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Enhanced binding of an N-particle system
interacting with a scalar field II.Relativistic

version

by

Fumio Hiroshima and Itaru Sasaki

Abstract

An enhanced binding of N -relativistic particles coupled to a massless scalar bose field is
investigated. It is not assumed that the system has a ground state for the zero-coupling.
It is shown, however, that there exists a ground state for sufficiently large coupling. The
proof is based on checking the stability condition and showing a uniform exponential
decay of infrared regularized ground states.
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§1. Preliminaries

§1.1. Introduction

Non-perturbative analysis of eigenvalues embedded in the continuous spectrum

has been developed in the last decade and it has been applied to the mathemati-

cally rigorous analysis of the spectra of self-adjoint Hamiltonians in quantum field

theory. Among other things, stability and instability of a quantum mechanical

particle coupled to a quantum field have been investigated.

The Hamiltonian in quantum field theory is realized as a self-adjoint operator

of the form

K0 + αKI,(1)
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acting in a Hilbert space over C for each values of coupling constant α ∈ R. Here

K0 is the subject term and KI an interaction term. We are concerned with ground

states of K0 + αKI in this paper.

Let σ(T ) be the spectrum of a self-adjoint operator T .

Definition 1.1. (Ground state and ground state energy) Let T be a self-

adjoint operator bounded from below. Then the bottom of the spectrum, E0(T ) =

inf σ(T ), is called a ground state energy of T . Let E0(T ) be an eigenvalue of T .

Then the eigenvector f associated with E0(T ) is called a ground state of T , i.e.,

Tf = E0(T )f .

Generally the bottom of the spectrum of the zero-coupling Hamiltonian K0

is embedded in the continuous spectrum. Hence the spectral analysis of K0 +αKI

is regarded as the perturbation problem of embedded eigenvalues. Although an

analytic perturbation theory of the discrete spectrum is established for a various

type of self-adjoint operators, the perturbation of embedded eigenvalues are crucial

and it is not straightforward to apply the perturbation theory of discrete spectra.

Then it is subtle to show the existence of a ground state of K0 + αKI even for

small values of coupling constant. Moreover it is not necessarily that a ground

state exists for K0 + αKI, α ̸= 0, even when inf σ(K0 + αKI) > −∞ and K0 has

ground state.

The existence and the absence of a ground state for physically reasonable

Hamiltonians of quantum field theory has been however proven so far under some

assumptions. The existence of the ground state of the standard Nelson Hamiltonian

[Nel64] was in particular proven in e.g., [BFS98, Spo98, Ger00, Sas05], where the

most basic assumptions for proving the existence of a ground state are

(1) infrared regular condition,

(2) the existence of ground state of K0.

In particular assumption (2) tells us that HamiltoniansK0+αKI also has a ground

state for arbitrary values of α.

It is found however that an interaction with quantum fields enhances the

binding energy, which suggests that a Hamiltonian with sufficiently large coupling

constants may have a ground state whether K0 has a ground state or not. If

K0+αKI with sufficiently large coupling constants has a ground state whether K0

has a ground state or not, then it is said that enhanced binding occurs. Enhanced

binding is initiated by [HS01] and in the previous paper [HS08] enhanced binding is

shown for a system of N -nonrelativistic particles governed by Schödinger operator

and linearly coupled to a massless scalar bose field. In this paper replacing the

nonrelativistic particles with relativistic ones, we show the enhanced binding.
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Finally we give some comments on related works on enhanced binding. The

enhanced binding is studied so far for the various kind of models in quantum field

theory. In [HS01] the enhanced binding of the Pauli-Fierz model with the dipole

approximation is studied. In [HSS11] a complement result of [HS01] is established,

i.e., the absence of ground state for sufficiently small coupling constant is shown.

See also [AK03, BLV05, BV04, CEH03, CVV03, HVV03] for the related works.

§1.2. Main results

The total Hamiltonian we consider is of the form

HV = H0 + κHI.(2)

The operator H0 = H0(κ) describes the zero coupling Hamiltonian and is given

by

H0 = Hp + κ2Hf ,

Hp =
N∑
j=1

(√
−∆j +m2

j −mj + V (xj)
)
,

where mj > 0 is the mass of the j-th particle, V (x) an external potential, Hf the

free field Hamiltonian, and κ > 0 denotes a scaling parameter. The operator HI

describes a particle-boson linear interaction. We notice that there are no pair po-

tentials in HV and V is assumed to be independent of j for simplicity. Introducing

a dressing transformation eiT to derive an effective potential Veff , we transform

HV as

e−iTHV eiT = hV
eff + κ2Hf +HR(κ),(3)

where hV
eff is the effective particle Hamiltonian given by

hV
eff =

N∑
j=1

(√
−∆j +m2

j −mj + V (xj)
)
+ Veff(x1, ..., xN )(4)

and HR(κ) a remainder term to be regarded as a perturbation of hV
eff + κ2Hf .

Compensating for deriving Veff through the dressing transformation, we have the

remainder term HR(κ) which is unfortunately no longer linear and is the compli-

cated form:

HR(κ) =
N∑
j=1

√(−i∇j −
1

κ
Aj(xj)

)2

+m2
j −

√
−∆j +m2

j

 ,
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where Aj denotes some quantum vector field. Nevertheless it turns to be a small

perturbation for sufficiently large κ in some sense.

We are interested in the existence of a ground state of HV , equivalently that

of e−iTHV eiT . We do not however assume the existence of ground states of H0.

As will be shown below, the enhanced binding is observed by the transformed

Hamiltonian (3) rather than HV itself. Since we consider a massless boson, the

bottom of the spectrum of HV is the edge of the continuous spectrum and the

regular perturbation can not be applied. Then it is not clear whether e−iTHV eiT

has a ground state even when hV
eff has a ground state.

The conventional approach is to assume an infrared cutoff in the form factor

λ̂ in HI by setting λ̂(k)⌈|k|>σ, H
V with cutoff λ̂⌈|k|>σ is denoted by HV

σ , and

to show the existence of a ground state Φσ of HV
σ . The vector Φσ is called an

infrared-regularized ground state. Then one is left to show that the sequence of

ground states Φσ has a non-zero weak limit Φ as σ → 0, which is the desired

ground state of HV . We show in this paper:

(A) the stability condition for HV is satisfied (Lemma 3.1),

(B) infrared-regularized ground states Φσ has exponential decay uniformly with

respect to the infrared cutoff parameter σ (Lemma 3.8),

(C) we prove that (1) stability condition and (2) exponential decay imply the

existence of a ground state of HV (Appendix 4),

(D) we show that there exist ᾱ > 0 and κ0 such that for each κ > κ0, H
V has

the unique ground state for |α| ∈ (ᾱ, ᾱ(κ)) with some ᾱ(κ) (Theorem 2.3).

Statement (D) describes the enhanced binding and this is the main theorem in

this paper.

§1.3. Strategies

We explain more technical improvement of this paper.

(Reduction to the stability condition of hV
eff) The stability condition is

introduced in [GLL01] to show the existence of ground state of the non-relativistic

quantum electrodynamics. The key ingredient in this paper is that we reduce the

stability condition of HV to that of hV
eff in Lemma 3.1. Namely we show that

the stability condition of hV
eff implies that of HV . These are proven by energy

comparison inequality derived by functional integration of the heat semigroup

generated by (3) (Lemma 3.2) and a simple variation principle (Lemma 3.3), hence

we focus on showing the stability condition on hV
eff instead of HV .

(Uniform exponential localization by functional integrations) Our

method is a minor but nontrivial modification of [HS08] and a mixture of [Ger00,

GLL01]. We do not assume the compactness condition on Hp, which is entered in
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[Ger00]. Instead of this we show an exponential localization of infrared-regularized

ground states, ∥Φσ(x)∥F ≤ Cδe
−δ|x|, which is derived through functional integra-

tions in Lemma 3.8. The crucial point is to show that this localization is uniform

on σ > 0, i.e., Cδ and δ are independent of σ > 0.

(Scaling parameter) The scaling parameter introduced in this paper can

be obtained by replacing the annihilation operator a and the creation operator a∗

with κa and κa∗, respectively. This scaling is introduced in [Dav77, Dav79, Hir99]

and the scaling limit as κ → ∞ is called the weak coupling limit. Roughly speaking

at least in the nonrelativistic domain Hp
∼= − 1

2m∆+ V , and then

HV = κ2(κ−2Hp +Hf + κ−1HI)

with

κ−2Hp
∼= − 1

2mκ2
∆+

1

κ2
V.

Thus we interpret that enhanced binding of HV occurs when sufficiently heavy

particle mass and shallow external potential are assumed. Alternate explanation

of the scaling parameter is the tool to derive a Markov process from e−tHV

. Al-

though the scalar product (f ⊗Ω, e−tHV

g⊗Ω) does not define a Markov process,

(f, e−t(heff−Ediag)g) does with generator heff − Ediag. This can be obtained by the

scaling limit:

(f ⊗ Ω, e−tHV

g ⊗ Ω) → (f, e−t(heff−Ediag)g)

as κ → ∞. This can be done in a similar manner to [Hir99]. Precisely speaking,

if heff has a unique strictly positive ground state ϕp, then there exists a diffusion

process (Yt)t≥0 such that

(fϕp, e
−t(heff−Ediag)gϕp) = E[f(Y0)g(Yt)],

where E denotes the expectation, and (Yt)t≥0 is the so-called P (ϕ)1 process. See

e.g. [GHPS12] for the construction of P (ϕ)1 process.

The organization of this paper is as follows.

In the remainder of Section 1 we define the Nelson model with a relativistic

kinetic term, and introduce a scaling parameter κ > 0. In Section 2 we introduce

a dressing transformation, and mention the stability condition and uniform expo-

nential decay of Φσ(x). In Section 3 we prove the stability condition in Section

3.1 and uniform exponential decay in Section 3.2, and in Section 3.3 we show the

enhanced binding.

In Appendix 4 we show that the relativistic version of the stability condition

also implies the existence of the ground state. In Appendix 5 we review fundamen-

tal properties of the bottom of the essential spectrum of relativistic Schrödinger

operator. In Appendix 6 we give the functional integral representation of e−tHV
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and show some inequality used in the proof of exponential decay of infrared regu-

larized ground states. In Appendix 7 we derive some energy comparison inequality

of the translation invariant Hamiltonian
∑N

j=1(
√
−∆j +mj −mj + V (xj)).

