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Abstract

This is a short version of [Hir15]. A weak time operator T associated with
a given self-adjoint operator H is a symmetric operator such that (Hϕ, Tψ) −
(Tϕ,Hψ) = −i(ϕ, ψ) for ϕ, ψ ∈ D with some domain D. In this paper we
generalize weak time operators as a densely defined symmetric quadratic form,
and a generalized weak time operator TH associated with a Schrödinger operator
of the form H = −∆/2 + V on H = L2(Rd) is constructed. It is assumed that
the quadratic moment of the negative eigenvalues {Ej}∞j=1 of H is finite, i.e.,∑∞

j=1E
2
j < ∞. This is ensured by the Lieb-Thirring inequality. Then we can

construct TH(·, ·) : H × H → C such that

TH(Hϕ,ψ)− TH(ϕ,Hψ) = −i(ϕ, ψ)

for all ϕ, ψ ∈ D with some domain D .

1 Introduction

1.1 Preliminaries

Canonical commutation relations (CCR) are a fundamental tool in quantum physics.
In one-dimensional quantum mechanics the momentum operator P = −id/dx and the
position operator Q = x satisfy CCR:

[P,Q] = −i1l (1.1)

on some dense subspace. FROM CCR the position-momentum uncertainty relation (so-
called Robertson inequality) is derived. On the other hand the energy of a quantum
system can be realized as a Hamiltonian which is a self-adjoint operator on a Hilbert
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2 Weak time operator

space, whereas time t is treated as a parameter, and not as an operator. It is however
there is a physical folklore such that the pair of position-momentum corresponds to
that of time-energy.

From a mathematical point of view we are interested in finding an operator T
associated with a given self-adjoint operator H such that

[H,T ] = −i1l (1.2)

on D(HT ) ∩ D(TH), and we call T as“ time operator”. As far as we know, a firm
mathematical investigation of time operators (so-called strong time operators) are initi-
ated by [Miy01], and investigated and generalized in [Ara05, Ara07]. When pair (H,T )
satisfies (1.2), it is known that either H or T is unbounded. Hence it may occur that
D(HT ) ∩ D(TH) is not dense or empty. The so-called weak CCR is introduced in
[Ara09], where commutation relations (1.2) are replaced by a bilinear form:

(Hϕ, Tψ)− (Tϕ,Hψ) = −i(ϕ, ψ). (1.3)

A weak time operator T associated with H is a symmetric operator satisfying (1.3).
In this paper we generalize a weak time operator to a symmetric quadratic form

(Definition 1.1), which we call a generalized weak time operator (GWTO), and are
concerned with a weak time operator associated with a Schrödinger operator

HV = −1

2
∆ + V (1.4)

in Hilbert space L2(Rd). Here ∆ denotes the d-dimensional Laplacian and V : Rd → R
is the multiplication operator describing an external potential. V (x) = −1/|x| is a
typical example.

Definition 1.1 (Generalized weak time operator and CCR domain) A densely
defined symmetric quadratic form T (·, ·) : H × H → C is a weak time operator
associated with a self-adjoint operator H if and only if

T (Hψ, ϕ)− T (ψ,Hϕ) = −i(ψ, ϕ) (1.5)

for all ψ, ϕ ∈ D with some domain D . D is called a CCR domain for (H,T )

Remark 1.2 Note that D in Definition 1.1 is not necessarily dense.

While we can also define the strong time operator associated withH. To define a strong
time operator we introduce weak Weyl relations. We call that the pair of self-adjoint
operators (A,B) satisfies the Weyl relation if and only if

e−isAe−itB = eiste−itBe−isA (1.6)
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holds for all s, t ∈ R. A Weyl relation implies CCR, and pair (P,Q) satisfies the Weyl
relation. Conversely it is known as the von Neumann uniqueness theorem that if pair
(A,B) satisfies Weyl relation (1.6) and there is no invariant domain with respect to
e−isA and e−itB, then A ∼= P and B ∼= Q. Here ∼= describes a unitary equivalence.
When H is bounded from below, this theorem tells us that there exists no symmetric
operator T such that pair (H,T ) satisfies the Weyl relation, since H ̸∼= P . Thus instead
of Weyl relation the so-called weak Weyl relation is introduced to define the strong time
operator.

