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1 INTRODUCTION

The main problem presented in this paper is to consider a scaling limit of a model in quantum
electrodynamics which describes an interaction of N-nonrelativistic charged particles and a
quantized radiation field in the Coulomb gauge with the dipole approximation. The model
we consider is called “the Pauli-Fierz model”. Authors in [5,6] have studied a scaling limit
of the Pauli-Fierz model with one-nonrelativistic charged particle. We may well extend the
scaling limit of one-particle system to N-particles system.

The Pauli-Fierz Hamiltonians H; with N-nonrelativistic charged particles in the Coulomb
gauge with the dipole approximation are defined as operators acting in the Hilbert space

LR ® ... ® LA(RY) @ F(W) = L2(R¥N) Q F(W) by

| N d '
Hy = — 33 (—ihDi @I —el® Aup,)) +1® H,

2m oo

where DfL is the differential operator with respect to the j-th variable in the p-th direction,
A, (p;) the quantized radiation field in the p-th direction with an ultraviolet cut-off function
p; in the Coulomb gauge, H; the free Hamiltonian in F(W), and m,e, i the mass of the

particles, the charge of the particles, the Planck constant divided 2w, respectively.
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Note that A, is depend on the speed of light c. We introduce the following scaling.
(k) = ¢k, e(rk) = ex™ 2, m(k) = mr 2. (1. 1)

Then the scaled Hamiltonian Hz(x) amounts to

K2 K2

2m

1 N 4 o
ARI+ kIl ® Hy,+ 2 S (Rthleﬂ ® A, (p;) + eI ® Ai(m)) :

j=1 p=1
Defining a pseudo differential operator EREN (D, k) in L?(R¥?) with a symbol EREN (p, k)
such that EFFN(p k) — 0o as k — 0o, we define a Hamiltonian H;™*N (k) by
1 N d _
—E"EN(D, k) @ I + kI ® Hy + 5 Zl Zl (n2em'D; ® A, (p;) + I ® Ai(pj)) :
j=1n=
Consequently, we shall show the following for some p'= (p1, ..., py) and scalar potentials V/

with some conditions (Theorem 3.7):

s — lim (HN (k) + V@ T — 2)™ = U(00) {(E®(D) + Veyy — 2) 1 ® P U (00),

K— 00

where E*(D) is a pseudo differential operator in L?(R*Y), V,;; a multiplication operator,
which is called “effective potential”, and Py a projection on F(W). Despite the fact that in
the case of one-particle system the effective potential V¢ is the Gaussian transformation of
a given scalar potential V', we shall show that in /N-particles system, it is not necessary to
be the Gaussian transformation. Actually it is determined by a matrix A® = (Aff)lgijgN

which is defined by the ultraviolet cut-off functions pj;

_ ld-1(m\ & pi(k)p; (k)
Ae— 42 (1 —/ kPP )
voo2 d <mc> he Jra w(k)?

2 THE PAULI-FIERZ MODEL

To begin with, let us introduce some preliminary notations. Let H be a Hilbert space over C.
We denote the inner product and the associated norm by < *,- >3 and || - || respectively.

The inner product is linear in - and antilinear in *. The domain of an operator A in H is



denoted by D(A). A notation f (resp.f) denotes the Fourier transformation (resp.the inverse

Fourier transformation) of f and f the complex conjugate of f. Let

W=LR)e .. o L*RY.

d—1

We define the Boson Fock space over VW by
FW) = @ RUW = @fn(W),
n=0

where ®2W = C and ®"W (n > 1) denotes the n-fold symmetric tensor product. Put

FeW) = fj D F.w) P {o}.
N=0n=0 n>N+1

The annihilation operator a(f) and the creation operator a'(f) (f € W) act on F>(W) and

leave it invariant with the canonical commutation relations (CCR): for f,g € W
a(f) @] = (f.9),,.
[d*(f),d*(9)] = O,

where [A, B] = AB — BA, a denotes either a or af. Furthermore,

<aT(f)<I>,\II>F(W) = <<D,a(f)\I/>F(W) . D, U e FEW).