§1.4. Definition

We begin with giving the definition of the Nelson model with N -relativistic parti-

cles. Throughout we assume N ≥ 2 and the dimension of state space is d ≥ 3. The

Hamiltonian of the Nelson model can be realized as a self-adjoint operator on the

tensor product of L2(RdN ) and the boson Fock space F over L2(Rd),

H = L2(RdN )⊗ F .(5)

Here F is defined by F = ⊕∞
n=0L

2
sym(Rdn), where L2

sym(Rdn) is the set of square

integrable functions such that Ψ(x1, · · · , xn) = Ψ(xσ(1), · · · , xσ(n)) for any n-

degree permutation σ. A vector Ψ ∈ F is written as Ψ = {Ψ(n)}∞n=0 with

Ψ(n) ∈ L2
sym(Rdn), and the Fock vacuum Ω ∈ F is defined by Ω = {1, 0, 0, . . .}.

We denote by a(f) and a∗(f), f ∈ L2(Rd), the annihilation and creation operator

in F , respectively. They satisfy canonical commutation relations:

[a(f), a∗(g)] = (f̄ , g)1l, [a(f), a(g)] = 0 = [a∗(f), a∗(g)](6)

and the adjoint relation a∗(f) = (a(f̄))∗ holds. Throughout this paper (F,G)K
denotes the scalar product on Hilbert space K, which is linear in G and anti-

linear in F . We omit K until confusions arises. We informally write as a#(f) =∫
a#(k)f(k)dk, a# = a, a∗. The second quantization of the closed operator A on

L2(Rd) is denoted by dΓ(A). The free field Hamiltonian Hf is the self-adjoint

operator on F , which is given by the second quantization of the multiplication

operator ω(k) = |k| on L2(Rd):

Hf = dΓ(ω).(7)

Next we introduce particle Hamiltonian. We suppose that the N -relativistic par-

ticles are governed by the relativistic Schrödinger operator Hp of the form:

Hp =
N∑
j=1

(Ωj + Vj)(8)

which is acting on L2(RdN ), where

Ωj = Ωj(pj) =
√
p2j +m2

j −mj ,(9)

is the j-th particle Hamiltonian with momentum pj = −i∇xj and mass mj > 0.

Vj = V (xj) denotes an external potential. In this paper, we assume that there is

no interparticle potential for simplicity.
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The Hamiltonian of the relativistic Nelson model is then defined by

HV = H0 + κHI,(10)

where the zero-coupling Hamiltonian H0 is given by

H0 = Hp ⊗ 1l + κ21l⊗Hf(11)

and κ > 0 a scaling parameter. HI denotes the linear interaction given by

HI = α

N∑
j=1

∫ ⊕

RdN

ϕj(xj)dX(12)

under the identification: H ∼=
∫ ⊕

RdN

FdX, where dX = dx1 · · · dxN . Here α ≥ 0 is

a coupling constant, and the scalar field ϕj(x) is given by

ϕj(x) =
1√
2

∫
Rd

(a∗(k)λ̂j(−k)e−ikx + a(k)λ̂j(k)eikx)dk(13)

for each x ∈ Rd with ultraviolet cutoff functions λ̂j . Here {· · · } denotes the oper-

ator closure. The standard choice of the ultraviolet cutoff is

λ̂j(k) = (2π)−d/2ω(k)−11l|k|≤Λ,

where 1lX denotes the characteristic function of X. We do not however fix any

special cutoff function.

Throughout this paper we assume the following three conditions:

(V) V (−∆+ 1)−1/2 is compact.

(UV) λ̂j(−k) = λ̂j(k) ≥ 0 and λ̂j ∈ L2(Rd) for j = 1, ..., N .

(IR) λ̂j/ω ∈ L2(Rd) for j = 1, ..., N .

Assumption (V) implies that V is infinitesimally small with respect to self-adjoint

operator
√
−∆+m2−m for all m ≥ 0. Hence, by the Kato-Rellich theorem, Hp is

self-adjoint on D(
∑N

j=1 Ωj) and essentially self-adjoint on any core for
∑N

j=1 Ωj ,

where D(A) denotes the domain of A. (UV) implies that HI is symmetric. Then

(V), (UV) and (IR) also imply that, for arbitrary α ∈ R and ϵ > 0, it holds that

∥HIΨ∥ ≤ ϵ∥H0Ψ∥+ bϵ∥Ψ∥, Ψ ∈ D(H0).

Therefore, by the Kato-Rellich theorem, HV is self-adjoint on D(H0) for all κ > 0

and α ≥ 0. The nonnegativity λ̂j(k) ≥ 0 in (UV) implies that the effective potential

is attractive, which is used in Lemma 3.10.
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§2. Existence of a ground state

§2.1. Dressing transformation

To derive the effective particle Hamiltonian we introduce the so-called dressing

transformation e−iT , where T = α
κ

∑N
j=1 πj and

πj =

∫ ⊕

RdN

dX

 i√
2

∫ (
a∗(k)e−ikxj

λ̂j(−k)

ω(k)
− a(k)eikxj

λ̂j(k)

ω(k)

)
dk

 .

By (IR), πj is self-adjoint on H and then eiT is unitary.

Lemma 2.1. The unitary operator eiT maps D(HV ) onto itself and

e−iTHV eiT = hV
eff ⊗ 1l + κ21l⊗Hf +HR(κ),(14)

where the effective Hamiltonian is defined by

hV
eff =

N∑
j=1

(Ωj + Vj) + Veff ,(15)

with the effective pair potential

Veff = α2
∑

1≤i<j≤N

Wij(xi − xj),(16)

Wij(x) = −
∫
Rd

λ̂i(−k)λ̂j(k)

ω(k)
e−ikxdk.(17)

Here HR(κ) is the remainder term given by

HR(κ) =

N∑
j=1

(
∆Ωj −

α2

2
∥λ̂j/

√
ω∥2

)
,(18)

∆Ωj = Ωj

(
pj +

α

κ
Aj

)
− Ωj (pj)(19)

with a vector field

Aj = (Aj1, · · · , Ajd)

Ajl =

∫ ⊕

RdN

(
1√
2

∫
Rd

kl

(
a∗(k)e−ikxj

λ̂j(−k)

ω(k)
+ a(k)eikxj

λ̂j(k)

ω(k)

)
dk

)
dX.
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Proof. We directly see that

e−iT pje
iT = pj +

α

κ
Aj ,

e−iTϕje
iT = ϕj −

α

κ

N∑
i=1

∫
Rd

λ̂i(k)λ̂j(−k)

ω(k)
e−ik(xj−xi)dk,

e−iTHfe
iT = Hf −

1

κ
HI +

α2

2κ2

N∑
i,j=1

∫
Rd

λ̂i(−k)λ̂j(k)

ω(k)
e−ik(xi−xj)dk.

Together with them, the lemma follows.

(UV) and (IR) imply that Veff is bounded. Therefore HV
eff is a self-adjoint

operator on D(
∑N

j=1 Ωj).

§2.2. Main results

Recall that E0(T ) = inf σ(T ) for a self-adjoint operator T .

Theorem 2.2. (Existence of ground state) Assume (V), (UV) and (IR). Sup-

pose that E0(h
V
eff) ∈ σdisc(h

V
eff). Then there exists κ0 > 0 such that HV has the

unique ground state for any κ > κ0.

In order to show the enhanced binding, we introduce an assumption on V .

(EN)

(1) inf
x∈Rd

V (x) > −∞ and lim inf
|x|→∞

V (x) = 0;

(2)
√
−∆+NV acting in L2(Rd) has a negative energy ground state;

(3) V is d-dimensional relativistic Kato-class, i.e.,

lim
t↓0

sup
x∈Rd

Ex
P

[∫ t

0

V (Xs)ds

]
= 0,

where Ex
P denotes the expectation on a probability space (D,B,Px), and

(Xt)t≥0 denotes the d-dimensional Lévy process with the characteristic func-

tion Ex
P[e

iuXt ] = e−t(
√
u2+m2−m)eiux.

Assumption (EN)(1) is used only to show spatial exponential decay of the infrared

regularized ground state Φσ. The second assumption (EN)(2), which is used in (55),

is a crucial assumption for showing the enhanced binding. Intuitively a sufficiently

strong interaction engages N particles through linear interaction of the quantum

field, and consequently the total Hamiltonian can be regarded as
√
−∆ + NV .

This intuitive description is justified in this paper. (EN)(3) is used to show the

continuity of ground state energy of a translation invariant Hamiltonian in Lemma

3.11.
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We state the main results in this paper.

Theorem 2.3. (Enhanced binding) Let us suppose (V), (UV) and (IR). As-

sume (EN) and N ≥ 2. Then there exist ᾱ > 0 and κ0 > 0 such that for each

κ > κ0, H
V has the unique ground state for |α| ∈ (ᾱ, ᾱ(κ)) with some constant

ᾱ(κ).

Remark 2.4. In Theorem 2.2, hV
eff has a ground state. In Theorem 2.3 we do not

assume the existence of a ground state of Hp, i.e., the zero-coupling Hamiltonian

H0 does not necessarily have a ground state.

Remark 2.5. In the case of N = 1, we can not apply our method to show the

enhanced binding. Although in this case the enhanced binding may also occur,

it is crucial to estimate dressing transformed Hamiltonian (14). We do not then

discuss this case.

Example 2.6. We give examples of V satisfying (V) and (EN), but
√
−∆+ 1−

1 + V has no ground state in the dimension d ≥ 3. Suppose that Ṽ satisfies

|Ṽ (x)| ≤ c(1 + |x|)−ϵ

with some c > 0 and ϵ > 0. It involves Ṽ = −e−x2

. Then (V) is satisfied with

V = δṼ for all constant δ > 0. Let Ṽ ̸≡ 0, Ṽ ≤ 0 and Ṽ ∈ Ld(Rd)∩Ld/2(Rd). Let

δ > 0 be sufficiently small constants and set

Hδ =
√
−∆+ 1− 1 + δṼ .(20)

Let Eδ(·) be the spectral measure of Hδ. Since Ṽ (
√
−∆+ 1)−1 is compact, the

essential spectrum of Hδ is σess(Hδ) = [0,∞) for all δ > 0. By the relativistic

version of the Lieb-Thirring bound [Dau83], we have

dimRanEδ((−∞, 0]) ≤ c1δ
d

∫
Rd

|Ṽ (x)|ddx+ c2δ
d/2

∫
Rd

|Ṽ (x)|d/2dx,(21)

where c1 and c2 are positive constants independent of Ṽ . Hence Hδ has no ground

state for sufficiently small δ such that the right-hand side of (21) is strictly smaller

than one. Similarly σess(
√
−∆ + NδṼ ) = [0,∞) follows.

√
−∆ + NδṼ has how-

ever a negative eigenvalue for sufficiently large N , since inf σ(
√
−∆ + NδṼ ) < 0

for sufficiently large N , which implies that
√
−∆ + NδṼ has a ground state for

sufficiently large N . Therefore for sufficiently small δ, V = δṼ satisfies (V) and

(EN), but
√
−∆+ 1− 1 + δṼ has no ground state.
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§2.3. Stability condition and exponential decay

In order to prove Theorems 2.2 and 2.3 we investigate the stability condition.