Definition 1.3 (Weak Weyl relation) The pair (A,B) satisfies weak Weyl relation
(WWR) if and only if A is self-adjoint and B is symmetric, e−itAD(B) ⊂ D(B) and
Be−itAψ = e−itA(B + t)ψ hold for all ψ ∈ D(B) and all t ∈ R.

It is clear that the Weyl relation implies WWR, and WWR does CCR.

Definition 1.4 (Strong time operator) A symmetric operator T is a strong time
operator associated with a self-adjoint operator H if and only if the pair (H,T ) satisfies
WWR.

When T is a strong time operator, T defines a weak time operator T̂ : H × H → C
by T̂ (ϕ, ψ) = (ϕ, Tψ) for ϕ, ψ ∈ D(T ).

Strong time operators (resp. weak time operator) associated with an abstract self-
adjoint operator with purely absolutely continuous spectrum (resp. purely discrete
spectrum) are studied in [Ara05, Ara07, AM08, AM09, HKM09, Miy01] (resp. [Gal02,
GCB04, Ara09]). Representations of CCR are also studied in [Sch83a, Sch83b, Dor84].
The spectrum of Schrödinger operator HV considered in this paper is of the form
{Ej}Nj=1 ∪ [0,∞), and under conditions:

N = ∞ and
∞∑
j=1

E2
j <∞, (1.7)

we construct a weak time operator associated with HV . Here (1.7) is ensured by the
Lieb-Thirring inequality

∞∑
j=1

E2
j ≤ a

∫
Rd

|V−(x)|2+
d
2dx (1.8)

with some constant a, where V− is the negative part of V .

1.2 Strong time operators

The proposition on strong time operators below is well known.
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Proposition 1.5 Suppose that a strong time operator T associated with a self-adjoint
operator H exits. Then assertion (1)-(3) below follow.

(1) The closure T̄ is also a strong time operator.

(2) T has no self-adjoint extension.

(3) σ(H) must be purely absolutely continuous spectrum, i.e., σ(H) = σac(H).

Proof: See [Ara05]. qed

By this proposition we may assume that the strong time operator is a closed sym-
metric operator in what follows.

Assume that (H,T ) satisfies WWR. We are interested in constructing a strong time
operator associated with f(H), where f : R → R. Actually this is established in the
proposition below.

Proposition 1.6 Let TH be a strong time operator associated with a self-adjoint op-
erator H. Let f ∈ C2(R \ K) and L = {λ ∈ R \ K; f ′(λ) = 0}, where K is a
closed subset of R, and both of the Lebesgue measures of K and L are zero. Let
D = {ρ(H)D(T ); ρ ∈ C∞

0 (R \ L ∪K)}. Then

Tf(H) =
1

2
(THf ′(H)−1 + f ′(H)−1TH)⌈D

is a strong time operator associated with f(H).

Proof: See [HKM09, Theorem 1.9]. qed

We give some examples. Let Pj = −id/dxj and Qj be the multiplication by xj for
j = 1, ..., d in L2(Rd). A strong time operator associated with Pj is Qj for j = 1, ..., d.
Proposition 1.6 can be applied to construct a strong time operator associated with
f(P1, ..., Pd). An important example includes Aharonov-Bohm operator TAB [AB61],

which is a strong time operator associated with 1
2

∑d
j=1 P

2
j and defined by

TAB =
1

2

d∑
j=1

(QjP
−1
j + P−1

j Qj)⌈Dj
, (1.9)

with Dj = {ρ(P 2
j )D(Qj); ρ ∈ C∞

0 (Rd \ {0}}.

1.3 Canonical commutation relations

We review a weak time operator associated with a self-adjoint operator H such that
σ(H) = σdisc(H) = {Ej}∞j=1, where E1 < E2 < · · · . Note that En ∋ Em if n ∋ m. In
this case there exists no strong time operator by Proposition 1.5.
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Assumption 1.7 Suppose that σ(H) = σdisc(H) = {Ej}∞j=1, E1 < E2 < · · · , and
∞∑
j=J

1

E2
j

<∞ for some J ≥ 1.