We define polarization vectors e"(r = 1,...,d — 1) as measurable functions e" : R? — R?

such that
e (k)e® (k) = 6,5, €' (k)k=0, a.ekcR.

The p-th direction time-zero smeared radiation field in the Coulomb gauge with the dipole
approximation is defined as operators acting in F(W) by

Ve _Vhef
Au(f) = % aT (@f—l \/a ) +a @le \/a )

(2. 1)
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where w(k) = |k| and g(k) = g(—k). Let Q = (1,0,0,...) € F(W). For a nonnegative
self-adjoint operator h : W — W, we denote “the second quantization of h”by dI'(h). Put

O=w® .. dHw. The free Hamiltonian H, in F(W) is defined by
—_————
d-1

Hy = hiedT'(@).

The Pauli-Fierz Hamiltonians with /N-nonrelativistic charged particles interacting with the

quantized radiation field with the dipole approximation in the Coulomb gauge read as follows:

1 N d ) 9
Hy=Hppy = 52> (ZihD, ® 1 —el ® A,(p))) +1® H),
7=1p=1
acting in
52
LPRY® .0 LP®R)QFW) = L*®"Y) @ F(W) = /dN FW)dz.
R

N
We introduce the scaling (1.1). For objects A containing of the parameters c,e,m, we
denote the scaled object by A(k) throughout this paper. We define classes P and P of sets

of functions as follows:

Definition 2.1 5= (p1,...,pn) is in P if and only if

(1) pj,7=1,...,N are rotation invariant, p;(k) = p;(|k|), and real-valued,
(2) pj/w,bi/Vw, pj,vwp; € L*(R?).

Moreover § is in P if and only if in addition to (1) and (2) above

(3) pj/wy/w € L*(RY) and there exist 0 < a < 1 and 1 < € such that p;(v/*)p;(v/) (/)42 €
Lip(a) N LE(]0, 00)), where Lip(c) is the set of the Lipschitz continuous functions on

[0,00) with the degree c,

(4) sup, |5 (k)i 3 (k)] < o0, sup |p;(k)wi 3 (k)| < 00, = 1,..., N.



Put

1
Hy=——RAQI+1® Hy,
2m

RdN

where A is the Laplacian in . It is well known that H, is a nonnegative self-adjoint

operator on D(Hy) = D (—ﬁFfA ® I) ND(I @ Hy).

Proposition 2.2 ([3,4]) For g € P and k > 0, the operator Hz(k) is self-adjoint on

D(H,) and essentially self-adjoint on any core of Hy and nonnegative.

Let F = F® I, where F' denotes the Fourier transform in L?(RY). It is clear that operators

FH;F~! can be decomposable as follows:

@
FHA)E ' = [ Hylp,r)ip.
RAN

where

1 XN Jd 2
Hylp, k) = 5~ 3 Z (khp], — eAulpy))” + KHy.
]: :
Proposition 2.3 ([3,4]) For g € P and k > 0, the operator H;(p, k) is self-adjoint on
D(Hy) and essentially self-adjoint on any core of Hy, and nonnegative.

Set Hilbert spaces My = {f ‘f |f(k)|Pw(k)idk < oo} and put W, = M, ® ... & M,, o € R.
—_—

d—1
The following lemma is the key lemma to investigating the scaling limits.

Lemma 2.4 ([9]) Let 5 € P and & > 0 be sufficiently large. Then there exist a Hilbert
Schmidt operator W _, a bounded operator W, and L; = (le-, . L?), LY eW,j=1,..,N,

pw=1,...,d such that, if we put forp €R*,j=1,..,N
N
B(f,p) = a'(W_f) + a(Wf) + > (L, f)
7j=1

Bi(f,p) = a'(W_f) + a(W_f) +§j< L;p’, f> :

Jj=1
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then

[B(f,p),BT(g,p)] = <f7g>W7
[Bﬁ(f,p),Bn(g,p)] = 0, on fOO(W)a

and for ®, U € F>* (W),

<Bf(f,p)c1>, \D>HW) = <<1>,B(f,p)qf>

)

FW)
moreover
3
[ Hy(p), B*(£,p) ] = £B*(heaf, p), on F*(W) N D(Hy),
where £ € Wo N Wy and + (resp.-) corresponds to BY (resp.B).