First of all we introduce cluster Hamiltonians. Let CN = {1, 2, · · · , N}. For each

β ⊂ CN , (β ̸= ∅), we define

H0(β) =
∑
j∈β

(Ωj + καϕj) + κ2Hf ,(22)

HV (β) = H0(β) +
∑
j∈β

Vj ,(23)

acting on L2(Rd|β|) ⊗ F , where ϕj =
∫ ⊕
Rd|β| ϕj(xj)dXβ , Xβ = (xj)j∈β . Clearly

HV = HV (CN ). Let

E0(β) = inf σ(H0(β)), EV (β) = inf σ(HV (β)).(24)

For the case of β = ∅, we set E0(∅) = EV (∅) = 0. The lowest two cluster threshold

is defined as the minimal energy of systems such that only the particles involved

in β are bound by the origin but others are sufficiently remote from the origin. It

is defined by

ΣV = min{EV (β) + E0(βc)|β ⫋ CN}(25)

The gap between the ground state energy EV and the lowest two cluster threshold

ΣV is related to the existence of ground state by the proposition below. Let HV
σ

be defined by HV with λ̂j replaced by λ̂j(k)1l|k|>σ.

Proposition 2.7. (Case σ > 0) Suppose that EV < ΣV . Then HV
σ has the

unique ground state. We denote the ground state by Φσ.

(Case σ = 0) Suppose that EV < ΣV and there exists 0 < δ independent of σ

such that sup0<σ<σ̄ ∥(eδ|X| ⊗ 1l)Φσ∥H < ∞ with some σ̄ > 0. Then HV has a

ground state.

Proof. The proof is a minor modification of [Ger00, GLL01], and it is given in

Appendix 4.1 for the case σ > 0, and in Appendix 4.2 for the case σ = 0.

The condition ΣV > EV is called the stability condition. For our model

the uniform exponential decay of ∥Φσ(x)∥F may be derived from the stability

condition, but we do not check it. So we need not only stability condition but also

uniform exponential decay.

§3. Proof of the main theorem

In order to show Theorems 2.2 and 2.3, by Proposition 2.7 it is enough to show

both (1) stability condition and (2) the uniform exponential decay of ∥Φσ(x)∥F .
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§3.1. Stability condition

It is however not straightforward to show the stability condition, so we will make a

detour and the discussion will be reduced to that of effective particle Hamiltonian

hV
eff . Let us define the lowest two cluster threshold of hV

eff in a similar way to

HV and we shall compare it with ΣV . For β ⊂ CN , we define effective cluster

Hamiltonians by

h0
eff(β) =

∑
j∈β

Ωj − α2
∑

i,j∈β,i<j

Wij(xi − xj),(26)

hV
eff(β) = h0

eff(β) +
∑
j∈β

Vj .(27)

We set

E0(β) = inf σ(h0
eff(β)), EV (β) = inf σ(hV

eff(β))(28)

and EV = EV (CN ). Then the lowest two cluster threshold of hV
eff is defined by

ΞV = min{EV (β) + E0(βc)|β ⫋ CN}.(29)

Constants cV and dV are such that ∥
∑N

j=1 ΩjΨ∥ ≤ cV ∥hV
effΨ∥+ dV ∥Ψ∥ and set

G(t) =

 N∑
j=1

∥λ̂j/ω∥∥λ̂j∥

 t2 +

 N∑
j=1

√
2mj∥λ̂j/ω∥

 |t|+
√
2N
(
cV |EV |+ dV

)
.

(30)

The next lemma is a key ingredient of this paper.

Lemma 3.1. We assume that ΞV − EV > 0, and α and κ satisfy ΞV − EV >

G(α/κ). Then the stability condition ΣV − EV > 0 holds.

In order to prove Lemma 3.1, we prepare two lemmas. We set

Ediag =
α2

2

N∑
j=1

∥λ̂j/
√
ω∥2.(31)

Lemma 3.2. For all β ⊂ CN , it follows that

E#(β) ≤ E#(β) +
α2

2

∑
j∈β

∥λ̂j/
√
ω∥2, # = 0, V.(32)

In particular, it holds that ΞV ≤ ΣV + Ediag.

Proof. See Proposition 6.3 in Appendix 6.
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Lemma 3.3. For all κ > 0 it follows that EV ≤ EV + G(α/κ)− Ediag,

Proof. For arbitrary ϵ > 0, we can choose a normalized vector v ∈ C∞
0 (RdN ) such

that ∥(hV
eff − EV )v∥ ≤ ϵ. Set Ψ = v ⊗ Ω. Then, by Lemma 2.1, we have

EV ≤ EV + ϵ+

Ψ,

−Ediag +
N∑
j=1

∆Ωj

Ψ

 .

Since πj commutes with pi, i ̸= j, by setting Tj = απj/κ, we can see that ∆Ωj =

e−iTjΩje
iTj − Ωj and

| (Ψ,∆ΩjΨ) | = |
(
(eiTj − 1)Ψ,Ωje

iTjΨ
)
+
(
Ψ,Ωj(e

iTj − 1)Ψ
)
|.

Hence we have

| (Ψ,∆ΩjΨ) | ≤ |α|
κ

∥πjΨ∥ · ∥Ωje
iTjΨ∥+ |α|

κ
∥πjΨ∥ · ∥ΩjΨ∥.

The right-hand side above is identical with

=
|α|√
2κ

∥λ̂j/ω∥

(Ψ,

(
pj +

|α|
κ

Aj

)2

Ψ

)1/2

+
(
Ψ, p2jΨ

)1/2 .

Then we have

| (Ψ,∆ΩjΨ) | ≤ |α|√
2κ

∥λ̂j/ω∥

(
2∥ΩjΨ∥+ 2mj +

√
2|α|
κ

∥|k|λ̂j/ω∥

)

and

EV ≤ EV + ϵ+
N∑
j=1

|α|√
2κ

∥λ̂j/ω∥

(
2mj +

√
2|α|
κ

∥|k|λ̂j/ω∥

)

+
N∑
j=1

√
2|α|
κ

∥λ̂j/ω∥
(
cV (|EV |+ ϵ) + dV

)
− Ediag.

Since ϵ > 0 is arbitrary, the lemma follows.

Proof of Lemma 3.1: By Lemmas 3.2 and 3.3, we have

ΣV − EV ≥ ΞV − EV − G(α/κ) > 0.(33)

Then the lemma is proven.
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§3.2. Exponential decays

It is proven that the functional integration is a strong tool to show an exponential

localization of bound state in quantum mechanics. That can be also applied in

quantum field theory.

Let (Xt)t≥0 = (X1
t , . . . , X

N
t )t≥0 be the N independent d-dimensional Lévy

processes on a probability space (D,B,Px), x ∈ RdN , with the characteristic func-

tion

E0
P[e

−iu·Xt ] = e−t
∑N

j=1(
√

u2
j+m2

j−mj), u = (u1, ..., uN ) ∈ RdN .(34)

Here and in what follows Ex
m[· · · ] denotes the expectation with respect to a path

measure mx starting from x. Let Weff = Weff(x1, .., xN ) =
∑N

j=1 V (xj) + Veff(x).

Proposition 3.4. There exists σ0 > 0 such that for all σ ≤ σ0,

∥Φσ(X)∥F ≤ et(E
V +Ediag+ϵ(σ))

(
EX
P

[
e−2

∫ t
0
Weff (Xs)ds

])1/2
∥Φσ∥H(35)

for each X ∈ RdN , where ϵ(σ) > 0 satisfies limσ→0 ϵ(σ) = 0.

Proof. See Proposition 6.4.

From Proposition 3.4 it suffices to estimate

et(E
V +Ediag)EX

P

[
e−2

∫ t
0
Weff (Xs)ds

]1/2
in order to show the exponential decay of ∥Φσ(X)∥F . To estimate this we divide

Weff into two parts. Let

BR = {x = (x1, ..., xN ) ∈ RdN ||x| ≥ 2R and min{|xi − xj |, i ̸= j} ≤ |x|/2}.

Define V R
eff,∞ = Veff1lBR

and V R
eff,0 = Veff1lBc

R
. Then

Weff = V + V R
eff,0 + V R

eff,∞.(36)

By the Riemann Lebesgue lemma lim|x|→∞ Wij(x) = 0. Then notice that

lim
|x|→∞

(V (x) + V R
eff,0(x)) = 0,

∥V R
eff,∞∥∞ ≤ α2

2

∑
i ̸=j

∫
λ̂i(k)λ̂j(−k)

ω(k)
dk.

The Lévy measure νj(dx) = νj(x)dx associated with the Lévy process (Xj
t )t≥0 is

given by

νj(x) = 2
(mj

2π

) d+1
2 1

|x| d+1
2

∫ ∞

0

ξ
d−1
2 e−

1
2 (ξ+ξ−1)mj |x|dξ, x ∈ Rd.(37)
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We note that νj(x) ≤ Ce−c|x| with some constants C, c ≥ 0.

Proposition 3.5. There exist η > 0, C1 > 0 and C2 > 0 such that

P0

(
sup

0≤s≤t
|Xs| > a

)
≤ C1e

−ηaeC2t(38)

for all a > 0.

Proof. We see that

P0

(
sup

0≤s≤t
|Xs| > a

)
= E0

P

[
1lsup0≤s≤t |Xs|−a>0

]
≤ e−ηaE0

P

[
eη sup0≤s≤t |Xs|

]
.

It is known that E0
P[e

η(sup0≤s≤t |Xs|)] < C1e
C2t for sufficiently small 0 < η [CMS90].

Hence the proposition follows.

We define B = {Xs ∈ Bc
R for all 0 ≤ s ≤ t}. Since V R

eff,∞(Xs) = 0 for on B,

we have

EX
P

[
e−2

∫ t
0
Weff (Xs)ds

]
= EX

P

[
1lBe−2

∫ t
0
(V+V R

eff,0)(Xs)ds
]
+ EX

P

[
1lBce−2

∫ t
0
Weff (Xs)ds

](39)

By the Schwartz inequality

EX
P

[
1lBce−2

∫ t
0
Weff (Xs)ds

]
≤ EX

P

[
1lBce−4

∫ t
0
V R
eff,∞(Xs)ds

]1/2
EX
P

[
1lBce−4

∫ t
0
(V+V R

eff,0)(Xs)ds
]1/2

.(40)

We will estimate terms in (39) and (40). Set

WR
a (x) = inf{V (y) + V R

eff,∞(y)||x− y| < a},
WR

∞ = inf
x∈RdN

(V (x) + V R
eff,∞(x)).

