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Abstract

In this paper renormalized Nelson Hamiltonian in quantum field theory is
discussed. Gibbs measure associated with the ground state of the Nelson Hamil-
tonian is constructed, and the super exponential decay of the truncated number
operator of the ground state is shown.

1 The Nelson model

1.1 Definition

This is a review article of the recent work [21, 13]. One of the simplest model in quan-
tum field theory describing an interaction between non-relativistic quantum matters
and a scalar bose field is the so-called Nelson model which was introduced by Edward
Nelson [22, 23] to describe a renormalization of ultraviolet cutoff functions. He fortu-
nately proved the existence of the renormalized Hamiltonian by the operator theory.
In this article we study the spectrum of the renormalized Nelson Hamiltonian by us-
ing functional integrations and Gibbs measures associated with the ground state. In
particular we focus on investigating the properties of the ground state.

First we introduce the Nelson Hamiltonian with ultraviolet cutoff and secondly we
define the Nelson Hamiltonian without the cutoff by removing the cutoff.

Let

Hp = −1

2
∆ + V

be a Schrödinger operator in L2(R3). Let D(T ) be the domain of operator T . If V
is relatively bounded with respect to −1

2
∆ with a relative bound strictly smaller than

one, i.e.,

D(V ) ⊂ D(−1

2
∆), ∥V f∥ ≤ a∥ − 1

2
∆f∥+ b∥f∥
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for f ∈ D(V ) with some a < 1 and b ≥ 0. Then we say V ∈ RKato. If V ∈ RKato, then
Hp is self-adjoint on D(−1

2
∆) and essentially self-adjoint on any core of −∆ so that

Hp⌈D = −1
2
∆⌈D + V ⌈D. See [14].

Let us introduce the scalar quantum field. The following are standing assumptions
on dispersion relation ω, ultraviolet cutoff function φ̂ and potential V throughout this
section.

Assumption 1.1 (1) ω(k) = |k|. (2) φ̂(k) = φ̂(−k). (3) φ̂/ω, φ̂/
√
ω ∈ L2(R3). (3)

V ∈ RKato.

We define HM = {f |f̂/
√
ω ∈ L2(R3)} and HE = {f |f̂/√ωE ∈ L2(R3+1)}. Here

ωE = ωE(k, k0) =
√
|k|2 + k20. We also define the Fourier transform of HM and HE by

ĤM and ĤE, respectively. We also define real Hilbert spaces below:

M = {f ∈ HM |f is real-valued}, E = {f ∈ HE|f is real-valued}.

Both M and E are Hilbert spaces over R, and note that MC = HM and EC = HE.
Here HC denotes the complexification of H. Let (ϕ(f), f ∈ M ) be a family of Gaussian
random variables on a probability space (Q,Σ, µ) indexed by f ∈ M . Thus it follows
that

Eµ[ϕ(f)] = 0, Eµ[ϕ(f)ϕ(g)] =
1

2
(f̂ , ĝ)ĤM

.

Here EP [· · · ] describes the expectation with respect to probability measure P . The
Hilbert space L2(Q) is called the boson Fock space in this paper. We define ω̂ =
ω(−i∇) =

√
−∆. Let Hf = dΓ(ω̂) : L2(Q) → L2(Q) be the free field Hamiltonian,

where dΓ(ω̂) denotes the second quantization of ω̂. Thus Hf is the self-adjoint operator
in L2(Q) and satisfies that Hf1l = 0.

The Nelson Hamiltonian defined in the total Hilbert space

HN = L2(R3)⊗ L2(Q)

is given by

H = Hp ⊗ 1l + 1l⊗Hf +HI. (1.1)

Here HI describes the linear interaction and is given by

HI =

∫ ⊕

R3

ϕ(φ(· − x))dx

under the identification HN
∼=
∫ ⊕
R3 L

2(Q)dx. Here
∫ ⊕
R3 · · · dx denotes the constant fiber

direct integral [24, XIII.16]. Notice that we can also define the Nelson Hamiltonian on
L2(R3)⊗F , where F is the boson Fock space over HM . We refer to Appendix A and
C. Suppose Assumption 1.1. Then H is self-adjoint on D(−1

2
∆⊗ 1l)∩D(1l⊗Hf). This

can be proven by using the inequality ∥HIΦ∥ ≤ ∥φ̂/ω∥∥(Hf + 1l)1/2Φ and Kato-Rellich
theorem.
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1.2 Feynman-Kac-type formula

We define another Gaussian random variable to construct Feynman-Kac-type for-
mula. Let (ϕE(f), f ∈ E ) be the Gaussian random variable on a probability space
(QE,ΣE, µE) indexed by f ∈ E . ϕE(f) is called Euclidean field smeared by f . We will
define a family of isometries Jt from L2(Q) to L2(QE) through the second quantization
of a specific transformation jt from M to E . Define jt : M → E by

jt : f 7→ δt ⊗ f.

Here δt(x) = δ(x− t) is the delta function with mass at t. Thus δt ⊗ f = δt⊗ f , which
implies that jt preserves realness. It follows that

τ ∗s τt = e−|s−t|ω̂, s, t ∈ R.

In particular, jt is isometry between M and E for each t ∈ R. Let

Jt : L
2(Q) → L2(QE), t ∈ R,

be the family of isometries connecting L2(Q) and L2(QE), i.e.,

Jt1lM = 1lE, Jt : ϕ(f1) · · ·ϕ(fn) :=: ϕE(jtf1) · · ·ϕE(jtfn) :

and it satisfies that J∗tJse
−|s−t|Hf for s, t ∈ R. Here :

∏n
j=1 ϕE(fj) : is the wick product

of
∏n

j=1 ϕE(fj).

Let (Bt)t≥0 be the Brownian motion on a wiener space (Ω,F ,W x). Under wiener
measure W x, the Brownian motion starts from x almost surely at time t = 0. We
denote Ex for EW x . Let f, g ∈ L2(R3). Then the Feynman-Kac formula of e−tHp is
given by

(f, e−tHpg)L2(R3) =

∫
R3

dxEx
[
e−

∫ t
0 V (Bs)dsf̄(B0)g(Bt)

]
.

We can also construct Feynman-Kac-type formula for e−tH .

Theorem 1.2 (Feynman-Kac-type formula) Suppose Assumption 1.1. Then for
t ≥ 0 and F,G ∈ HN,

(F, e−tHG)HN
=

∫
R3

dxEx
[
e−

∫ t
0 V (Bs)ds(J0F (B0), e

−ϕE(
∫ t
0 jsφ(·−Bs)ds)JtG(Bt))L2(QE)

]
.

(1.2)

Here F,G ∈ HN are regarded as L2(Q)-valued L2-functions on R3.