By virtue of Lemma 2.4, we see the following.

Corollary 2.5 Let § € P and k be sufficiently large. Then for ® € D(H,),
exp (i Hylp) ) B8 p)exp (—i7 Holp) ) @ = BH (et p)o
3 SCALING LIMITS

In this section, we construct a unitary operator which implements unitary equivalence of the
Pauli-Fierz Hamiltonian and a decoupled Hamiltonian. Moreover we investigate a scaling
limit of the Pauli-Fierz Hamiltonian. Unless otherwise stated in this section, we suppose
that x > 0 is sufficiently large. From Lemma 2.4 (1) it follows that there exist two unitary

operators U(k) (p independent) and S(p, ) such that ([6,Section III])
U Yk)S(p, k) ' B*(f,p,k)S(p, k)U (k) = d*(f), feW. (3. 1)

Concretely S(p, k) is given by

N eh el Mi;(K)p; el Mi;(K)pj
S(p, k) = ex —pila @il ) gt (@il e ) :
(7. ) p(Z: ,«Uzpu{ ( = \ahci 1 \ohi



where (M;;(K))1<ij<n is a matrix such that

lim Mij(ﬁ) == 51']'

1
K—00 ,{2 E
Theorem 3.1 Suppose § € P. Then putting S(p,k)U (k) = U(p, k), we see that U(p, k)

maps D(H,) onto itself with

U(p, k)Hz(p, kU (p, k) = kHy + E(p, k), (3. 2)
where
2
FLZ N d
E(p,k) = ZZ(npu—i-anjAﬂ > + 0(k),
=1 pu=1
3 e2 N d-1 e M ) ) (r,5) esﬁi
Aliw) = <7 W ()W (s) “—> ,
g K3 20219217";1 Vw ( i ) Vw L2(r?)
e?n X, 41 < pi () €;,Pi
O(k) = P (I —W_(k)W7l(k) £ > :
4mczzl7"szl ( i ) Vw L2(rd)

Proof: For simplicity, we omit the symbol k. Put U(p)Q = Q(p). From [6,Proposition 2.4,
Lemma 5.9] it follows that Q(p) € D(H,). Then Q(p) € D(B(f,p)). By virtue of Corollary

2.5 and (3.1), we can see that for all f € W
.t

B(E.p)exp (i Help) ) 2p) = 0. (5. 3)
The equation (3.3) implies that there exists a positive constant E(p) such that

-t -t

exp (i Hylp) ) 2p) = exp (i3 B () ) 2p). (3. 4)
Hence from Corollary 2.5, (3.1), (3.4) and the denseness of
c{B'(#)...B (£)0(p), 2p)|f; € W,j =1,..,n,n > 1},

one can get (3.2). The constant F(p) is explicitly given by

< Hyz(p)2p), 2 >xow)

E(p) =
(®) < Q(p), Q2 >row)
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It completes the proof. O

The positive constant F(p, k) can be rewritten by:

2h2 ~
E(p,x) = 5 —p* + E*(p, ) + E(p, x),
where
_ 27,—L2 N
E(p,r) = 5 -2, Zpub’J k)P, (3. 5)
i] 1 p,rv=1
ATk (k) + AR (r) | [ A% (k) + A ()
%w::zz( : ) = 2l
k=1 a=1
2h2

E"N(p k) = E(p, k) —

p _E(p7 H)'

Note that since (bgy(m))lgi,jSN,lgwjgd is nonnegative and symmetric dN X dN matrix, we

have E(p, k) > 0 for any p € R*™N. We define

HRPN (k) = —EREN(D k) QI+ kI® H,
Z Z (—2rehiD], ® Au(p;) + €T ® Au(p))?),

]l,ul

Hyk) = E(D, k) @I+ kI ® Hy,

where EFEN (D, k) and E(D, k) are pseudo differential operators on L?(R%) with symbols

EREN (p k) and E(p, k) respectively.