Lemma 3.6. Suppose (1) of (EN). Let R > 0 and a > 0. Then for all X ∈ RdN

and t > 0 it follows that

EX
P [e−2

∫ t
0
(V (Xs)+V R

eff,∞(Xs))ds] ≤ e−2tWR
a (x) + C1e

−2tWR
∞eC2te−ηa,(41)

where C1, C2 and η are given in (38).

Proof. Set A = {sup0≤s≤t |Xs| < a} ⊂ D. Since (Xt)t≥0 under the probability

measure PX and (Xt + X)t≥0 under P0 are identically distributed, we have the

identity:

EX
P

[
e−2

∫ t
0
(V (Xs)+V R

eff,∞(Xs))ds
]
= E0

P

[
e−2

∫ t
0
(V (Xs+X)+V R

eff,∞(Xs+X))ds
]
.



16 Fumio Hiroshima and Itaru Sasaki

Then we have

E0
P

[
1lAe

−2
∫ t
0
(V (Xs+X)+V R

eff,∞(Xs+X))ds
]
≤ e−2tWR

a (x),

E0
P

[
1lAce−2

∫ t
0
(V (Xs+X)+V R

eff,∞(Xs+X))ds
]
≤ e−2tWR

∞E0
P [1lAc ] ≤ e−2tWR

∞C1e
C2te−ηa

by Proposition 3.5. Then the lemma follows.

Lemma 3.7. Let X ∈ RdN and set R = |X|. Then it follows that

EX
P [1lBce−4

∫ t
0
V R
eff,∞(Xs)ds] ≤ e4∥Veff,∞∥∞tC1e

C2te−ηR,(42)

where C1, C2 and η are given in (38).

Proof. Since EX
P [e−4

∫ t
0
V R
eff,∞(Xs)ds] ≤ EX

P [e4∥Veff,∞∥∞
∫ t
0
1lBR

(Xs)ds], we can see that

EX
P [e−4

∫ t
0
V R
eff,∞(Xs)ds]

≤
∞∑

n=0

(4∥Veff,∞∥∞)n

n!

∫ t

0

ds1 · · ·
∫ t

0

dsnEX
P

1lBc

n∏
j=1

1lBR
(Xsj )


= EX

P [1lBc ] +
∞∑

n=1

(4∥Veff,∞∥∞)n

n!

∫ t

0

ds1 · · ·
∫ t

0

dsnE0
P

1lBc

n∏
j=1

1lBR
(X +Xsj )

 .

We see that

EX
P [1lBc ] ≤ P0( sup

0≤s≤t
|Xs +X| > 2R)

≤ P0( sup
0≤s≤t

|Xs| > 2R− |X|) = P0( sup
0≤s≤t

|Xs| > R).(43)

By the definition of BR in a similar way to above we have

EX
P [e−4

∫ t
0
V R
eff,∞(Xs)ds]

≤ PX(Bc) +
∞∑

n=1

(4∥Veff,∞∥∞)n

n!

×
∫ t

0

ds1· · ·
∫ t

0

dsnP
0(|Xs1 +X| > 2R,· · ·, |Xsn +X| > 2R)

≤ PX(Bc) +

∞∑
n=1

(4∥Veff,∞∥∞)n

n!

∫ t

0

ds1 · · ·
∫ t

0

dsnP
0(|Xs1 | > R, · · · , |Xsn | > R).
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By P0(|Xs1 | > R, · · · , |Xsn | > R) ≤ P0
(
sup0≤s≤t |Xs| > R

)
and Proposition 3.5,

we have

EX
P [e−4

∫ t
0
V R
eff,∞(Xs)ds]

≤ P0

(
sup

0≤s≤t
|Xs| > R

)
+

∞∑
n=1

(4∥|Veff,∞∥∞)n

n!

∫ t

0

ds1 · · ·
∫ t

0

dsnP
0

(
sup

0≤s≤t
|Xs| > R

)

≤
∞∑

n=0

(4∥|Veff,∞∥∞)n

n!
tnC1e

C2te−ηR

= e4∥|Veff,∞∥∞tC1e
C2te−ηR.

Hence the lemma follows.

Lemma 3.8. Let Φσ be the infrared regularized ground state. Suppose (1) of

(EN) and EV + Ediag < 0. Furthermore we assume that EV + Ediag + ϵ(σ) < −γ

with some γ > 0 for σ < σ̄, where ϵ(σ) is given in Proposition 3.4. Then there

exist δ > 0 and Cδ > independent of σ such that

sup
0<σ<σ̄

∥Φσ(X)∥F ≤ Cδe
−δmin{γ,η}|X|,(44)

where η > 0 is given in Proposition 3.5.

Proof. We set Ẽ = EV + Ediag + ϵ(σ). It is enough to estimate

e2tẼEX
P

[
e−2

∫ t
0
Weff (Xs)ds

]
by Proposition 3.4. Recall that WR

a (x) = inf{WR(y)||x− y| ≤ a}. Then

lim
|x|→∞

W
|x|
|x|/2(x) = 0.(45)

Hence there exists a positive constant R∗ such that |W |X|
|X|/2(X)| ≤ |Ẽ|/2 for all X

such that |X| > R∗. Suppose that |X| > R∗ and let R = |X|. We divide Weff as

in (36) for R. We have

e2tẼEX
P

[
e−

∫ t
0
Weff (Xs)ds

]
≤ e2tẼEX

P

[
1lBe−2

∫ t
0
(V+V R

eff,0)(Xs)ds
]

+ e2tẼ
(
EX
P

[
1lBce−4

∫ t
0
(V+V R

eff,0)(Xs)ds
])1/2 (

EX
P

[
1lBce−4

∫ t
0
(V+V R

eff,∞)(Xs)ds
])1/2
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Two terms EX
P

[
1lBe−2

∫ t
0
(V+V R

eff,0)(Xs)ds
]
and EX

P

[
1lBce−4

∫ t
0
(V+V R

eff,0)(Xs)ds
]
can be

estimated as

EX
P

[
1lBe−2

∫ t
0
(V+V R

eff,0)(Xs)ds
]
≤ e−2tWR

a (x) + C1e
−2tWR

∞eC2te−ηa,(46)

Ex
P

[
1lBce−4

∫ t
0
(V+V R

eff,0)(Xs)ds
]
≤ e−4tWR

a (x) + C1e
−4tWR

∞eC2te−ηa(47)

by Lemma 3.6. Let us set t = t(X) = ϵ|X| and a = |X|/2. Then we can see that

W
|X|
|X|/2(X)− Ẽ > −Ẽ/2 > 0, since Ẽ < 0 by assumption. Hence

e2tẼEX
P

[
1lBe−2

∫ t
0
(V+V R

eff,0)(Xs)ds
]
≤ eϵẼ|X| + C2e

ϵC2|X|−η|X|/2−2ϵW |X|
∞ |X|

≤ e−ϵγ|X| + C2e
−(η/2+2ϵW |X|

∞ −ϵC2)|X|.

Similarly we have

e4tẼEX
P

[
1lBe−4

∫ t
0
(V+V R

eff,0)(Xs)ds
]
≤ e−2ϵγ|X| + C2e

−(η/2+4ϵW |X|
∞ −ϵC2)|X|.

Finally by Lemma 3.7 we have

e4tẼEX
P

[
1lBe−4

∫ t
0
Weff (Xs)ds

]
≤ C1e

4ϵẼ+4∥Veff,∞∥∞ϵ+C2ϵ−η)|X|

≤ C1e
−(4ϵγ−4∥Veff,∞∥∞ϵ−C2ϵ+η)|X|.

Note that W
|X|
∞ → 0 as |X| → ∞. Take sufficiently small ϵ > 0 such that η/2 +

(2W
|X|
∞ −C2)ϵ > 0, η/2+(4W

|X|
∞ −C2)ϵ > 0 and (4γ−4∥Veff,∞∥∞−C2)ϵ+η > 0,

then ∥Φσ(X)∥F ≤ D1e
−min{η,γ}D2|X| follows. Then the lemma is proven.

Corollary 3.9. Suppose (1) of (EN). Then (44) holds for sufficiently small |α/κ|.

Proof. Notice that EV ≤ EV + G(α/κ) − Ediag in Lemma 3.3. Since EV < 0 and

limt→0 G(t) = 0, the corollary follows.

§3.3. Proofs of Theorem 2.2 and Theorem 2.3

3.3.1. Proof of Theorem 2.2. Proof of Theorem 2.2:

Note that 0 < EV − ΞV is equivalent to inf σ(HV
eff) ∈ σdisc(H

V
eff). Uniform

exponential decay

∥Φσ(x)∥F ≤ Cδe
−δ|x|

is shown for sufficiently small |α/κ| in Lemma 3.8. Then by limκ→∞ G(α/κ) = 0

and ΣV −EV ≥ ΞV −EV −G(α/κ), there exists κ0 such that for arbitrary κ > κ0

the stability condition EV < ΣV holds. Therefore, by Proposition 2.7, HV has a

ground state.
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3.3.2. Proof of Theorem 2.3. Now we show the enhanced binding. It is enough

to show EV < ΞV , since the uniform exponential decay ∥Φσ(x)∥F < Cδe
−δ|x| is

established by Proposition 2.7.

Lemma 3.10. Let β ⫋ CN but β ̸= ∅. Then there exists α1 > 0 such that, for all

α with |α| > α1, E0 < EV (β) + E0(βc). In particular E0 < ΞV holds for |α| > α1.

Proof. We have

E0 = α2
∑
i<j

Wij(0) + o(α2), EV (β) = α2
∑
i<j

i,j∈β

Wij(0) + o(α2),

E0(βc) = α2
∑
i<j

i,j∈βc

Wij(0) + o(α2).

Since
∑
i<j

i∈β,j∈βc

Wij(0) +
∑
i<j

i∈βc,j∈β

Wij(0) < 0, the lemma holds.

To see the enhanced binding we want to investigate the center of motion of

hV
eff . Notice that h0

eff commutes with the total momentum Ptot =
∑N

j=1 pj . Then it

can be decomposable with respect to the spectrum of Ptot. Let U = eix1·
∑N

j=2 pj ,

which diagonalize Ptot as U PtotU −1 = p1. Hence it also diagonalize h0
eff , and we

obtain that

U h0
effU −1 = Ω1

p1 −
N∑
j=2

pj

+
N∑
j=2

Ωj(pj) +
∑
j≥2

α2W1j(xj)

+
∑

2≤i<j≤N

α2Wij(xi − xj),

U hV
effU −1 = h0

eff + V (x1) +
N∑
j=2

V (x1 + xj).

Then we have

U h0
effU −1 =

∫ ⊕

Rd

k(P )dP,

k(P ) = Ω1

P −
N∑
j=2

pj

+
N∑
j=2

Ωj(pj)

+
∑
j≥2

α2W1j(xj) +
∑

2≤i<j≤N

α2Wij(xi − xj).