Proof. For ε ≥ 0 let Hε
I = yε(HI), where yε(X) = X + εX2. Then Hε

I is bounded
below for ε > 0. We can also see that Hε = Hp ⊗ 1l + 1 ⊗ Hf + Hε

I is self-adjoint on
D(Hp ⊗ 1l + 1 ⊗ Hf) and essentially self-adjoint on any core of Hp ⊗ 1l + 1 ⊗ Hf for
0 ≤ ε < c with some c. In particular e−tH

ε → e−tH strongly as ε ↓ 0. For simplicity,
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first we assume that V ∈ C∞
0 (R3). Let h = −1

2
∆. By the Trotter-Kato product formula

[17, 18, 19] and the factorization formula e−|s−t|Hf = J∗sJt, we have

e−tH
ε

= s− lim
n→∞

J∗0

(
n−1∏
j=0

J jt
n
e−

t
n
Hε

Ie−
t
n
he−

t
n
V J∗jt

n

)
Jt, (1.3)

and we insert (1.3) into (F, e−tH
ε
G). Hence we have

(F, e−tH
ε

G) = lim
n→∞

(
J0F,

(
n−1∏
j=0

J jt
n
e−

t
n
Hε

Ie−
t
n
he−

t
n
V J∗jt

n

)
JtG

)
.

Here
∏n

j=1 tj = t1 · · · tn. Using the identity Jse
−Hε

IJs = Ese
−Hε

I(s)Es for s ∈ R, where
Hε

I(s) =
∫ ⊕
R3 yε (ϕE(jsφ(· − x))) dx and Es = JsJ

∗
s is a projection, we can see that

(F, e−tH
ε

G) = lim
n→∞

(
J0F,

(
n−1∏
j=0

E jt
n
e−

t
n
Hε

I(
jt
n
)e−

t
n
he−

t
n
VE jt

n

)
JtG

)
.

By the Markov property [26] of Es’s we can neglect Es’s on the right-hand side above.
Then

(F, e−tH
ε

G) = lim
n→∞

(
J0F,

(
n−1∏
j=0

e−
t
n
Hε

I(
jt
n
)e−

t
n
he−

t
n
V

)
JtG

)
.

The right-hand side above can be represented in terms of the Wiener measure by

(F, e−tH
ε

G) = lim
n→∞

∫
R3

dxEx
[
e
−

∑n−1
j=0 V (B jt

n
)
(
J0F (B0)e

−
∑n−1

j=0
t
n
Hε

I(
jt
n
)JtG(Bt)

)]
.

Note that s 7→ jsφ(· − Bs) is strongly continuous as a map R → E , almost surely.
Hence s 7→ ϕE(jsφ(· − Bs)) is also strongly continuous as a map R → L2(QE). Then
we can compute the limit as

(F, e−tH
ε

G) =

∫
R3

dxEx
[
e−

∫ t
0 V (Bs)ds

(
J0F (B0), e

−εQ−ϕE(
∫ t
0 jsφ(·−Bs)ds)JtG(Bt)

)]
.

Here Qt =
∫ t
0
ϕE(jsφ(· −Bs))

2ds. Take ε ↓ 0 on both sides above we have (1.2). Then
the theorem follows for V ∈ C∞

0 (R3). By a simple limiting argument we can prove
(1.2) for V ∈ RKato. □

2 Ultraviolet-renormalization

2.1 Pair interactions

We introduce a cutoff function by

φ̂ε(k) = e−ε|k|
2/21l|k|≥κ
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and the Nelson Hamiltonian H with cutoff function above is denoted by Hε. Here
κ > 0 is the sharp infrared cutoff parameter which is fixed throughout this paper, and
ε ultraviolet cutoff parameter.We note that it is not necessarily fix the cutoff function
as above, and the discussion below can be verified for more general cutoff functions.
We also suppose that

V ∈ L∞(R3).

In this section we consider the limit of ε ↓ 0. Nelson shows in [22] that there exists a
self-adjoint operator Hren such that Hε − g2Eε → Hren as ε ↓ 0 in the strong resolvent
sense by the operator theory. Here

Eε = −
∫
R3

e−ε|k|
2

2ω(k)
β(k)1l|k|≥κdk, ε > 0

is a renormalization term which goes to −∞ as ε ↓ 0, where β(k) is given by

β(k) =
1

ω(k) + |k|2/2
. (2.1)

By Theorem 1.2, for F = f ⊗ 1l and G = h⊗ 1l we have

(f ⊗ 1l, e−2THεh⊗ 1l) =

∫
R3

dxEx
[
f(B−T )h(BT )e

−
∫ T
−T V (Bs)dse

g2

2
ST
ε

]
,

where (Bt)t∈R is two-sided 3-dimensional Brownian motion,

STε =

∫ T

−T
ds

∫ T

−T
dtWε(Bs −Bt, s− t)

is called the pair interaction, and

Wε(x, t) =

∫
R3

e−ε|k|
2
e−ikxe−|t|ω(k)

2ω(k)
1l|k|≥κdk.

2.2 Functional integral representations

Consider the function on R3 × R:

φε(x, t) =

∫
R3

e−ε|k|
2
e−ikx−|t|ω(k)

2ω(k)
β(k)1l|k|≥κdk, ε ≥ 0.

Note that Eε = −φε(0, 0). Next proposition is a key ingredient.

Proposition 2.1 ([7] and [12, Chapter 8]) It follows that

lim
ε↓0

Ex
[
e−

∫ T
−T V (Bs)dse

g2

2
(ST

ε −4Tφε(0,0))

]
= Ex

[
e−

∫ T
−T V (Bs)dse

g2

2
Sren
0

]
.

where Sren
0 is the random process defined by

Sren
0 = −2

∫ T

−T
φ0(Bs −BT , s− T )ds+ 2

∫ T

−T

(∫ t

−T
∇φ0(Bs −Bt, s− t)ds

)
dBt.
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We recall that (ϕ(f), f ∈ M ) and (ϕE(F ), F ∈ E ) are families of Gaussian random
variables indexed by M and E , respectively. Then it follows that

ϕE(F ) ∼=
1√
2
(a∗E(F̂ ) + aE(

˜̂
F )), F̂ ∈ ĤE, (2.2)

ϕ(f) ∼=
1√
2
(a∗M(f̂) + aM(

˜̂
f)), f̂ ∈ ĤM , (2.3)

where a∗E(F̂ ) and a
∗
M(f̂) (resp. aE(F̂ ) and aM(f̂)) are creation operators (resp. anni-

hilation operators) on boson Fock space F (ĤE) and F (ĤM), respectively, i.e.,

[a∗M(f̂), aM(ĝ)] = (f̂ , ĝ)ĤM
= (f̂/

√
ω, ĝ/

√
ω),

[a∗E(F̂ ), aE(Ĝ)] = (F̂ , Ĝ)ĤE
= (F̂ /ωE, Ĝ/ωE),

where ωE =
√
ω(k)2 + |k0|2. Note that a∗M(f), aM(f), a∗E(f) and aE(f) are linear in

f . We given a functional integral representation of (F, e−THrenG) in [7] but only for
F,G ∈ D, where D is some dense subset. Let F,G ∈ HN and we define

U ε
T (k) = − g√

2

∫ T

−T
e−|s+T |ω(k)e−ikBse−ε|k|

2/21l|k|≥κds,

Ũ ε
T (k) = − g√

2

∫ T

−T
e−|s−T |ω(k)eikBse−ε|k|

2/21l|k|≥κds.