Theorem 3.2 Suppose § € P. Then H;"PN (k) and Hy(r) are essentially self-adjoint on

any core of Hy and bounded from below.

Remark 3.3 Write

2,.2 d N $2.2

Bpw) = 2+ 35 ) + L T 4B (36)

2m p=1i=1 p=1i—1




Then the first and second terms on the right hand side of (3.6) diverge as k — oo for p # 0,

but the rest terms not. Actually we see that

2

77/2/‘\72 d N 1 e2 d—1 2 d N N ) ﬁ ﬁk

Ii 5 () = —— Aot (L F
i o SR = o) () SX (B )L )

p=1:i=1
E>(p).

Then, by (3.2), concerning an asymptotic behavior of Hz(k) as k — oo, we should subtract
the first and second terms in the right hand side of (3.6) from the original Hamiltonian
Hj(k). However one can not say that pi,(x)* is real and nonnegative for any p € R*™. To
guarantee the nonnegative self-adjointness of the Hamiltonian HﬁREN(/@) with the divergence
terms subtracted, we should define E(p, k) such as (3.5). In this sense, we may say that

the operator H;"*N (k) has an interpretation of the Hamiltonian Hy(k) with the infinite

self-energy of the nonrelativistic particles subtracted.

We define

Then we have the following theorem.

Theorem 3.4 ([6]) Suppose that §€ P. Then

N L A
. eh . 1 enp; 1 €np;
s— lim U(k) = ex —D’ ®<a @f_1“7]> —al <69f_1“4>} ,
R0 (%) P (g m { ( = V2he3w? = V2he3w?

U(oc0).
We take scalar potentials V to be real-valued measurable functions on R and put
C.(V)=UYr) (Ve DUK), CV)=U oco)(V&IU(x0).

We introduce conditions (V — 1) and (V — 2) as follows.
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(V-1) For sufficiently large k > 0, D(E(D, x)) C D(V) and for A > 0, V(E(D, k) + A)~! is

bounded with

lim ||V (E(D,x)+ A\ =0, (3. 7)

A—o00

where the convergence is uniform in sufficiently large x > 0.

(V-2) For A >0, V(E(D, k) + X)~" is strongly continuous in x and

s — lim V(E(D,k) + A\t = V(E®(D) + \)~%

K—00

The condition (3.7) yields that, by the Kato-Rellich theorem and commutativity of U(x)
and (E(D, k) + A)~!, operators E(D, k) ® I + C,,(V) are essentially self-adjoint on any core

of D(E(D, k) ® I) and uniformly bounded from below in sufficiently large x > 0. Moreover

since I ® Hj is nonnegative and commute with E (D, k) ® I, one can see that

HyV,k) = E(D, k) @ I + C(V) + kI ® H,

is essentially self-adjoint on any core of D(E(D, k) ® I + kI ® Hp) and uniformly bounded

from below in sufficiently large & > 0. In particular, D(Hp) is a core of Hx(V, k). Put
REN — 77REN
H;" (Vi) = H7 7 (k) + V@I
Theorem 3.5 Let j§ € P. Suppose that V satisfies (V —1) and (V —2). Then, for
sufficiently large k > 0, the operator H[};%EN(V, K) is essentially self-adjoint on D(Hy) and
bounded from below uniformly in sufficiently large k > 0. Moreover the unitary operator

U (k) maps D(Hy) onto itself and for z € C\ R or z < 0 with |z| sufficiently large,

(HA"N(Vr) =) =) (H5(ViR) = 2) U7 (m). (3. 9)

Proof: Since U (k) maps D(I ® Hy) onto itself (see Theorem 3.1) and —A ® I commutes with
U(k) on D(—A ® I), U(k) maps D(H,) onto itself. Put