In [Ara09] a symmetric operator T such that [H,T ] = −i1l is defined for H satisfying
Assumption 1.7. Let Henα = Enenα, α = 1, ...,Mn, and (enα, emβ) = δnmδαβ, where
Mn denotes the multiplicity of En. Let

ēn =
1√
Mn

Mn∑
α=1

enα. (1.10)

Note that (ēn, ēm) = δnm. Set

F = span {ēn;n ∈ N}. (1.11)

Definition 1.8 Suppose Assumption 1.7. Then we define T by

Tϕ = i
∞∑
n=1

(∑
m̸=n

(ēm, ϕ)

En − Em

)
ēn (1.12)

with D(T ) = span {ψ = ψ1 + ψ2;ψ1 ∈ F , ψ2 ∈ F⊥}.

By the definition of T above we have Tf = 0 for f ∈ F⊥. We set

E = span {ēn − ēm;n,m ∈ N}. (1.13)

Proposition 1.9 Suppose Assumption 1.7. Let T be in (1.12). Then [H,T ] = −i1l
holds on E .

Proof: See [Ara09]. qed

We give remarks. It is not necessarily that E is dense.

2 Generalized weak time operators

2.1 Assumptions

By applying results introduced in the previous section we construct generalized weak
time operators associated with Schrödinger operators. Let

H0 = −1

2
∆ (2.1)
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and set
HV = H0 + V. (2.2)

Let H = Hac ⊕Hsing be the decomposition of H into the absolutely continuous part
and singular part of H. We set Hsing = Hsc⊕Hp, where Hp denotes the closure of the
span eigenvectors of HV . Let Hac = HV ⌈Hac , Hsc = HV ⌈Hsc , and Hp = HV ⌈Hp . Then
HV = Hac ⊕Hp ⊕Hsc. Conditions we assume on HV are as follows:

Assumption 2.1

(1) σsc(HV ) = ∅, i.e., HV = Hac ⊕Hp.

(2) σac(HV ) = [0,∞), and there exists a strong time operator Tac associated with Hac

in Hac.

(3) σ(Hp)(= σp(HV )) = {0} ∪ {Ej}Nj=1, where N = ∞, E1 < E2 < · · · < 0, {Ej}∞j=1 =
σdisc(HV ), and

∞∑
j=1

E2
j <∞.

2.2 Discrete spectrum

In Assumption 2.1 (3), 0 ∈ σ(Hp) is possibly an eigenvalue of Hp. When 0 is an
eigenvalue of Hp we denote the set of vectors e0 such that Hpe0 = 0 by H0. Let
Hpenα = Enenα, α = 1, ...,Mn, and (enα, emβ) = δnmδαβ. Subspaces F and E of Hp

are defined in the same way as (1.11) and (1.13), respectively. In particular H0 ⊂ F⊥.
Let Hp = H− ⊕ H0 (possibly H0 = ∅).

Lemma 2.2 Suppose (3) of Assumption 2.1. Then

Tdϕ = i
∞∑
n=1

(∑
m̸=n

(ēm, ϕ)
1
En

− 1
Em

)
ēn (2.3)

with
D(Td) = span {ψ = ψ1 + ψ2;ψ1 ∈ F , ψ2 ∈ F⊥} (2.4)

is a generalized weak time operator associated with (Hp⌈H−)
−1.

Proof: We see that σ(Hp⌈−1
H−

) = {1/Ej}∞j=1. Then the lemma follows from Proposi-
tion 1.9. qed

We define the symmetric quadratic form Tp : D(Td)×D(Td) → C on Hp by

Tp(ϕ, ψ) =

{
−1

2

(
(Tdϕ,H

−2
p ψ) + (H−2

p ϕ, Tdψ)
)
, ϕ, ψ ∈ F ,

0, otherwise.
(2.5)

Note that F ∩ H0 = ∅, F ⊂ D(H−k
p ) for all k ≥ 0.
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Remark 2.3 We formally write Tp(ϕ, ψ) = (ϕ, Tpψ) and

Tp = −1

2
(TdH

−2
p +H−2

p Td). (2.6)

Notice that however it is not clear whether D(H−2
p ) ⊃ TdD(Td) or not. Hence we can

not define Tp as a nontrivial symmetric operator.