Set U0
T = UT and Ũ0

T = ŨT . Exponential of annihilation operators and creation op-
erators eaM (f) and ea

∗
M (f) are discussed in Appendix. These are closed operators and

ea
∗
M (f)e−tHf and e−tHfeaM (f) are bounded operators for t > 0 if f/

√
ω ∈ ĤM , i.e.,

f/ω, f/
√
ω ∈ L2(R3). Set

Sren
ε = STε − 4Tφε(0, 0).

Theorem 2.2 ([21]) It follows that UT , ŨT ∈ ĤM a.s. i.e., UT/
√
ω, ŨT/

√
ω ∈ L2(R3),

and

(F, e−2THrenG) =

∫
R3

dxEx
[
e−

∫ T
−T V (Bs)dse

g2

2
Sren
0

(
F (B−T ), e

a∗M (UT )e−2THfeaM (ŨT )G(BT )
)]

.

(2.4)

Proof. We show only outline of the proof. Refer to see [12, Section 8.10] and [21].

Let ϱε = (e−ε|k|
2/21l|k|≥κ)̌. Let ε > 0. We then have

(F, e−2T (Hε−Eε)G)

=

∫
R3

dxEx
[
e−

∫ T
−T V (Bs)dse

g2

2
Sren
ε (F (B−T ), J

∗
−T e

−gϕE(
∫ T
−T jsϱε(·−Bs)ds)JTG(BT ))

]
.
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By the identification

ϕE

(∫ T

−T
jsϱε(· −Bs)ds

)
∼=

1√
2

{
a∗E

(∫ T

−T̂
jsϱεe

−ikBsds

)
+ aE

(∫ T

−T̃̂
jsϱεe

ikBsds

)}

and 1
2

∥∥∥∫ T−T ĵsϱεe−ikBsds
∥∥∥2
ĤE

= STε , the Baker-Campbell-Hausdorff formula yields that

e−gϕ(
∫ T
−T jsϱε(·−Bs)ds) =e

g2

2
ST
εe

−a∗M ( g√
2

∫ T
−T ĵsϱεe

−ikBsds)
e
−aM ( g√

2

∫ T
−T

˜̂
jsϱεeikBsds)

.

Then we can compute as

J∗−T e
−gϕ(

∫ T
−T jsϱε(·−Bs)ds)JT = e

g2

2
ST
ε ea

∗
M (Uε

T )e−2THfeaM (Ũε
T ).

Thus we have a functional integral representation of semigroup e−2T (Hε−Eε) in terms of

ea
∗
M (Uε

T )e−2THfeaM (Ũε
T ) by (F, e−2T (Hε−Eε)G) =

∫
R3 Pε(x)dx, where

Pε(x) = Ex
[
e−

∫ T
−T V (Bs)dse

g2

2
Sren
ε (F (B−T ), e

a∗M (Uε
T )e−2THfeaM (Ũε

T )G(BT ))

]
.

We can check that Ex[
∫
R3 |UT/

√
ω|2dk] < ∞. Then we can conclude that UT/

√
ω ∈

L2(R3) and ŨT/
√
ω ∈ L2(R3) a.s. By using the uniform continuity of the map f 7→

ea
∗
M (f)e−THf discussed in Proposition B.8 we can show that Pε ∈ L1(R3) and Pε → P

in L1 as ε ↓ 0. Then the proof is complete. □
One crucial corollary of Theorem 2.2 is the positivity improving property [5] of the

semigroup e−tHren .

Corollary 2.3 ([21]) Let t > 0. Then e−tHren is positivity improving. In particular if
the ground state of Hren exists, then it is unique.

Proof. Let Φ ∈ L2(Q) be non-negative. Then Φ can be approximated by functions
{Φn}∞n=1 such that Φn = Fn(ϕ(f

n
1 ), · · · , ϕ(fnmn

)), where Fn ∈ S (Rmn) is a non-negative

function, and f ji ∈ M . Suppose that Ψ = Fn(ϕ(f1), · · · , ϕ(fm)). For g ∈ M we have

eaM (g)Ψ = Fn(ϕ(f1) + (g, f1)HM
, · · · , ϕ(fm) + (g, fm)HM

) ≥ 0.

The linear hull of functions like Ψ is dense, and e−tHf is positivity improving [24,

XIII.12]. Then e−tHfeaM (g) is positivity improving for any t > 0. In particular the

bounded operator ea
∗
M (UT )e−2THfeaM (ŨT ) is also positivity improving for any T > 0. Let

F,G ∈ L2(R3 ×Q) be non-negative functions. By formula (2.4) we have

(F, e−2THrenG) =

∫
R3

dxEx
[
e−

∫ T
−T V (Bs)dse

g2

2
Sren
0

(
F (B−T ), e

a∗M (UT )e−2THfeaM (ŨT )G(BT )
)]
> 0.

Then the corollary follows. □
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2.3 Kato-class potentials

A potential V : Rd → R is said to belong to Kato-class relative to the Laplacian [16, 4]
whenever

lim
t↓0

sup
x∈Rd

ExW
[∫ t

0

|V (Bs)|ds
]
= 0

We denote by Kd the set of all such potentials. Let 0 ≤ V ∈ Kd. Then there exist
β, γ > 0 such that

sup
x∈Rd

E[e
∫ t
0 V (Wx

s )ds] ≤ γetβ.

See [27] and [20, Lemma 3.38] for this.

Theorem 2.4 Let V ∈ K3. Let us define the quadratic form on HN ×HN by

Q(F,G) =

∫
R3

dxEx
[
e−

∫ T
−T V (Bs)dse

g2

2
Sren
0

(
F (B−T ), e

a∗M (UT )e−2THfeaM (ŨT )G(BT )
)]

.

Then there exists a self-adjoint operator K such that Q(F,G) = (F, e−2TKG).

Proof. Let

Pε(x) = Ex
[
e−

∫ T
−T V (Bs)dse

g2

2
Sren
0

(
F (B−T ), e

a∗M (Uε
T )e−2THfeaM (Ũε

T )G(BT )
)]

.

We then see that |Pε(x)| ≤ C∥F (x)∥∥G(B2T )∥ with some constant C independent of
x ∈ R3, furthermore it can be seen that |Pε(x)− P (x)| ≤ Cε∥F (x)∥∥G(B2T )∥ with Cε
such that limε↓0Cε = 0. Thus Q(F,G) = (F, STG) with a bounded operator ST by the
Riesz representation theorem [15, p.322]. We can see that

S0 = 1l.

