) € RY x RNV, Let U = FelmoXiiaps L2(RIN+D)
LZ(Rd(N +1)) be the unitary operator, where F' denotes the Fourier transformation
with respect to zg variable, i.e., F f(k,x) = (2m)~%2 [ f(20,x)e~* ¥ dxq. We have

(Uf)(k,x) = (27T)_d/2/ e R f (2o, 21 + 20, -+ TN + T0)do.
Rd

Thus we can directly see that (UPtot U=f)(k,x) = kf(k,x). Hence U diagonalize
Py, and thus UH,U ™! = [o, k(P)dP. We have

(1) (fe ) ey = [ daBE [[Ralgti)e 0],
RA(N+1)

We construct the Feynman-Kac formula of (f, e*tk(P)g)LZ(RdN). Let v = 0. Then

N N
KP)=Q0 | P=Y p; |+ Q).
j=1 j=1

Since E%,O’x) [eiXtO(P_Z;V:l Pi)] = e (P-Ei, Pi) | we intuitively see that

X) g N iX0 (P=SN j
R

Note that e~*X¢27-1Pi denotes a translation, i.e.,
(7 XEE g)(Xy) = g(X! = XP, - XN - XP).
In the next proposition we see the Feynman-Kac formula with potential.
Proposition 7.2. Let F,G € L*(R?) and P € R%. Then
(75)
(F,e ™ P)G) L2 gan) = /RdN dXEL® [me— f(;‘U(Xs)dseiX?-(P—Zj.vzlpj)G(Xt):| .

Proof. Let & € R?. First we see that

(76) (f’ e—theiéPcotg)Lz(Rd(NJrl)) = /Rd d‘PezEP(f(’P)7 e_tk(P)g(P))Lz(RdN)y
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where

f(P)=(UfH)(P,x) = (27r)*d/2/ e PX (X, o+ X, an + X)dX,
R4

and g(P) is similarly given. Now we put f = fs = ps ® F and g = g, = p, @ G,
where F,G € .Z(R3*N) and p,(X) = (2ms) L exp(—|X|?/(2s)) is the heat kernel.
Note that fs — 6(xo) ® F as s | 0. We have

lim [ dPeT(f,(P),e ") g, (P))L2(gan)
SJ,O R4

= (2m)"Y/? /R ) dPe P (F,e™*P) g (P)) 12 (gan).

The right hand side above is the inverse Fourier transform of the function b : P —
(F,e= ") g, (P)) 2 @av) and

(77) lim h(P) = (F,e " P)G) 1o gany(2m) ~4/2.

On the other hand the left hand side of ([8) can be represented by the Feynman-
Kac formula:

(e Hrei€Ping,)

0,X) |7 7w No— [fv s
(78) - /]Rd(N+1) de%) ") [fS(XO)e fo (X.)d gT(XtO +§7 e vXtN +§) .

Taking s | 0, we have

/]R daB ) [F,(Ko)e™ Jo vXtg (XD g, XY +9)] =

A(N+1)

Ep" { dxF(x)e Jo et 0N g (XD 4 € X} +bar - XN 4 €+ J?N)] -

RAN

The right hand side is the function with respect to £&. We take the Fourier transform
with respect to £. Then

IE:;0,0) [/ dxme_ JEv(Xs+(0,x))ds
]RdN

x (2m) =2 /R dee P g (X0 + € X} + €+ an, - XN +€+an)|.



36 Fumio HIROSHIMA AND ITARU SASAKI

Take r | 0. We have

EgLO) dXF(X)€7 j[;‘ v(XS+(0,x))dseiX?<P
LJran
X G(X}— X0 4y, XN —Xt0+xN)}

:EQX) / dxF(Xo)e™ fUt”(XS)dSeiX?(PZylpj)G(Xt)} .
L RdN

Comparing (I77) with the right hand side above, we conclude the theorem for
F,G € .. By a limiting argument the theorem is valid for all f,g € L2(R). O
Proof of Theorem [7: By Proposition 2 we have

X — [twy Dds)  —iXx0. SN 1
(1) 1(f.e Mgl < [ damE) (Rl gy .

Since ¢~V P5 s the shift operator,
e R g(X,)| < e R P g(X)|

follows. Then we obtain |(f, e =) g)| < (|f],e~*]|g|) which yields (1).
Next we show (2). By Feynman Kac formula it is immediate to see that

(F, (e—tk(P) _ e—tk(Q))G)

[, , X2-P
= dx BV | F(Xq)e Jo v(Xo)ds g =iXP i1 ps (z / ewd€> G(Xy)
RN X90.Q

Then
|[(F, (e7™*(P) — e=tM@)3)|

1/2
IENIG] '

x —2 [t o(X)ds
<|P—Q sup (EP™[Ix7[2e2 o vX)
xeRdN

Since v is relativistic Kato-class,

sup E;O,X) HX?|2€—2 f(;‘ v(Xs)ds]

x€RIN
¢ 1/2
< sup Eg)’x)HXgrl]l/Z sup (]Eg)’x)[e_zlfo v(X,;)ds]) < 0.
x€RIN xERIN

Then we conclude that e~**(”) uniformly converges to e **(@) as |P — Q| — 0.
Then (2) follows. O
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