We set H−1
p E = span { 1

En
ēn − 1

Em
ēm;n,m ∈ N}. Note that H−k

p E ⊂ F for k ∈ Z.

Lemma 2.4 Let ϕ, ψ ∈ H−1
p E . Then Tp(Hpϕ, ψ) − Tp(ϕ,Hpψ) = −i(ϕ, ψ) follows.

I.e., Tp is a generalized weak time operator associated with Hp with CCR domain H−1
p E .

Proof: Let T ′ = −2Tp. Let ϕ
′ = H−1

p ϕ, ψ′ = H−1
p ψ ∈ H−1

p E . We see that

T ′(Hpϕ
′, ψ′)− T ′(ϕ′, Hpψ

′) = T ′(ϕ,H−1
p ψ)− T ′(H−1

p ϕ, ψ).

By the definition of T ′ we have

T ′(Hpϕ
′, ψ′)− T ′(ϕ′, Hpψ

′)

= (Tdϕ,H
−3
p ψ) + (H−2

p ϕ, TdH
−1
p ψ)− (H−3

p ϕ, Tdψ)− (TdH
−1
p ϕ,H−2

p ψ)

= (H−1
p Tdϕ,H

−2
p ψ)− (H−2

p ϕ,H−1
p Tdψ) + (H−2

p ϕ, TdH
−1
p ψ)− (TdH

−1
p ϕ,H−2

p ψ).

Then the first two terms of the most right-hand side above can be computed by using
[H−1

p , Td] = −i1l on E as

(H−1
p Tdϕ,H

−2
p ψ)− (H−2

p ϕ,H−1
p Tdψ)

= 2i(H−1
p ϕ,H−1

p ψ) + (TdH
−1
p ϕ,H−2

p ψ)− (H−2
p ϕ, TdH

−1
p ψ).

Hence we conclude that T ′(Hpϕ
′, ψ′)−T ′(ϕ′, Hpψ

′) = 2i(ϕ′, ψ′) and the lemma follows.
qed

2.3 Main results

We state the main result. Suppose Assumption 2.1. We define the densely defined
symmetric quadratic form THV

(·, ·) : H × H → C (H = Hac ⊕ Hp) by

THV
(ϕ1 ⊕ ϕ2, ψ1 ⊕ ψ2) = (ϕ1, Tacψ1) + Tp(ϕ2, ψ2) (2.7)

for ϕ1, ψ1 ∈ D(Tac) and ϕ2, ψ2 ∈ D(Td).

Theorem 2.5 (Generalized weak time operator) Suppose Assumption 2.1. Then
THV

is a generalized weak time operator associated with HV with a CCR domain
D(Tac)⊕H−1

p E . I.e.,

THV
(HV ϕ, ψ)− THV

(ϕ,HV ψ) = −i(ϕ, ψ). (2.8)

Proof: From Proposition 3.2 and Lemma 2.4 the theorem follows. qed
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3 Examples

In the previous section we can construct generalized weak time operators associated
Schrödinger operators HV . In this section we give examples of external potential V
such that generalized weak time operator can be constructed.

3.1 Absolutely continuous spectrum

We can construct a strong time operator associated with Hac by through a wave oper-
ator.

Lemma 3.1 Suppose that the wave operator Ω−(HV , H0) = s− lim
t→+∞

eitHV e−itH0 exists.

Then Ω = Ω−(HV , H0) fulfills (i) ΩH ⊂ Hac, (ii) e
−itHV Ω = Ωe−itH0 for all t ∈ R,

(iii) Ω∗Ω = 1l, and (iv) ΩΩ∗ = the projection onto Hac.

Proof: This is fundamental in the scattering theory in quantum physics. We omit it.
qed

The strong time operator associated with Hac can be constructed through Ω in
Lemma 3.1 and Aharonov-Bohm operator given in (1.9).