Let

Qε(F,G) =

∫
R3

dxEx
[
e−

∫ T
−T V (Bs)dse

g2

2
Sren
ε

(
F (B−T ), e

a∗M (Uε
T )e−2THfeaM (Ũε

T )G(BT )
)]

.

Then for each ε > 0, we see that Qε(F,G) = (F, e2T (Hε−Eε)G) and (F, e2T (Hε−Eε)G) →
(F, STG) as ε ↓ 0. In particular

(F, SSSTG) = lim
ε↓0

(F, e2S(Hε−Eε)e2T (Hε−Eε)G) = lim
ε↓0

(F, e2(S+T )(Hε−Eε)G) = (F, SS+TG).

Hence
SSST = SS+T

for any S, T ≥ 0. Then ST satisfies the semi-group property. It is also easily seen that
T 7→ (F, STG) is continuous. This implies that T 7→ ST is strongly continuous. Thus
by the Stone theorem for semigroup [20], the theorem follows. □
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3 Gibbs measures

3.1 Local convergence

Under some assumptions in e.g., [1, 2, 28, 6] it is shown that H has the unique ground
state. In [10, 13] the existence of the ground state is shown for Hren. In this section we
assume the existence of ground state of Hren. On the other hand properties of ground
state of H is shown in [3] by using a path measure. In this paper we can see the
properties of ground state of Hren by using the so-called Gibbs measure.

The ground state of Hren is denoted by Ψg and HrenΨg = EΨg. Then Ψg > 0 is
proven. In particular

Ψg = lim
t→0

lim
ε↓0

1

∥e−tHεf ⊗ 1l∥
e−tHεf ⊗ 1l,

and it follows that

(Ψg, OΨg) = lim
t→0

lim
ε↓0

1

∥e−tHεf ⊗ 1l∥2
(e−tHεf ⊗ 1l, Oe−tHεf ⊗ 1l).

For some operator O we can construct a functional integral representation of the right-
hand side above, and which has the form of EµrenT

[fT,O] with some probability measure
µren
T and some integrand fT,O. Formally we have

(Ψg, OΨg) = Eµren∞ [f∞,O]. (3.1)

The purpose of this section is to construct µren
T and to show the convergence µren

T → µren
∞

as t → ∞ in the local sense. Using the formula (3.1) we can study the properties of
ground state Ψg. This type of formulas are actually established for the Nelson model
in [3] and [12, Section 8.8.], the so-called spin-boson model in [9] and semi-relativistic
Pauli-Fierz model in [11]. We summarize them in [12]. The procedure is similar to
those in [9, 11]. We shall show only the result concerning the existence of limit measure
µren
∞ .
Let X be the set of R3-valued continuous paths on R:

X = C(R;R3).

Let FT = σ(Br,−t ≤ r ≤ t) be the natural filtration of Brownian motion (Bt)t∈R.

Then we set GT =
∪

0≤s≤T

Fs and G =
∪
0≤s

Fs are finitely additive families of sets. We

define
L ren
T = f(B−T )f(BT )e

Sren
0 e−

∫ T
−T V (Bs)ds

and define the family of path measures µren
T , T > 0, on (X ,B(X )) by

µren
T (A) =

1

ZT

∫
R3

dxEx[1lAL ren
T ],

where ZT is the normalizing constant. We can show that µren
T converges to a probability

measure µren
∞ in the local sense.
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Theorem 3.1 ([13]) The family of probability measures {µren
T }T≥0 on (X ,B(X ))

converges to a probability measure µren
∞ in the local sense, i.e., µren

T (A) → µren
∞ (A)

as T → ∞ for each A ∈ G , and µren
∞ is independent of f .

In Theorem 3.1 we do not know the explicit form of µren
∞ but we see that

µren
∞ (A) = e2Es

∫
R3

dxEx [1lA (Ψg(B−s), J
ren
s Ψg(Bs))] = µren

∞ (A)

for A ∈ Fs. Here Jrens = e−
∫ s
−s V (Br)dre

g2

2
Sren
0 ea

∗
M (Us)e−2THfeaM (Ũs).

3.2 Applications

By using the measure µren
∞ constructed in the previous section we can also express

(Ψg, OΨg). In order to factorize e−tHf we need an extra Hilbert space HE in addi-
tion to HM , and define js : HM → HE such that j∗s jt = e−|s−t|ω̂, by which we can
construct Jt = Γ(jt) and it satisfies J∗sJt = e−|s−t|Hf . In a similar way we can con-
struct a functional integral representation of (e−THF, e−βdΓ(ρ)e−THF ), where ρ is a
non-negative measurable function. In order to have a functional integral represen-
tation of (e−THF, e−βdΓ(ρ)e−THF ), we prepare an extra Hilbert space Hρ to factor-
ize e−βdΓ(ρ). We set Hρ = L2(R3+2) and the Fourier transform of Hρ is denoted by

Ĥρ = FL2(R3+2), where F denotes the Fourier transform on Hρ. The scalar product

on Ĥρ (resp. Hρ) is denoted by (·, ·)ρ̂ (resp. (·, ·)ρ). Define a family of Gaussian ran-
dom variables (ϕρ(f), f ∈ L2

real(R3+2)) on a probability space (Qρ,Σρ, µρ) indexed by

L2
real(R3+2). For f̂ ∈ Ĥρ the variables of f̂ is denoted by (k, k0, k1) ∈ R3 × R × R.

Define a family of isometries ξs : HE → Hρ by

ξ̂sf(k, k0, k1) =
e−isk1√

π

1√
ω(k)2 + |k0|2

√
ρ(k)

ρ(k)2 + |k1|2
f̂(k, k0).

It follows that ξ∗sξt = e−|s−t|ρ(−i∇)⊗1l for s, t ∈ R. Here we used identification L2(Rd+1) ∼=
L2(R3) ⊗ L2(R). We define a family of second quantizations Ξs by Ξs = Γ(ξs) :
L2(Q) → L2(Qρ). Let ρ̂ = ρ(−i∇). We can see that Ξs is isometry for each s and
furthermore it factorize e−tdΓ(ρ̂⊗1l). It follows that Ξ∗

sΞt = e−|s−t|dΓ(ρ̂⊗1l) for s, t ∈ R, and
the intertwining property Jte

−sdΓ(ρ̂) = e−sdΓ(ρ̂⊗1l)Jt follows. Using these facts we can
have the theorem below. Suppose Assumption 1.1. Let ρ be a positive function on R3.
Let F,G ∈ L2(Q) and β > 0. Then it follows that

(e−THF, e−βdΓ(ρ̂)e−THG)

=

∫
R3

dxEx
[
e−

∫ T
−T V (Bs)ds(Ξ0J−TF (B−T ), e

−ϕρ(Kρ
T )ΞβJTG(BT ))L2(Qρ)

]
, (3.2)

where

Kρ
T =

∫ 0

−T
ξ0jsφ(· −Bs)ds+

∫ T

0

ξβjsφ(· −Bs)ds.
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Lemma 3.2 Suppose Assumption 1.1. Let ρ be a positive function on R3. Let fT =
e−THf ⊗ 1l. Then it follows that

(fT , e
−βdΓ(ρ̂)fT )

∥fT∥2
= EµrenT

[
e−

∫ 0
−T ds

∫ T
0 dtWβ(Bs−Bt,s−t)

]
,

where Wβ(x, t) =
∫
R3

|φ̂(k)|2
2ω(k)

e−|t|ω(k)e−ikx(1− e−βρ(k))dk.