Lemma 3.11. It follows that E0 = infσ(k(0)).
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Proof. Set infσ(k(P )) = E(P ) for notational simplicity. It can be seen in Appendix

7 that

E(0) ≤ E(P )(48)

holds for all P , and that E(P ) is continuous in P . Then it follows that (Φ,HΦ) =∫
Rd

(Φ(P ), k(P )Φ(P ))dP ≥ E(0)∥Φ∥2 for Φ ∈ D(H). Then E(0) ≤ E0. On the

other hand let us set Φϵ =
∫ ⊕
Rd Φ(P )1l[0,ϵ)(P )dP . We have

∥Φϵ∥2E0 ≤ (Φϵ,HΦϵ) ≤ sup
|P |<ϵ

E(P )∥Φϵ∥2.

Take ϵ ↓ 0 on both sides we have E0 ≤ E(0) + δ for arbitrary δ > 0, since E(P ) is

continuous in P . Hence E(0) ≥ E0 and then E0 = E(0) follows.

Lemma 3.12. There exists α2(P ) > 0 such that infσ(k(P )) ∈ σdisc(k(P )) for

every P ∈ Rd for |α| > α2(P ). In particular k(0) has a ground state for |α| > α2

with some α2 > 0.

Proof. Notice that Wij(0) < 0, Wij(x) > Wij(0) for x ̸= 0, and lim|x|→∞ Wij(x) =

0. Set X = (x2, . . . , xN ). Let a = {2, ..., N}. Let {j̃β}β⊂a be the Ruelle-Simon

partition of unity [CFKS87, Definition 3.4], i.e., j̃β(λX) = j̃β(X) for all λ > 1,

|X| = 1, and there exists a constant C > 0 such that

suppj̃β ∩ {X||X| > 1} ⊂ {X||Xi −Xj | ≥ C|X|for all (ij) ̸⊂ β}.

We set jβ(X) = j̃β(X/R). Then

k(P ) = jak(P )ja +
∑
β⊊a

jβk(P )jβ + o(1l),(49)

where o(1l) denotes a bounded operator such that limR→∞ ∥o(1l)∥ = 0. We set

kβ =
∑
j∈β

(Ωj(pj) + α2W1j(xj)) +
∑
i,j∈β

α2Wij(xi − xj)

k̄βc =
∑
j∈βc

Ωj(pj) +
∑

i,j∈βc

α2Wij(xi − xj)

With the identification L2(Rd(N−1)) ∼= L2(Rd|β|)⊗ L2(Rd|βc|), we can write

jβk(P )jβ = jβΩ1

P −
N∑
j=2

pj

 jβ + jβ(kβ ⊗ 1l + 1l⊗ k̄βc)jβ + Iβj
2
β(50)
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where Iβ =
∑

j∈βc α2W1j(xj) +
∑

i∈β,j∈βc

i∈βc,j∈β
α2Wij(xi − xj). Hence, (49) and (50)

imply

k(P ) ≥ E0(k(P ))j2a +
∑
β⊊a

jβ(kβ ⊗ 1l + 1l⊗ k̄βc + Iβ)jβ + o(1l).

Note that j2a and Iβj
2
β are relatively compact with respect to k(P ). Thus we have

inf σess(k(P )) ≥ max{E0(kβ) + E0(k̄βc)|β ⊊ a}.

For all β ⊊ a it holds that

lim
α→∞

E0(k(P ))

α2
=
∑
i<j

Wij(0) <
∑
j∈β

W1j(0) +
∑
i,j∈β
i<j

Wij(0) +
∑

i,j∈βc

i<j

Wij(0)(51)

= lim
α→∞

E0(kβ) + E0(k̄βc)

α2
.

Therefore there exist α2(P ) such that for all α > α2(P ), inf σeff(k(P )) > E0(k(P )).

Lemma 3.13. Let |α| > α2, where α2 is given in Lemma 3.12, and uα be a

normalized ground state of k(0). Then |uα(x2, . . . , xN )|2 → δ(x2) · · · δ(xN ) as α →
∞ in the sense of distributions.

Proof. It suffices to show that for all ϵ > 0,

lim
α→∞

∫
|X|>ϵ

|uα(X)|2dX = 0,(52)

where X = (x2, · · · , xN ), since (52) implies that

lim
α→0

∫
Rd(N−1)

f(X)|uα(X)|2dX = f(0)

for all f ∈ C∞
0 (Rd(N−1)). We write kα(0) to emphasize the α dependence of k(0).

Since kα(0)/α
2 ≥

∑
i<j Wij(0) and limα→∞ inf σ(kα(0))/α

2 =
∑

i<j Wij(0), we

have∑
i<j

Wij(0) = lim
α→0

α−2(uα, kα(0)uα)

≥ lim inf
α→∞

(
uα,

(∑
j≥2

W1j(xj) +
∑

2≤i<j≤N

Wij(xi − xj)
)
uα

)
≥
∑
i<j

Wij(0).

Then

(53)
∑
i<j

Wij(0) = lim inf
α→∞

(
uα,

(∑
j≥2

W1j(xj) +
∑

2≤i<j≤N

Wij(xi − xj)
)
uα

)
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follows. Suppose that cϵ = lim inf
α→∞

∫
|X|>ϵ

|uα(X)|2X > 0. Then

lim inf
α→∞

∫
Rd(N−1)

∑
j≥2

(W1j(xj)−W1j(0))|uα(X)|2dX

> cϵ
∑
j≥2

sup
|X|>ϵ

(W1j(xj)−W1j(0)) > 0,

which contradicts (53). Therefore (52) holds.

Proof of Theorem 2.3:

First we assume that V ∈ C∞
0 (Rd). It is enough to show EV < ΞV , since the

uniform exponential decay ∥Φσ(x)∥ ≤ Cδe
−δ|x| is established in Lemma 3.8 for

sufficiently small |α/κ|. Assume |α| > max{α1, α2} > 0. Let uα be a normalized

ground state of k(0). By Ω1(a+ b) ≤ |a|+Ω1(b) for a, b ∈ Rd, we have

U h0
effU −1 ≤

√
−∆1 + k(0).(54)

By (2) of (EN), there exists a normalized vector v ∈ C∞
0 (Rd) such that

(v, (
√
−∆+NV )v) < 0.(55)

We set Ψ(x1, · · · , xN ) = v(x1)uα(x2, · · · , xN ). Then, by (54)

EV ≤ (Ψ,U hV
effU −1Ψ) ≤ (v, (

√
−∆+ V )v) + E0 + (Ψ,

N∑
j=2

V (x1 + xj)Ψ).(56)

Let V α
j,smeared(x1) =

∫
Rd(N−1)

V (xj + x1)|uα(X)|2dX. By Lemma 3.13, we have

lim
α→∞

(Ψ, V (xj + x1)Ψ) = lim
α→∞

(v, V α
j,smearedv) = (v, V v)

and then by (55) and (56),

EV ≤ (v, (
√
−∆+NV )v) + E0 < E0(57)

follows for α > α3 with some α3 > 0. By this inequality and Lemma 3.10, we

conclude that for α with |α| > ᾱ = max{α1, α2, α3},

ΣV − EV ≥ ΞV − EV − G(α/κ) ≥ E0 − EV − G(α/κ)
> −(v, (

√
−∆+NV )v)− G(α/κ).

Notice that G(α/κ) → 0 as κ → ∞ and −(v, (
√
−∆+NV )v) > 0. Then the right-

hand side above is positive for sufficiently small |α|/κ. Since G is monotonously

increasing, it is trivial to see that κ0 = ᾱ/G−1(a), where a = −(v, (
√
−∆+NV )v)



Enhanced binding II 23

and ᾱ(κ) = G−1(a)κ. Then the theorem follows for V ∈ C∞
0 (Rd). For general V

we can prove the theorem by the same limiting argument as [HS08, Appendix].

See Appendix 5

Appendix

§4. Stability condition:relativistic version

In this section we shall prove Proposition 2.7. We only show an outline of the

proof. The detail is left to the reader.

§4.1. Case σ > 0

Since the scaling parameter κ does not play any role in this section we set κ = 1.

Let σ > 0. We decompose the single boson Hilbert space into high energy part and

low energy part as L2(Rd) ∼= K>σ ⊕ K≤σ, where K≤σ = L2({k ∈ Rd|ω(k) ≤ σ})
and K>σ = L2({k ∈ Rd|ω(k) > σ}). Correspondingly, we have the identification:

H ∼= H>σ ⊗ F (K≤σ),(58)

where H>σ = L2(RdN )⊗ F (K>σ). We define the regularized Hamiltonian by

HV
σ = H0 +HI,σ.(59)

Here HI,σ is the regularized interaction defined by

HI,σ =
N∑
j=1

αj

∫ ⊕

RdN

ϕj,σ(xj)dX,

and ϕj,σ(x) is given by ϕj(x) with cutoff λj(k) replaced by λj(k)1lω(k)>σ(k). Then

HV
σ approximates HV in the following sense:

Lemma 4.1. HV
σ converges to HV as σ → 0 in the norm resolvent sense.

Let EV
σ = inf σ(HV

σ ) and ΣV
σ be a lowest two cluster threshold for HV

σ , which

is defined in the same way as ΣV . From Lemma 4.1, we can show that EV
σ and

ΣV
σ converges to EV as ΣV as σ → 0, respectively. Therefore for sufficiently small

σ > 0, it follows that

ΣV
σ > EV

σ .(60)

Under the identification (58), HV
σ can be decomposed as

HV
σ

∼= HV
σ ⌈H>σ⊗1lF(K≤σ) + 1lH>σ ⊗Hf⌈F(K≤σ)
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Since Hf⌈F(K≤σ) has a ground state, HV
σ also may have a ground state if and only

if HV
σ ⌈H>σ does. We shall prove the existence of a ground state of HV

σ ⌈H>σ for

sufficiently small σ > 0 in what follows. For σ > 0, we truncate ω as

ωσ(k) =

{
|k| for |k| > σ

σ for |k| ≤ σ,

and we set Hf,σ = dΓ(ωσ). Then

HV
σ ⌈H>σ= H0,σ +HI,σ

with H0,σ = Hp⊗1l+1l⊗Hf,σ. We denote the Fourier transformation from L2(Rd
y)

to L2(Rd
k) by F . We set Ǩ>σ = {f̌ = F−1f ∈ L2(Rd

y)|f ∈ K>σ}. We introduce a

notation. Let T : K1 → K2 be a contraction operator from a Hilbert space K1 to

another one K2. Then we define Γ(T ) = ⊕∞
n=0 ⊗n T with ⊗0T = 1l, which is also

a contraction operator from F (K1) to F (K2). Let

ȞV
σ = Γ(F−1)HV

σ ⌈H>σΓ(F ),

which is defined on Ȟ>σ = L2(RdN )⊗ F (Ǩ>σ). Let χ, χ̄ ∈ C∞(RdN ) be a cutoff

function such that χ(X)2+χ̄(X)2 = 1 with χ(X) = 1 for |X| ≤ 1 and χ(X) = 0 for

|X| ≥ 2. Then the following statement holds: For R > 0, we set χR(X) = χ(X/R),

χ̄R(X) = χ̄(X/R).