S (R™) = {f € L*®™)|f € Cr &™)}
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At first , by Theorem 3.1, we see that for ® € S°(R™N)QD(H,),
HEN(V,6)® = U(k)HAV, k)U (k). (3. 9)

By a limiting argument we can extend (3.9) to ® € D(Hy). Since D(Hy) is a core of H;(V, )
and U(r) maps D(H,) onto itself, the right hand side of (3.9) is essentially self-adjoint on

D(Hy). So is the left hand side of (3.9). (3.8) can be easily shown. O

We want to consider a scaling limit of H;"N(V,k) as k — oo. Let V satisfy (V — 1).
Then since D(C(V)) D D(—A)®D(H,), one can define, for ® € F(W) and ¥ € D(H,), a
symmetric operator Eg g (C(V)) with D(Eg4(C(V)) = D(—A) by

(f, Eow(C(V)g) oy = ([®B,C(V)g@W))5, € IARY),g € D(-A).

In particular, we call Eq o(C(V)) = Eq(C(V)) “the partial expectation of C (V') with respect

to 27,

Theorem 3.6 Let j € P. Suppose that V satisfies the conditions (V —1) and (V — 2).

Then for z € C\ R or z < 0 with |z| sufficiently large,

s — lim (HAN(V, k) — 2)™' = U(o0) {(EOO(D) +Eq(C(V)—2) ' ® PO}Z,{_I(oo),

K—00

(3. 10)

where Py is the projection from F(W) to the one dimensional subspace {af2|a € C}.

Proof: By (V — 1) and (V — 2), we see that

(V-1)’ For sufficiently large x > 0, D(F(D,x)) C D(C.(V)) and for A\ > 0,

Co(V)(E(D, k) + A)~" is bounded with
i (|G (V)(ED, &) + 17| =0,

where the convergence is uniform in sufficiently large x > 0.
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(V-2)’ For A >0, C.(V)(E(D, k) + A)~! is strongly continuous in x and

s — lim CL(V)(E(D,r) + N\t =C(V)(E®(D)+ ).

K—00

From (V — 1), (V — 2)" and iterating the second resolvent formula with respect to the pair

(Hz(k), fh\fg(V, K)), it follows that

s— lim (H(V,r) —2) =

K—00

(E*(D) QI+ (I P)C(VYIQP)—2)""I® P,

Since
(I® P)C(V)(I® Py) = Ea(C(V)),
we see that
s— lim (Hy(V,r) = 2)" = (E®(D) + Ea(C(V)) —2) ' ® Py,
Thus by Theorems 3.4 and 3.5, we get (3.10). O

We want to see Eqo(C(V)) more explicitly. For 5 € P, let A® = (Aff)lgi,jgd, where

2 o

~ 1d— 2 ) )

Ax_ldz1 (A" / 2. PiK)p; (k)
J 2 d mec) he Jrd w(k)?

Let 1544 denote d x d-identity matrix. Since A*® = A® ® 1.4 is a nonnegative symmetric

matrix, there exist unitary matrices T so that

AMlixa
TAT ! = Aol ) , (3. 11)
AnLixa
where Ay > My... > Ay > 0.
Theorem 3.7 Suppose Ay > Ao... > Ag > 0, Ag11 = ... = Ay = 0 and fiz a unitary

operator T in (3.11). Let x = (xy,...,xN), z; ER?, j=1,..., N and V satisfy

L (T); — gy =
2M1.. Ak

/RdK dy;...dyk|V]o T! (Y1, - Yx, (TT) 41, -, (Tx)N) exp (—

(3. 12)
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Moreover we suppose that the left hand side of (3.12) is locally bounded. Then the partial

expectation Eq(C(V)) is given by a multiplication operator Vi ss;

[M]ISH

Vop(z) = (20hiAk)” /RdKdyl...dyKVoT_l(yl,...,yK,(Tm)K+1,...,(Tx)N)