Proof. We have

(fT , e
−βdΓ(ρ̂)fT ) =

∫
R3

dxEx
[
e−

∫ T
−T V (Bs)ds(1l, e−ϕρ(K

ρ
T )1l)L2(Qρ)

]
. (3.3)

We can compute as (1l, e−ϕρ(K
ρ
T )1l) = e

1
2
∥Kρ

T ∥2ρ and

∥Kρ
T∥

2
ρ =

∥∥∥∥∫ 0

−T
ξ0jsφ(· −Bs)ds

∥∥∥∥2 + ∥∥∥∥∫ T

0

ξβjsφ(· −Bs)ds

∥∥∥∥2
+ 2ℜ

(∫ 0

−T
ξ0jsφ(· −Bs)ds,

∫ T

0

ξβjsφ(· −Bs)ds

)
.

Since ξ̂∗0ξβf(k, k0) = e−βρ(k)f̂(k, k0), we have

∥Kρ
T∥

2
ρ =

∫ T

−T
ds

∫ T

−T
dtW (Bs −Bt, s− t)− 2

∫ 0

−T
ds

∫ T

0

dtWβ(Bs −Bt, s− t).

Then

(fT , e
−βdΓ(ρ)fT )

∥fT∥2
=

∫
R3 dxEx

[
e−

∫ T
−T V (Bs)dse

1
2

∫ T
−T ds

∫ T
−T dtW e−

∫ 0
−T ds

∫ T
0 dtWβ

]
∫
R3 dxEx

[
e−

∫ T
−T V (Bs)dse

1
2

∫ T
−T ds

∫ T
−T dtW

]
= EµrenT

[
e−

∫ 0
−T ds

∫ T
0 dtWβ(Bs−Bt,s−t)

]
and the lemma follows. □

Let f ∈ L2(R3) and T > 0. We define fT = e−THrenf ⊗ 1l and f εT = e−THεf ⊗ 1l. We
define Λ-truncated number operator NΛ by dΓ(1l|k|<Λ) which is formally written as

NΛ =

∫
|k|<Λ

a∗M(k)aM(k)dk

and NΛ counts the number of bosons with momentum smaller than Λ. We have

(fT , e
−βNΛfT ) =

∫
R3

dxEx
[
f(B−T )f(BT )e

−
∫ T
−T V (Bs)dse−(1−e−β)

∫ 0
−T ds

∫ T
0 dtWΛ(Bs−Bt,s−t)eS

ren
0

]
.

(3.4)

Here WΛ(X, t) =
∫
|k|<Λ

e−|s−t|ω(k)

ω(k)
e−ik(Bs−Bt)dk.
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Corollary 3.3 (Super-exponential decay [13]) Let β ∈ C and suppose Assump-
tion 1.1. Then Ψg ∈ D(e−βN) and it follows that

(Ψg, e
−βNΛΨg) = Eµren∞

[
e−(1−e−β)

∫ 0
−T ds

∫ T
0 dtWΛ(Bs−Bt,s−t)

]
. (3.5)

In a similar manner to the proof of the super-exponential decay of Ψg we can also
show a Gaussian domination of the ground state Ψg by the path measure µren

∞ . We
only mention the statement.

Corollary 3.4 (Gaussian dominations [13]) Let ĝ/
√
ω ∈ L2(R3), ĝ/ω2 ∈ L1(R3)

and β < 1/∥ĝ/
√
ω∥2. Suppose Assumption 1.1. Then Ψg ∈ D(e(β/2)ϕ(g)

2
) and

∥e(β/2)ϕ(g)2Ψg∥2 =
1√

1− β∥ĝ/
√
ω∥2

Eµren∞

[
e

βK(g)2

1−β∥ĝ/
√
ω∥2

]
, (3.6)

where K(g) denotes the random variable defined by

K(g) =
1

2

∫ ∞

−∞
dr

∫
κ≥|k|

dk
e−|r|ω(k)ĝ(k)e−ikBr

ω(k)
.

In particular limβ→∥ĝ/
√
ω∥−2 ∥e(β/2)ϕ(g)2Ψg∥ = ∞.

A Boson Fock space

In this appendix we quickly review boson Fock space for reader’s convenient. Let W
be a separable Hilbert space over C. Consider the operation ⊗n

s of n-fold symmetric
tensor product defined through the symmetrization operator

Sn(f1 ⊗ · · · ⊗ fn) =
1

n!

∑
π∈℘n

fπ(1) ⊗ · · · ⊗ fπ(n), n ≥ 1,

where f1, . . . , fn ∈ W and ℘n denotes the permutation group of order n. Define
F (n) = Sn(⊗nW ), where ⊗0

sW = C. The space F = ⊕∞
n=0F

(n), where ⊕∞
n=0 is

understood to be completed direct sum, is called boson Fock space over W . F is
a Hilbert space endowed with the scalar product (Ψ,Φ)F =

∑∞
n=0(Ψ

(n),Φ(n))F (n) .
The vector Ω = (1, 0, 0, . . . ) is called Fock vacuum. There are two fundamental boson
particle operators, the creation operator denoted by a∗(f) and the annihilation operator
by a(f) defined by

(a∗(f)Ψ)(0) = 0, (a∗(f)Ψ)(n) =
√
nSn(f ⊗Ψ(n−1)), n ≥ 1

with domain D(a∗(f)) =
{
(Ψ(n))n≥0 ∈ F

∣∣∣ ∑∞
n=1 n∥Sn(f ⊗ Ψ(n−1))∥2

F (n) < ∞
}

and

a(f) = (a∗(f̄))∗. It is known that

Ffin = {(Ψ(n))n≥0 ∈ F | Ψ(m) = 0 for all m ≥M with someM}

12



is dense. The field operators a, a∗ leave Ffin invariant and satisfy the canonical com-
mutation relations

[a(f), a∗(g)] = (f̄ , g)1, [a(f), a(g)] = 0, [a∗(f), a∗(g)] = 0

on Ffin. Given a bounded operator T on W , the second quantization of T is the
operator Γ(T ) on F defined by Γ(T ) = ⊕∞

n=0(⊗nT ). Here it is understood that ⊗0T =
1l. For a contraction operator T , the second quantization Γ(T ) is also a contraction
on F . For a self-adjoint operator h on W , {Γ(eith) : t ∈ R} is a strongly continuous
one-parameter unitary group on F . Then by the Stone theorem there exists a unique
self-adjoint operator dΓ(h) on F such that Γ(eith) = eitdΓ(h). The operator dΓ(h) is
called the second quantization of h. Thus the action of dΓ(h) is given by dΓ(h)Ω = 0
and

dΓ(h)a∗(f1) · · · a∗(fn)Ω =
n∑
j=1

a∗(f1) · · · a∗(hfj) · · · a∗(fn)Ω.