Lemma 4.2. It follows that

ȞV
σ = χRȞ

V
σ χR + χ̄RȞ

V
σ χ̄R + Ô(R−1),

where Ô(R−1) is an operator such that ∥Ô(R−1)∥ ≤ C/R for some constant C > 0.

Proof. The operator equality

ȞV
σ = χRȞ

V
σ χR + χ̄RȞ

V
σ χ̄R +

1

2

N∑
j=1

[χR, [χR,Ωj(pj)]] +
1

2

N∑
j=1

[χ̄R, [χ̄R,Ωj(pj)]].

(61)

holds. By the Fourier transformation, we have

[χR,Ωj(pj)] = (2π)−dN/2

∫
RdN

χ̂(K)eiK·X/R
(
Ωj(pj)− Ωj(pj − kj/R)

)
dK,

where K = (k1, · · · , kN ) ∈ RdN . By the triangle inequality, we have

|Ωj(pj)− Ωj(pj −
kj
R
)| =

∣∣∥(pj ,mj)∥C4 − ∥(pj −
kj
R
,mj)∥C4∥

∣∣
≤ ∥(kj

R
, 0)∥C4 =

1

R
|kj |.
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Hence, [χR,Ωj(pj)] is a bounded operator with the bound

∥[χR,Ωj(pj)]∥ ≤ 1

R
(2π)−dN/2

∫
RdN

|χ̂(K)| · |kj |dK.(62)

Similarly, by noting that 1l − χ̄ ∈ C∞
0 (RdN ) and [χ̄R,Ωj(pj)] = [1l − χ̄R,Ωj(pj)],

we have

∥[χ̄R,Ωj(pj)]∥ ≤ 1

R
(2π)−dN/2

∫
RdN

| ̂(1l− χ̄(K))| · |kj |dK.

Then the lemma follows.

Let j, j̄ ∈ C∞
0 (Rd) be another cutoff function such that j(y)2 + j̄(y)2 = 1

for every y ∈ Rd with j(y) = 1 for |y| ≤ 1 and j(y) = 0 for |y| ≥ 2. We set

jP (y) = j(y/P ), j̄P (y) = j̄(y/P ) for P > 0. The map

uP : Ǩ>σ → L2(Rd
y)⊕ L2(Rd

y), f 7→ jP f ⊕ j̄P f

is isometry, since ∥jP f ⊕ j̄P f∥2 = ∥f∥2. We also note that adjoint u∗
P maps

f ⊕ g ∈ L2(Rd
y)⊕ L2(Rd

y) to jP f + j̄P g ∈ L2(Rd). The operator

UP = 1lL2(RdN ) ⊗ Γ(uP ) : Ȟ>σ → Ȟ ⊗ F (L2(Rd
y))

is also an isometry, where Ȟ = L2(RdN )⊗ F (L2(Rd
y)). Let

Ȟ0,σ = Γ(F−1)H0,σΓ(F ), Ȟf,σ = Γ(F−1)Hf,σΓ(F ).

Lemma 4.3. (1) For every σ > 0, we have

χRȞ
V
σ χR = χRU

∗
P {ȞV

σ ⊗ 1l + 1l⊗ Ȟf,σ}UPχR + ô(1l),

as operators in H>σ, where ô(1l) denotes an operator such that ô(1l)(Ȟ0,σ + 1l)−1

is bounded and limP→∞ limR→∞ ∥ô(1l)(Ȟ0,σ + 1)−1∥ = 0. (2) We have

χ̄RȞ
V
σ χ̄R ≥ ΣV

σ χ̄
2
R + o(R0),

where o(R0) is a number such that limR→∞ o(R0) = 0.

Proof. See [GLL01, Lemma A.1].

Proposition 4.4. There exists a ground state of HV
σ .

Proof. By Lemma 4.2 and Lemma 4.3,

ȞV
σ = χRU

∗
P {ȞV

σ ⊗ 1l + 1l⊗ Ȟf,σ}UPχR + χ̄RȞ
V
σ χ̄R + ô(1l).
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Since ωσ ≥ σ, we have Ȟf,σ ≥ σ(1l − PΩ), where PΩ denotes the orthogonal

projection on the vacuum space {CΩ}. By this inequality and Lemma 4.3,

ȞV
σ ≥ (EV

σ + σ)χ2
R +ΣV

σ χ̄
2
R −K + ô(1l),

where K = σχRU
−1
P (1l ⊗ PΩ)UPχR = χ2

R ⊗ Γ(jP ). K is relatively compact with

respect to
∑N

j=1 Ωj+Ȟf,σ. Since, by (V),
∑N

j=1 Ωj+Ȟf,σ is also relatively bounded

with respect to ȞV
σ , K is then relatively compact with respect to ȞV

σ . By the

definition of ô(1l), there is a constant C independent of P and R such that ô(1l) ≥
−o(1l)(ȞV

σ + C). Thus, we have the operator inequality

(1 + o(1l))ȞV
σ − EV

σ + o(1l)−K ≥ σχ2
R + (ΣV

σ − EV
σ )χ̄2

R ≥ min{σ,ΣV
σ − EV

σ }.

Since K does not change the essential spectrum of ȞV
σ , for all P and R, we have

(1 + o(1l)) inf(σess(H
V
σ ))− EV

σ + o(1l) ≥ min{σ,ΣV
σ − EV

σ }.

Hence, by (60),

inf σess(H
V
σ )− EV

σ ≥ min{σ,ΣV
σ − EV

σ } > 0.

Therefore σ(ȞV
σ ) ∩ [EV

σ , EV
σ +min{σ,ΣV

σ − EV
σ }) is purely discrete spectrum. In

particular HV
σ has a ground state.

§4.2. Case σ = 0

Next we prove the existence of ground state of HV . For σ > 0, let Φσ ∈ H be a

normalized ground state of HV
σ . Let {σn} be a sequence such that limn→∞ σn = 0

and Φσn converges weakly to some vector Φ ∈ H . It is well known in [AH97]

that if Φ ̸= 0 then Φ is a ground state of HV . In the following we prove that a

subsequence of {Φσ}σ converges to some non-zero vector Φ.

Lemma 4.5. The energy bound sup0<σ≪1 (Φσ,H0Φσ) < ∞ holds. In addition

we suppose EV < ΣV . Then sup0<σ≪1 (Φσ, NΦσ) < ∞.

Proof. The former follows from the definition of Φσ, and the later from [Ger00,

Lemma IV2].

We denote the set of bounded operator on a Hilbert space K by B(K). For

each k ∈ Rd, let

v(k) =
N∑
j=1

αj√
2
λ̂j(−k)e−ikxj .

Then v(k) ∈ B(L2(RdN
X )). For each k ∈ Rd, we set

T (k) = (HV − EV + ω(k))−1(v(k)⊗ 1lF ).
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Then T (k) ∈ B(H ) for every k ∈ Rd, (Ψ, T (k)Φ) is measurable for all Φ,Ψ ∈ H ,

and
∫
Rd ∥T (k)∥2B(H ) dk < ∞. Hence T (·) can be regarded as a vector in the Banach

space L2(Rd;B(H )). Since Φσ ∈ D(N1/2), a(k)Φσ is well defined for almost every

k ∈ Rd. Let θs, s ∈ Rd, be the shift on L2(Rd;B(H )), i.e., for B ∈ L2(Rd;B(H )),

(θsB)(k) = B(k − s), a.e.k ∈ Rd.

Lemma 4.6. The map Rd ∋ s 7→
∥∥θsTe−δ|x|

∥∥
L2(Rd;B(H ))

∈ R is continuous.

Proof. Since θs is a translation, it is enough to show that ∥θsTeδ|x|∥ is continuous

at s = 0, i.e.,
∥∥θsTe−δ|x| − Te−δ|x|

∥∥
L2(Rd;B(H ))

converges to 0 as s → 0. We have∥∥∥θsTe−δ|x| − Te−δ|x|
∥∥∥
L2(Rd;B(H ))

(63)

≤

(∫
|k|≤C1

+

∫
|k|≥C2

+

∫
C1<|k|<C2

)∥∥∥T (k − s)e−δ|x| − T (k)e−δ|x|
∥∥∥2
B(H )

for 0 < C1 < C2. For C1 < |k| < C2, we write

T (k − s)e−δ|x| − T (k)e−δ|x|

= (HV − EV + ω(k))−1
( N∑

j=1

Ωj + 1l
)( N∑

j=1

Ωj + 1l
)−1

(v(k − s)− v(k))e−δ|x|

+ (HV − EV + ω(k))−1(HV − EV + ω(k − s))−1v(k − s)(ω(k − s)− ω(k))e−δ|x|.

Since for all k with C1 < |k| < C2

sup
C1≤|k|

∥∥∥∥∥∥(HV − EV + ω(k))−1
( N∑

j=1

Ωj + 1l
)∥∥∥∥∥∥ < ∞,

we have∥∥∥T (k − s)e−δ|x| − T (k)e−δ|x|
∥∥∥
B(H )

≤ C

∥∥∥∥∥∥
( N∑

j=1

Ωj + 1l
)−1

e−δ|x|(v(k − s)− v(k))

∥∥∥∥∥∥
B(H )

+ C
∥∥∥e−δ|x|v(k − s)

∥∥∥
B(H )

for some constant C > 0 depending on C1 and C2. Note that

( N∑
j=1

Ωj + 1l
)−1

e−δ|x|
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is compact. By Proposition 4.7 below, we have

lim
s→0

∫
C1<|k|<C2

∥∥∥∥∥∥
( N∑

j=1

Ωj + 1l
)−1

e−δ|x|(v(k − s)− v(k))

∥∥∥∥∥∥
2

B(H )

dk = 0.(64)

Next we see that

lim
s→0

∫
|k|≤C1

∥∥∥T (k − s)e−δ|x| − T (k)e−δ|x|
∥∥∥2
B(H )

dk

≤ 2 lim
s→0

∫
|k|≤C1

(
|λ̂(−k)|2

|ω(k)|2
+

|λ̂(−k + s)|2

|ω(−k + s)|2

)
dk ≤ 4

∫
k≤C1

|λ̂(−k)|2

ω(k)2
dk,

and the right-hand side above converges to zero as C1 → 0. Similarly,

lim
C2→∞

lim
s→0

∫
|k|≥C2

∥∥∥T (k − s)e−δ|x| − T (k)e−δ|x|
∥∥∥2
B(H )

dk = 0.(65)

Therefore, by combining (64) – (65), we complete the proof.