K 2
_ 2uj=1 (Tz); -y,
exp ( AL A '

In particular, in the case where A is non-degenerate, V.s¢ is given by

2
V. :2th°°*%/ v =yl
) = mden )¢ [ Ve (154 )y

Proof: Suppose V € S(R?), which is the set of the rapidly decreasing infinitely continuously

differentiable functions on R¥. Then the direct calculation shows that for f, g € L?(R¥)

1 F ke T (o S SN ALK,
(. Ba(COVG) 20 = Gmyar /R Lo [ dkf(2)g(a)e™V (k)e 2m1 Ligmr AT RRL
Hence we have
(fs EQ(C(V))9>L2(RdN) = (f, [’effg>L2 RINY - (3. 13)
(RAN)

We next consider the case where V' is bounded. In this case we can approximate V by a

sequence {V,, }°,, Vi, € S(R?), such that
IV = Valleo = 0 (n = o0),
where || - ||o denotes the sup norm. Then we have
Eq(C(Va)) = Ea(C(V)) (n — o),

strongly. Moreover (V,,)esf(z) — Vipp(x) for all z € R, Thus for f,g € L*(R™), (3.13)

follows for such V. Finally, let V satisfy (3.12). Define

%:{V@)W@NSm
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Hence for f € L*(R¥) and g € D(—A), we have

(£, Ea(C(Va))g) L2 (zavy = (f, Ea(C(V))g) 2(gany (0 — 00).
On the other hand, since the left hand side of (3.12) is locally bounded, we can see that for
feCe®R?Y) and g € D(—A),
(fs (Va)es9) pagany = (f: Vers9) 2 (gavy (n — 00),

which completes the proof. O

Remark 3.8 [n Theorem 3.7, in the case where A> s non-degenerate, since the left hand

RdN

side of (3.12) is continuous in x € , it 1s necessarily locally bounded.

We call V¢ “the effective potential with respect to V7. We give a typical example of scalar

potentials V' and ultraviolet cut-off functions p.

Example 3.9 Let

2
< 1d—1 2 b; (k)2
A= s d <h> 3/ Pk

Y2 d \mec) helu w(k)?

Then there exist positive constants 61 and do such that for sufficiently large k > 0
&ilpl* < E(p, &) < &|p|* (3. 14)
Let d =3 and V' be the Coulomb potential;

ﬂzg
(xla y &L Z |$J| ;#J |IZ .’I}]|, a; = 75] sl

Then V' is the Kato class potential ([10], Theorem X.16). Namely for any € > 0, there exists

b > 0 such that D(V) D D(—A) and

V@[ 2 on) < €| = AB||2gaony + bI|B|| 2(aon)- (3. 15)
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Together with (3.14) and (3.15), one can see that V satisfies (V — 1), (V — 2) and for any

t>0

L VIwe iy < oc.
R3

Then the scaling limit of the Pauli-Fierz Hamiltonian with the Coulomb potential exists and

has the effective potential given by

3 _Jz—yl?
Veps(z) = (2my) 72 / o V(e T dy,
R

et P2 (k)
b {§<%> h_} Hj‘1<n«sdkw<k>3>'

4 CONCLUDING REMARK

As is seen in Theorem 3.7, the effective potential V. ;¢ is characterized by the matrix-valued

functional A® = A°(5), which has the following mathematical meaning; putting

U(oo)(z; @ DU Ho0) —2; @ T = Az, i=1,..,N

PEERS) 3

we see that the partial expectation of Az;Ax; with respect to €2 is as follows;
Eq[(Az;Az;)] = A (p)1.

In one-nonrelativistic particle case, the author in [5] show that the partial expectation
Eq[(Ax)?] with respect to Q may be interpreted as the mean square fluctuation in posi-
tion of one-nonrelativistic particle ([2]). In this sense, AZO;’ (p) may also be interpreted as
correlation of fluctuations in position of the i-th and the j-th nonrelativistic particles under

the action of quantized radiation fields.
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