We use the following facts below. The superscript in a♯ indicates that either of the
creation or annihilation operators is meant.

Proposition A.1 (Relative bounds) Let h be a positive self-adjoint operator, and
f ∈ D(h−1/2), Ψ ∈ D(dΓ(h)1/2). Then Ψ ∈ D(a♯(f)) and

∥a(f)Ψ∥ ≤ ∥h−1/2f∥∥dΓ(h)1/2Ψ∥, (A.1)

∥a∗(f)Ψ∥ ≤ ∥h−1/2f∥∥dΓ(h)1/2Ψ∥+ ∥f∥∥Ψ∥. (A.2)

In particular, D(dΓ(h)1/2) ⊂ D(a♯(f)), whenever f ∈ D(h−1/2).

To obtain the commutation relations between a♯(f) and dΓ(h), suppose that f ∈
D(h−1/2) ∩D(h). Then

[dΓ(h), a∗(f)]Ψ = a∗(hf)Ψ, [dΓ(h), a(f)]Ψ = −a(hf)Ψ, (A.3)

for Ψ ∈ D(dΓ(h)3/2) ∩ Ffin.
The Segal field Φ(f) on the boson Fock space F is defined by

Φ(f) =
1√
2
(a∗(f̄) + a(f)), f ∈ W ,

and its conjugate momentum by

Π(f) =
i√
2
(a∗(f̄)− a(f)), f ∈ W .

Here f̄ denotes the complex conjugate of f . It is straightforward to check that
[Φ(f),Π(g)] = iRe(f, g), [Φ(f),Φ(g)] = iIm(f, g) and [Π(f),Π(g)] = iIm(f, g). In
particular, for real-valued f and g the canonical commutation relationsbecome

[Φ(f),Π(g)] = i(f, g), [Φ(f),Φ(g)] = [Π(f),Π(g)] = 0.
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B Exponential of annihilation operators and cre-

ation operators

In this appendix we discuss exponent of annihilation operators and creation operators.
We learned this in [8, 21]. Let f ∈ W and we define the exponential of creation
operators Ff by

Ff =
∞∑
n=0

1

n!
a∗(f)n

and D(Ff ) =
{
Φ ∈ ∩∞

n=1D(a∗(f)n)
∣∣∣∑∞

n=0
1
n!
∥a∗(f)nΦ∥ <∞

}
. Let Φ ∈ F (m). Thus

we have

∥FfΦ∥ ≤ ∥Φ∥+
∞∑
n=1

√
m+ n− 1 · · ·

√
m

n!
∥f∥n∥Φ∥ <∞.

Then Ffin ⊂ D(Ff ) follows. We also define the exponential of annihilation operators
by

Gf =
∞∑
n=0

1

n!
a(f)n

with the domain D(Gf ) =
{
Φ ∈ ∩∞

n=1D(a(f))
∣∣∣∑∞

n=0
1
n!
∥a(f)nΦ∥ <∞

}
. We simply

write Ff = ea
∗(f) and Gf = ea(f̄) whenever confusion may arise. Then we can see that

(ea
∗(f))∗ ⊃ ea(f̄) and this implies that ea

∗(f) is closable. The closure of ea
∗(f) is denoted

by the same symbol. Similarly the closure of ea(f) is denoted by the same symbol. The
vector defined by C(f) = ea

∗(f)Ω is called the coherent vector.

Proposition B.1 (Algebraic properties) Let f, g ∈ W and P be a polynomial.
Then

(1) ea
∗(g)ea

∗(f)Ω = ea
∗(f+g)Ω,

(2) P (a(g))ea
∗(f)Ω = P ((ḡ, f))ea

∗(f)Ω,

(3) ea(g)ea
∗(f)Ω = e(ḡ,f)ea

∗(f)Ω.

Proof. It can be seen that C(g) ∈ ∩∞
n=0D(a∗(f)n) and that∥∥∥∥∥C(f + g)−
M∑
n=0

a∗(f)n

n!
C(g)

∥∥∥∥∥→ 0

asM → ∞. Then C(f) ∈ D(ea
∗(g)) and ea

∗(f)C(g) = C(f +g) follow by the closedness
of ea

∗(f). We can also see that a(g)ea
∗(f) = ea

∗(f)a(g)+(ḡ, f)ea
∗(f) on Ffin. In particular

we have a(g)C(f) = (ḡ, f)C(f) and recursively we can get (2) for any polynomial P .
Then (1) and (2) are proven. Since

M∑
n=0

a(g)n

n!
ea

∗(f)Ω =
M∑
n=0

(ḡ, f)n

n!
ea

∗(f)Ω
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and the right-hand side converges to e(ḡ,f)ea
∗(f)Ω as M → ∞. Then (3) follows from

the closedness of ea(g). □
Next we see the continuity of map W ∋ f 7→ ea

♯(f)Φ ∈ F .

Proposition B.2 (Continuity) Let Φ ∈ Ffin. Then the map W ∋ f 7→ ea
♯(f)Φ ∈ F

is continuous.

Proof. Suppose that fm → f strongly in W as m → ∞. Let Φ ∈ F (N). Then

ea(fm)Φ =
∑N

n=0
a(fm)n

n!
Φ. Since

∑N
n=0

a(fm)n

n!
Φ →

∑N
n=0

a(f)n

n!
Φ as m→ ∞,

lim
m→∞

ea(fm)Φ = ea(f)Φ

follows. Next we consider the continuity of f 7→ ea
∗(f)Φ. Let ε > 0 and ∥fm − f∥ < ε

for sufficiently large m. We fix c > 0 such that ∥fm∥ < c for all m. Then we can see
that ∥∥ea∗(fm)Φ− ea

∗(f)Φ
∥∥

≤
∞∑
n=1

√
(N + n− 1) · · ·

√
N

n!

n−1∑
k=0

∥fm∥k∥fm − f∥∥f∥n−k−1∥Φ∥

≤ ε
∞∑
n=1

cn−1
√

(N + n− 1) · · ·
√
N

(n− 1)!
∥Φ∥.