Proposition 4.7. [Ger06, proof of Lemma 3.2] Suppose that map Rd ∋ k 7→
m(k) ∈ B(L2(RdN )) is a weakly measurable map such that for all 0 < C1 < C2,∫

C1≤|k|≤C2

∥m(k)∥2B(L2(RdN )) dk < ∞,

and R be a compact operator on L2(RdN ). Then for all 0 < C1 < C2,

lim
s→0

∫
C1<|k|<C2

∥R(m(k − s)−m(k))∥2B(L2(RdN )) dk = 0.

Lemma 4.8. Let F ∈ C∞
0 (Rd) be a cutoff function with 0 ≤ F ≤ 1, F (s) = 1 for

|s| ≤ 1/2, F (s) = 0 for |s| ≥ 1. Let FR = FR(−i∇k) = F (−i∇k/R). Then

lim
R→∞

sup
0<σ≪1

(Φσ, dΓ(1l− FR)Φσ) = 0(66)

Proof. It is shown in [Ger00, proof of Proposition IV.3] that

lim
σ→0

∫
Rd

∥a(k)Φσ − T (k)Φσ∥2H dk = 0.

Then

(Φσ, dΓ(1l− FR)Φσ)H =

∫
Rd

(T (k)Φσ, (1l− FR)T (k)Φσ)H dk + o(σ0),
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where o(σ0) denotes a constant converges to 0 as σ → 0. By Cauchy-Schwarz

inequality yields that the right-hand side above has the upper bound by

∥T∥L2(Rd;B(H )) ·
∥∥∥(1l− FR)T (k)e

−δ|x|
∥∥∥
L2(Rd

k;B(H ))
·
∥∥∥eδ|x|Φσ

∥∥∥
H

+ o(σ0)(67)

Note that sup0<σ≪1 ∥eδ|x|Φσ∥H < ∞ for some δ > 0 by assumption. By the

Fourier transformation, we have∥∥∥(1l− FR)T (k)e
−δ|x|

∥∥∥2
L2(Rd;B(H ))

(68)

=

∫
Rd

∥∥∥∥(2π)−d/2

∫
Rd

dsF̂ (s)(1l− θ−s/R)T (k)e
−δ|x|

∥∥∥∥2
B(H )

dk

≤ (2π)−d

∫
Rd

|F̂ (s)|2 ·
∥∥∥(1l− θ−s/R)Te

−δ|x|
∥∥∥
L2(Rd;B(H ))

ds.

Notice that

|F̂ (s)|2 ·
∥∥∥(1l− θ−s/R)Te

−δ|x|
∥∥∥
L2(Rd;B(H ))

≤ |F̂ (s)|2 · 2∥λ̂j/ω∥,

and the right-hand-side above is integrable in s and independent of R. Moreover,

Lemma 4.6 implies that the integrand of the last term in (68) converges to 0

as R → ∞. Therefore, by the Lebesgue dominated convergence theorem, (68)

converges to 0 as R → ∞, and hence (66) holds.

Proposition 4.9. (Proof of Proposition 2.7) HV has a ground state.

Proof. The proof is parallel with that of [Ger00, Lemma IV.5]. By (1l−Γ(FR))
2 ≤

dΓ(1l− FR) and Lemma 4.8, we have

∥(1l− Γ(FR))Φσ∥ ≤ o(R0) + o(σ0).(69)

Let {σn}n be the subsequence such that lim
n→∞

σn = 0 and Φ = w-limn→∞Φσn .

By Lemmas 4.5 and 3.8, (69), for all ε > 0, there exist R0 > 0, λ0 > 0, n0 > 0

such that for all R > R0, λ0 > λ and n ≥ n0,

∥(1l− χ(H0 ≤ λ))Φσn∥ < ε, ∥(1l− χ(N ≤ λ))Φσn∥ < ε,

∥(1l− χ(|X| ≤ λ))Φσn∥ < ε, ∥(1l− Γ(FR))Φσn∥ < ε,

where χ(s ≤ λ) denotes a characteristic function of support {s ∈ R|s < λ}. Note

that K = χ(H0 ≤ λ)χ(N ≤ λ)χ(|X| ≤ λ)Γ(FR) is a compact operator. For all
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large R > 0, λ > 0, we have

∥Φ∥ ≥ ∥KΦ∥ − ∥(1l−K)Φ∥
≥ lim

n→∞
∥KΦσn∥ − ∥(1l−K)Φ∥

≥ lim inf
n→∞

(∥Φσn
∥ − ∥(1l−K)Φσn

∥)− ∥(1l−K)Φ∥

≥ 1− 4ε− ∥(1l−K)Φ∥ .

Clearly 1l−K strongly converges to 0 when R and λ goes to infinity. Since ε > 0 is

arbitrary, we have ∥Φ∥ = 1. Therefore HV has a normalized ground state Φ.

§5. Essential spectrum

We give general lemmas given in [HS08] without proofs.

Lemma 5.1. Let Kϵ, ϵ > 0, and K be self-adjoint operators on a Hilbert space K
and σess(Kϵ) = [ξϵ,∞). Suppose that lim

ϵ→0
Kϵ = K in the uniform resolvent sense,

and lim
ϵ→0

ξϵ = ξ. Then σess(K) = [ξ,∞). In particular lim
ϵ→0

infσess(Kϵ) = infσess(K).

Lemma 5.2. Let ∆ be the d-dimensional Laplacian. Assume that V (−∆+1)−1/2

is a compact operator. Then there exists a sequence {V ϵ}ϵ>0 such that V ϵ ∈
C∞

0 (Rd) and limϵ→0 V
ϵ(−∆+ 1)−1/2 = V (−∆+ 1)−1/2 uniformly.

Set

k0(β) = −
∑
j∈β

√
−∆j +

∑
i,j∈β

Vij , kV (β) = h0(β) +
∑
j∈β

Vj

with Vi, Vij ∈ L2
loc(Rd) such that Vi(−∆+1)−1/2 and Vij(−∆+1)−1/2 are compact

operators. We define K = kV (CN ). Let

ΞV = min
β⫋CN

{infσ(k0(β)) + infσ(kV (β))}(70)

be the lowest two cluster threshold of K.

Lemma 5.3. There exist sequences {V ϵ
i }ϵ, {V ϵ

ij}ϵ ⊂ C∞
0 (Rd), i, j = 1, ..., N , such

that

(1) lim
ϵ→0

ΞV (ϵ) = ΞV , (2) lim
ϵ→0

infσess(K(ϵ)) = infσess(K),

where ΞV (ϵ) (resp. K(ϵ) ) is ΞV (resp. K) with Vi and Vij replaced by V ϵ
i and V ϵ

ij ,

respectively.
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§6. Functional integration and energy comparison inequality

In this Appendix we shall show Lemma 3.2 and Proposition 3.4 by functional

integrations. In order to do that we take a Schrödinger representation instead of

the Fock representation. We quickly review the Schrödinger representation.

Let Q = S ′
R(Rd) be the set of real-valued Schwartz distributions on Rd. The

boson Fock space F can be identified with L2(Q, µ) with some Gaussian measure

µ such that

Eµ[ϕ(f)] = 0, Eµ[ϕ(f)ϕ(g)] =
1

2
(f, g)

for f, g ∈ L2
R(Rd). Then the scalar field operator in F is unitarily equivalent to

the Gaussian random variable ϕ(f) in L2(Q):

ϕ(f) ∼ 1√
2

∫
(a∗(k)f̂(−k) + a(k)f̂(k))dk

for f ∈ L2
R(Rd). Moreover Hf can be unitarily transformed to the self-adjoint

operator in L2(Q). We denote it by the same notation, Hf .

Furthermore we need the Euclidean quantum field to construct the functional

integral representation of the one-parameter semigroup generated by the Nelson

HamiltonianHV . Set QE = S ′
R(Rd+1). Thus L2(QE , µE) be the L

2 space endowed

with a Gaussian measure such that

EµE
[ϕE(F )] = 0, EµE

[ϕE(F )ϕE(G)] =
1

2
(F,G)L2(Rd+1).

Let jt : L2
R(Rd) → L2

R(Rd+1) be the family of isometries connecting L2(Q) and

L2(QE), which satisfies that

j∗s jt = e−|t−s|ω(−i∇)

for all s, t ∈ R. Let Js = Γ(js) be the second quantization of js. Then Js : L
2(Q) →

L2(QE) is also the family of isometries such that J∗
s Jt = e−|t−s|Hf for all s, t ∈ R.

We identify H with the set of L2(Q)-valued L2 function on RdN ,
∫ ⊕
RdN L2(Q)dX,

and HV can be expressed as

Hp ⊗ 1l + κ21l⊗Hf + κα

N∑
j=1

∫ ⊕

RdN

ϕ(λ(· − xj))dX(71)

in the Schrödinger representation.

Next we prepare a probabilistic description of the self-adjoint operator Hp.

Let (Xt)t≥0 = (X1
t , ..., X

N
t )t≥0 be the RdN -valued Lévy processes on a probability

space (D, B,Px) starting from x = 0 with the characteristic function (34). Set
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W (x1, ..., xN ) =
∑N

j=1 V (xj). Then we have the Feynman-Kac formula:

(f, e−Hpg) =

∫
RdN

Ex
P[f̄(X0)g(Xt)e

−
∫ t
0
W (Xs)ds].

The functional integral representation of e−tHV

can be obtained in the same

way as the standard Nelson model. Only the difference is the process associated

with kinetic term. Instead of the Brownian motion the Lévy process (Xj
t )t≥0 is

entered for e−tHV

. The Feynman-Kac type formula of e−tHV

is then given by

(F, e−tHV

G)H =∫
RdN

dxEx
P

[
e−

∫ t
0
W (Xs)ds(J0F (X0), e

−κϕE(
∑N

j=1

∫ t
0
jκ2sλj(·−Xs)ds)Jκ2tG(Xt))L2(QE)

]
.

Next we also consider the Feynman-Kac formula of

exp(−te−iTHV eiT ).

It is given by the composition of dN dimensional Brownian motion (B1
t , ..., B

N
t )t≥0

on a probability space (C,B,Wx) and N independent subordinators (T j
t )t≥0, j =

1, ..., N , on (Ωµ,Bµ, µ) such that Bj

T j
t

has the same distribution of Xj
t . Set BTt =

(Bj

T j
t

)t≥0,j=1,..,N . We have the proposition below:

Proposition 6.1. Let F,G ∈ H . Then

(F, e−te−iTHV eiTG)

= etEdiag

∫
RdN

dxEx,0
W×µ

[
e−

∫ t
0
(W+Veff )(BTs )ds

×
(
J0F (BT0), e

−iκ−1ϕE(Kt)Jκ2tG(BTt)
)
L2(QE)

]
.

Here Kt =
∑N

j=1

∫ T j
t

0
j(T j−1)κ2s

λj(· − Bj
s) ◦ dBj

s denotes the L2(Rd+1)-valued

Stratonovich integral and j(T j−1)t
is some isometries defined by (T j

t )t≥0.

Proof. See [Hir14, Theorem 3.15].

By using Proposition 6.1 we can compute the scaling limit of e−iTHV eiT as

κ → ∞. Note that (J0Φ, Jκ2tΨ) → (Φ, PΩΦ) as κ → ∞ for t ̸= 0. Then by the

functional integral representation Proposition 6.1 we immediately see that

lim
κ→∞

(F, e−te−iTHV eiTG) = (F, e−t(hV
eff−Ediag) ⊗ PΩG).(72)

Since hV
eff has a ground state, this suggests that HV also has a ground state for

sufficiently large κ. This has been indeed done in Section 3.

By functional integral representation we have the energy comparison bound.
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Proposition 6.2. It follows that infσ(HV ) ≤ infσ(hV
eff) + Ediag.

Proof. By Proposition 6.1 we have

|(F, e−te−iTHV eiTG)| ≤ etEdiag(|F |, e−t(hV
eff+Hf)|G|).

Then the proposition follows.

In the same way as Proposition 6.2 but HV is replaced by HV (β) or H0(β)

we have the lemma below.

Proposition 6.3. (Lemma 3.2) It follows that

infσ(H#(β)) ≤ infσ(h#
eff(β)) +

∑
j∈β

α2

2
∥λ̂j/

√
ω∥2, # = 0, V.(73)

Next we show Proposition 3.4. We can also construct the functional integral

representation of e−tHV
σ in the quite same as that of e−tHV

. Only the difference is

to replace λ̂j with λ̂j⌈ω(k)>σ.

Proposition 6.4. Proposition 3.4 follows.

Proof. Notice that Φσ = e−t(e−iTHV
σ eiT−EV

σ )Φσ. Then by Proposition 6.1 we can

see that

Φσ(x) = et(E
V
σ +Ediag)Ex,0

W×µ

[
e−

∫ t
0
Weff (BTs )dsJ∗

0 e
−iκ−1ϕE(Kt)Jκ2tΦσ(BTt)

]
.

Thus it is straightforward to see by the Schwartz inequality that

∥Φσ(x)∥F ≤ et(E
V
σ +Ediag)

(
Ex,0
W×µ

[
e−2

∫ t
0
Weff (BTs )ds

])1/2
∥Φσ∥H .

Note that limσ→0 E
V
σ = EV . Then the proposition follows, since BTt has the same

distribution with Xt.

§7. Bound E(0) ≤ E(P ) and continuity of E(·)

We next consider a fiber decomposition of the translation invariant relativistic

Schrödinger operator Hp =
∑N

j=1 Ωj + Veff in L2(RdN ).

For notational convenience and generalizations, we consider the Schrödinger

operator of the form Hp =
∑N

j=0 Ωj + v in L2(Rd(N+1)), where

v =
N∑
j=0

vij(xi − xj)

and we assume that v is relativistic Kato-class. Let Xt = (Xj
t )t≥0, j = 0, ..., N ,

be N + 1 independent Lévy processes with Ex
P[e

iu·Xj
t ] = e−tΩj(u), and set Xt =
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(Xj
t )t≥0,j=1,...,N . Let Ptot =

∑N
j=0 pj be the total momentum. Then Hp commutes

with Ptot, and then Hp
∼=
∫ ⊕
Rd k(P )dP , where k(P ) is a self-adjoint operator on

L2(RdN ). Let E(P ) = infσ(k(P )).

Theorem 7.1. (1) E(0) ≤ E(P ) for all P ∈ Rd. (2) Rd ∋ P 7→ E(P ) ∈ R is

continuous.

We shall prove this theorem by making use of a path integral representation.

Let us set x = (x0,x) ∈ Rd × RdN . Let U = Feix0·
∑N

j=1 pj : L2(Rd(N+1)) →
L2(Rd(N+1)) be the unitary operator, where F denotes the Fourier transformation

with respect to x0 variable, i.e., Ff(k,x) = (2π)−d/2
∫
f(x0,x)e

−ik·x0dx0. We have

(Uf)(k,x) = (2π)−d/2

∫
Rd

e−ik·x0f(x0, x1 + x0, · · · , xN + x0)dx0.

Thus we can directly see that (UPtotU
−1f)(k,x) = kf(k,x). Hence U diagonalize

Ptot, and thus UHpU
−1 =

∫
Rd k(P )dP . We have

(f, e−tHpg)L2(Rd(N+1)) =

∫
Rd(N+1)

dxE(x0,x)
P

[
f(X0)g(Xt)e

−
∫ t
0
v(Xs)ds

]
.(74)

We construct the Feynman-Kac formula of (f, e−tk(P )g)L2(RdN ). Let v = 0. Then

k(P ) = Ω0

P −
N∑
j=1

pj

+
N∑
j=1

Ωj(pj).

Since E(0,x)
P [eiX

0
t (P−

∑N
j=1 pj)] = e−tΩ0(P−

∑N
j=1 pj), we intuitively see that

(f, e−tk(P )g)L2(RdN ) =

∫
RdN

dxE(0,x)
P [f(X0)e

iX0
t ·(P−

∑N
j=1 pj)g(Xt)].

Note that e−iX0
t ·
∑N

j=1 pj denotes a translation, i.e.,

(e−iX0
t ·
∑N

j=1 pjg)(Xt) = g(X1
t −X0

t , · · · , XN
t −X0

t ).

In the next proposition we see the Feynman-Kac formula with potential.

Proposition 7.2. Let F,G ∈ L2(RdN ) and P ∈ Rd. Then

(F, e−tk(P )G)L2(RdN ) =

∫
RdN

dxE(0,x)
P

[
F (X0)e

−
∫ t
0
v(Xs)dseiX

0
t ·(P−

∑N
j=1 pj)G(Xt)

]
.

(75)

Proof. Let ξ ∈ Rd. First we see that

(f, e−tHpeiξ·Ptotg)L2(Rd(N+1)) =

∫
Rd

dPeiξ·P (f(P ), e−tk(P )g(P ))L2(RdN ),(76)
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where

f(P ) = (Uf)(P,x) = (2π)−d/2

∫
Rd

e−iP ·Xf(X,x1 +X, · · · , xN +X)dX,

and g(P ) is similarly given. Now we put f = fs = ps ⊗ F and g = gr = pr ⊗ G,

where F,G ∈ S (R3N ) and ps(X) = (2πs)−d exp(−|X|2/(2s)) is the heat kernel.

Note that fs → δ(x0)⊗ F as s ↓ 0. We have

lim
s↓0

∫
Rd

dPeiξ·P (fs(P ), e−tk(P )gr(P ))L2(RdN )

= (2π)−d/2

∫
Rd

dPeiξ·P (F, e−tk(P )gr(P ))L2(RdN ).

The right hand side above is the inverse Fourier transform of the function h : P →
(F, e−tk(P )gr(P ))L2(RdN ) and

lim
r↓0

h(P ) = (F, e−k(P )G)L2(RdN )(2π)
−d/2.(77)

On the other hand the left hand side of (76) can be represented by the Feynman-

Kac formula:

(fs, e
−tHpeiξ·Ptotgr)

=

∫
Rd(N+1)

dxE(x0,x)
P

[
fs(X0)e

−
∫ t
0
v(Xs)dsgr(X

0
t + ξ, · · · , XN

t + ξ)
]
.(78)

Taking s ↓ 0, we have∫
Rd(N+1)

dxE(x0,x)
P

[
fs(X0)e

−
∫ t
0
v(Xs)dsgr(X

0
t + ξ, · · · , XN

t + ξ)
]
→

E(0,0)
P

[∫
RdN

dxF (x)e−
∫ t
0
v(Xs+(0,x))dsgr(X

0
t + ξ,X1

t + ξ + x1 · · · , XN
t + ξ + xN )

]
.

The right hand side is the function with respect to ξ. We take the Fourier transform

with respect to ξ. Then

E(0,0)
P

[ ∫
RdN

dxF (x)e−
∫ t
0
v(Xs+(0,x))ds

× (2π)−d/2

∫
Rd

dξe−iξ·P gr(X
0
t + ξ,X1

t + ξ + x1, · · · , XN
t + ξ + xN )

]
.
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Take r ↓ 0. We have

E(0,0)
P

[∫
RdN

dxF (x)e−
∫ t
0
v(Xs+(0,x))dseiX

0
t ·P

×G(X1
t −X0

t + x1, · · · , XN
t −X0

t + xN )
]

=E(0,x)
P

[∫
RdN

dxF (X0)e
−

∫ t
0
v(Xs)dseiX

0
t (P−

∑N
j=1 pj)G(Xt)

]
.

Comparing (77) with the right hand side above, we conclude the theorem for

F,G ∈ S . By a limiting argument the theorem is valid for all f, g ∈ L2(RdN ).

Proof of Theorem 7.1: By Proposition 7.2 we have

|(f, e−tk(P )g)| ≤
∫
RdN

dxE(0,x)
P

[
|f(X0)|e−

∫ t
0
v(Xs)ds|e−iX0

t ·
∑N

j=1 pjg(Xt)|
]
.(79)

Since e−iX0
t ·
∑N

j=1 pj is the shift operator,

|e−iX0
t ·
∑N

j=1 pjg(Xt)| ≤ e−iX0
t ·
∑N

j=1 pj |g(Xt)|

follows. Then we obtain |(f, e−tk(P )g)| ≤ (|f |, e−tk(0)|g|) which yields (1).

Next we show (2). By Feynman Kac formula it is immediate to see that

(F, (e−tk(P ) − e−tk(Q))G)

=

∫
RdN

dxE(0,x)
P

[
F (X0)e

−
∫ t
0
v(Xs)dse−iX0

t ·
∑N

j=1 pj

(
i

∫ X0
t ·P

X0
t ·Q

eiθdθ

)
G(Xt)

]
.

Then

|(F, (e−tk(P ) − e−tk(Q))G)|
∥F∥∥G∥

≤ |P −Q| sup
x∈RdN

(
E(0,x)
P [|X0

t |2e−2
∫ t
0
v(Xs)ds]

)1/2
.

Since v is relativistic Kato-class,

sup
x∈RdN

E(0,x)
P [|X0

t |2e−2
∫ t
0
v(Xs)ds]

≤ sup
x∈RdN

E(0,x)
P [|X0

t |4]1/2 sup
x∈RdN

(
E(0,x)
P [e−4

∫ t
0
v(Xs)ds]

)1/2
< ∞.

Then we conclude that e−tk(P ) uniformly converges to e−tk(Q) as |P − Q| → 0.

Then (2) follows.
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