Then
∥∥ea∗(fn)Φ− ea

∗(f)Φ
∥∥→ 0 as n→ ∞ follows, and the proof is complete. □

Proposition B.3 (Differentiability) Let h be a self-adjoint operator in W , f ∈
D(h) and Φ ∈ Ffin. Then the map R ∋ t 7→ ea

♯(eithf)Φ ∈ F is strongly differentiable
with

d

dt
ea

♯(eithf)Φ = a♯(iheithf)ea
♯(eithf)Φ.

Proof. Let ε ∈ R. Suppose that Φ ∈ F (N). We show only the case of a∗(f). The
proof for a(f) is similar. We set a∗(ei(t+ε)hf) = a∗(ε) for notational simplicity. We
have

1

ε

(
ea

∗(ε) − ea
∗(0)
)
Φ− a∗(iheithf)ea

∗(0)Φ

= a∗
(
(
eiεh − 1

ε
− ih)eithf

) ∞∑
n=1

1

n!

n−1∑
k=0

a∗(ε)n−k−1a∗(0)kΦ

+ a∗(iheithf)

(
∞∑
n=1

1

n!

n−1∑
k=0

a∗(ε)n−k−1a∗(0)k −
∞∑
n=0

1

n!
a∗(0)n

)
Φ = A+B.

We see that

∥A∥ ≤
∥∥∥∥eiεh − 1

ε
f − ihf

∥∥∥∥ ∞∑
n=1

√
N + n− 1 · · ·

√
N

n!
∥f∥n−1∥Φ∥
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and

∥B∥ ≤ ∥hf∥∥(eiεh − 1)f∥
∞∑
n=1

√
N + n− 1 · · ·

√
N

(n− 1)!

n(n− 1)

2
∥f∥n−2∥Φ∥.

Hence limε→0 ∥A∥ = 0 and limε→0 ∥B∥ = 0 follow. Then the proposition follows. □
We discuss relationships between ea

∗(f) and the second quantization Γ(T ). Let h be a
self-adjoint operator in W and we define

D = L.H.{a∗(f1) · · · a∗(fn)Ω,Ω| fj ∈ W , j = 1, . . . , n, n ≥ 1},
Dh = L.H.{a∗(f1) · · · a∗(fn)Ω,Ω| fj ∈ D(h), j = 1, . . . , n, n ≥ 1}.

Proposition B.4 (Intertwining properties) (1) Let T be a contraction operator
on W . Then it follows that on Ffin

Γ(T )ea
∗(f) = ea

∗(Tf)Γ(T ),

Γ(T )ea(T
∗f̄) = ea(f)Γ(T ).

(2) Let h be self-adjoint in W and f ∈ D(h). Then it follows that on Dh

dΓ(h)ea
∗(f) = a∗(hf)ea

∗(f) + ea
∗(f)dΓ(h),

dΓ(h)ea(f) = −a(hf̄)ea∗(f) + ea(f)dΓ(h).

Proof. Let Φ =
∏m

j=1 a
∗(gj)Ω ∈ D . Then Φ ∈ D(ea

∗(f)) and Γ(T )D ⊂ D . We have

Γ(T )ea
∗(f)Φ =

∞∑
n=0

a∗(Tf)n

n!

m∏
j=1

a∗(Tgj)Ω = ea
∗(Tf)Γ(T )Φ.

Then the first statement of (1) is proven on D . Let Φ ∈ F (N). Then there exists
Φn ∈ D such that Φn ∈ F (N) and ∥Φn − Φ∥ → 0 as n → ∞. We can also see that
ea

∗(f)Φn → ea
∗(f)Φ as n→ ∞. Then the limit of Γ(T )ea

∗(f)Φn = ea
∗(Tf)Γ(T )Φn implies

that Γ(T )ea
∗(f)Φ = ea

∗(Tf)Γ(T )Φ. Then the first statement of (1) is proven on Ffin.
The second statement of (1) can be show by taking the adjoint of both sides of the
first statement. Next let us prove (2). Let Φ ∈ Dh and T = eith. Then

Γ(eith)ea
∗(f)Φ = ea

∗(eithf)Γ(eith)Φ. (B.1)

In a similar way to Proposition B.3 it can be seen that the right-hand side above is
differentiable with respect to t at t = 0, the result is

d

dt
ea

∗(eithf)Γ(eith)Φ = ia∗(hf)ea
∗(f)Φ + iea

∗(f)dΓ(h)Φ. (B.2)
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This implies that the left-hand side of (B.1) is also differentiable with respect to t,
and thus ea

∗(f)Φ ∈ D(dΓ(h)) (see [25, Theorem VIII.7 (d)]) and the derivative of the
left-hand side at t = 0 is

d

dt
Γ(eith)ea

∗(f)Φ = idΓ(h)ea
∗(f)Φ. (B.3)

Comparing (B.2) and (B.3), we can conclude the first statement of (2). The second
statement can be show by taking the adjoint of both sides of the first statement. □

Finally we discuss the representation of eΦ(f) in terms of both ea
∗(f) and ea(f). Let

Db = L.H.{C(g),Φ| g,Φ ∈ Ffin}.

Proposition B.5 (Baker-Campbell-Hausdorff formula) Let f ∈ W . Then it fol-
lows that on on Db

ea
∗(f)+a(f̄) = ea

∗(f)ea(f̄)e
1
2
∥f∥2 . (B.4)

Proof. We shall show (B.4) on C(g). The proof of (B.4) on Ffin is similar. We have

ea
∗(f)ea(f̄)C(g) = e(f,g)C(f + g). (B.5)

Let ψ(f) = a∗(f) + a(f̄). Then ψ(f) is self-adjoint and it holds that

eψ(f) =
∞∑
n=0

ψ(f)n

n!
(B.6)

on the finite particle subspace. Let Cm(g) =
∑m

n=0
a∗(g)n

n!
Ω. By using the expansion

(B.6) we can compute as

eψ(f)Cm(g) = eψ(f)
m∑
n=0

a∗(g)n

n!
Ω =

m∑
n=0

(a∗(g) + (f, g))n

n!
eψ(f)Ω.

Together with eψ(f)Ω = e
1
2
∥f∥2ea

∗(f)Ω we see that

eψ(f)Cm(g) =
m∑
n=0

(a∗(g) + (f, g))n

n!
e

1
2
∥f∥2ea

∗(f)Ω.

Then we have

eψ(f)C(g) = e(f,g)e
1
2
∥f∥2C(f + g). (B.7)

By (B.5) and (B.7) the proposition follows. □
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Now we shall show that ea
∗(g)e−tHf for t > 0 is bounded for g ∈ L2(R3). In order

to see this we evaluate ∥
∏m

j=1 a
∗(fj)Φ∥. We have a general formula. Let Φ ∈ Ffin and

fi, gj ∈ W for i, j = 1, ...,m. Then

n∏
j=1

a(ḡj)
n∏
j=1

a∗(fj)Φ

=
n∑

m=0

∑
Cm∋A

∑
Cn−m∋B

∑
σ:B→B,bijection

(∏
l∈Ac

(gl, fσ(τ(l)))

)(∏
p∈Bc

a∗(fp)

)(∏
q∈A

a(ḡq)

)
Φ.

(B.8)

Here Ck = {A ⊂ {1, ..., n}|#A = k} and C0 = ∅, τ is an identification map between
Ac and B, finally

∑
σ:B→B,bijection is understood to take all bijections from B to itself.

From now on we consider the case where W = L2(R3). Then ω is the multiplication
operator by ω in L2(R3).

Proposition B.6 (Boundedness) Let t > 0 and f ∈ D(1/
√
ω). Then ea

∗(f)e−tHf

and e−tHfea(f) are bounded.

Proof. Let Ψ ∈ ∩∞
n=1D(Hn

f ). Suppose that t < 1. Let fi, gj ∈ D(1/
√
ω) for i, j =

1, ..., n and Φ ∈ D(H
n/2
f ). Then by (B.8) we have∣∣∣∣∣

(
n∏
j=1

a∗(gj)Φ,
n∏
j=1

a∗(fj)Φ

)∣∣∣∣∣ ≤ n!2n

(
n∏
l=1

∥fl∥ω∥gl∥ω

)
n∑

m=0

1

m!
∥Hm/2

f Φ∥2,

where ∥f∥ω = ∥f∥+ ∥f/
√
ω∥. In particular we have the bound∥∥∥∥∥

n∏
j=1

a∗(fj)Φ

∥∥∥∥∥ ≤
√
n!2n/2

(
n∏
l=1

∥fl∥ω

)(
n∑

m=0

1

m!
∥Hm/2

f Φ∥2
)1/2

.

Then for any s < 1 we have∥∥∥∥∥
n∏
j=1

a∗(fj)Ψ

∥∥∥∥∥ ≤
√
n!2n/2s−n/2

(
n∏
l=1

∥fl∥ω

)(
n∑

m=0

1

m!
∥(sHf)

m/2Ψ∥2
)1/2

.

Hence we observe that for Φ ∈ F ,∥∥∥∥∥
m∑
n=0

1

n!
a∗(f)ne−tHfΦ

∥∥∥∥∥ ≤
m∑
n=0

1√
n!
2n/2s−n/2∥f∥nω

(
n∑
k=0

1

k!
∥(sHf)

k/2e−tHfΦ∥2
)1/2

.

We can see that {
∑m

n=0
1
n!
a∗(f)ne−tHfΦ}∞m=0 is a Cauchy sequence. Hence e−tHfΦ ∈

D(ea
∗(f)) and as m→ ∞ on both sides above we have

∥ea∗(f)e−tHfΦ∥ ≤ A(f, s)∥e−
1
2
(t−s)HfΦ∥,
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where A(f, s) =
∑∞

n=0
1√
n!
2n/2s−n/2∥f∥nω. Choosing s such that s ≤ t, we can see that

∥e− 1
2
(t−s)HfΦ∥ ≤ ∥Φ∥ and ea

∗(f)e−tHf for t < 1 is bounded. Suppose 1 ≤ t. Choosing
s = 1 in the above discussion, we have

∥ea∗(f)e−tHfΦ∥ ≤ A(f, 1)∥e−
1
2
(t−1)HfΦ∥ ≤ A(f, 1)∥Φ∥.

Thus ea
∗(f)e−tHf for t ≥ 1 is bounded. Finally since

(
e−tHfea(f)

)∗ ⊃ ea
∗(f̄)e−tHf , the

second statement follows. Then the proposition follows. □
We can also estimate the bound of ∥ea∗(f)e−tHf∥ and ∥ea∗(f)e−tN∥, which can be

derived from the estimates in the proof of Proposition B.6.

Proposition B.7 (Bound) Let f ∈ D(1/
√
ω). Then

∥ea∗(f)e−tHf∥ ≤
√
2e4/s∥f∥

2
ω∥e− 1

2
(t−s)Hf∥, 0 < s < t ≤ 1,

∥ea∗(f)e−tHf∥ ≤
√
2e4∥f∥

2
ω∥e− 1

2
(t−1)Hf∥, 1 < t.

In particular we have

∥ea∗(f)e−2tHfea(f)∥ ≤ 2e8/s∥f∥
2
ω , 0 < s < t ≤ 1,

∥ea∗(f)e−2tHfea(f)∥ ≤ 2e8∥f∥
2
ω , 1 < t.

Proof. We can estimate A(f, s) as A(f, s) ≤
√
2e4/s∥f∥

2
ω . Then the corollary follows

from Proposition B.6. □
We have already seen the strong continuity of map L2(R3) ∋ f 7→ ea

♯(f)Φ. We can
furthermore prove the uniform continuity of map f 7→ ea

∗(f)e−tHf for t > 0.

Proposition B.8 (Uniform continuity) Let f, g ∈ D(1/
√
ω). Then

∥ea∗(f)e−tHf − ea
∗(g)e−tHf∥ ≤

√
2∥f − g∥ωe4/s(∥f∥ω+∥g∥ω+1)2 , 0 < s < t ≤ 1,

∥ea∗(f)e−tHf − ea
∗(g)e−tHf∥ ≤

√
2∥f − g∥ωe4(∥f∥ω+∥g∥ω+1)2 , 1 < t.

(B.9)

In particular let f, fn ∈ D(1/
√
ω) for n ≥ 1 such that ∥f − fn∥ω → 0 as n→ ∞. Then

ea
∗(fn)e−tHf uniformly converges to ea

∗(f)e−tHf as n→ ∞.

Proof. We can straightforwardly see that

∥(a∗(f)n − a∗(g)n)Ψ∥

≤
√
n!2n/2s−n/2(∥f∥ω + ∥g∥ω + 1)n

(
n∑

m=0

1

m!
∥(sHf)

m/2Ψ∥2
)1/2

∥f − g∥ω.

Hence (B.9) follows. □

19



C Fock space and Gaussian random variables

In this appendix we state the equivalence between L2(Q) and a boson Fock space F .

Let F be the boson Fock space over ĤM . Let (ϕ(f), f ∈ M ) be the Gaussian random
variable on a probability space (Q,Σ, µ) indexed by f ∈ M . Note that HM = MC.
Then there exists a unitary operator U : L2(Q) → F such that

(1) U1l = Ω,

(2) U−1Φ(f̂)U = ϕ(f), where Φ(f̂) = 1√
2
(a∗M(f̂) + aM(

˜̂
f),

(3) U−1dΓ(ω)U = dΓ(ω̂).

Using this equivalence we can define the Nelson Hamiltonian both on L2(R3)⊗F and
L2(R3)⊗L2(Q). In this paper for constructing a functional integral representation we
adopt the Nelson Hamiltonian defined on L2(R3)⊗ L2(Q).
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