Proposition 3.2 Suppose Assumption 2.1. Let Tac = ΩTABΩ
∗ with D(Tac) = ΩD(TAB).

Then Tac is the strong time operator associated with Hac.

Proof: The proof is learned from [Ara06]. Let ϕ′ = Ωϕ ∈ ΩD(TAB). Since Ω∗Ω = 1l,
Tacϕ

′ = ΩTABϕ is well defined. It is seen that

e−itHV Tacϕ
′ = Ωe−itH0TABϕ = Ω(TAB − t)e−itH0ϕ.

Since e−itH0ϕ = Ω∗e−itHV Ωϕ, we have e−itHV Tacϕ
′ = (ΩTABΩ

∗ − tΩΩ∗)e−itHV ϕ′. Since
ΩΩ∗ is the projection to Hac, which is denoted by Pac, and ϕ′ = Ωϕ ∈ Hac and
RanTac ⊂ Hac, we have Tace

−itHacϕ′ = e−itHac(Tac + t)ϕ′ and the proposition follows.
qed

3.2 Short range potentials

In this section we consider short range potentials for which a generalized time operator
can be constructed. It can be done however straightforwardly by the collection of
known results concerning the spectrum of Schrödinger operators. In particular an
upper bound of the quadratic moment of the negative eigenvalues of HV is given by
the Lieb-Thirring bound.
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Suppose that V is of the form

V (x) =
W (x)

(|x|2 + 1)1/2+ϵ
(3.1)

for some ϵ > 0, where W : Rd → R is a multiplication operator such that W (−∆+ i)−1

is compact. If V is of the form (3.1), V is called the Agmon potential. Agmon
potentials form a linear space of −∆-bounded perturbations of relative bound zero. In
particular HV is self-adjoint on D(H0). The perturbation by Agmon potential V leaves
the essential spectrum of H0 invariant, i.e., σess(HV ) = σess(H0) = [0,∞). Following
facts are known as Agmon-Kato-Kuroda theorem:

Proposition 3.3 (Absence of singular continuous spectrum and existence of
wave operators) Let V be an Agmon potential. Then (1) - (3) follow.

(1) σsc(HV ) = ∅.

(2) The wave operator Ω(H,H0) = s−lim
t→∞

e−itHV eitH0 exists and complete. In particular

[0,∞) = σac(HV ).

(3) The set of positive eigenvalues of HV is a discrete subset in (0,∞).

Proof: See [RS79, Theorem XIII.33]. qed

It is known that any U ∈ Lp(Rd) for d/2 < p <∞ and p ≥ 2, is relatively compact.
Then V (x) = (1 + |x|2)1/2+ϵU(x), ϵ > 0, is an Agmon potential. Another example is

that V (x) = U(x)

(1+|x|2)1/2+ϵ , ϵ > 0, with U ∈ L∞(Rd) is an Agmon potential. See e.g.

[RS79, p.439].
We introduce an assumption.

Assumption 3.4 (Infinite number of negative eigenvalues) Let d = 3 and sup-
pose that

V (x) ≤ − a

|x|2−δ
for |x| > R (3.2)

with some R > 0, a > 0 and δ > 0.

By Assumption 3.4 it can be seen that σdisc(HV ) ⊂ (−∞, 0) and #σdisc(HV ) = ∞.
See [RS78, Theorem XIII.6]. In particular 0 is a unique accumulation point of discrete
spectrum of HV .

Assumption 3.5 (Absence of strictly positive eigenvalues) Let V be spherically
symmetric and ∫ ∞

a

V (r)dr <∞, V ∈ L2
loc(R

d \ {0}). (3.3)
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Under Assumption 3.5 HV has no strictly positive eigenvalues. See [RS78, Theorem
XIII.56]. To construct a generalized weak time operator we need that the quadratic
moment of negative eigenvalues is finite. This can be controlled by the Lieb-Thirring
inequality [Lie76, Lie80]. It is known that

∞∑
j=1

|Ej|α ≤ ad,α

∫
Rd

|V (x)|
d
2
+αdx <∞, (3.4)

where ad,α is a constant independent of V .

Assumption 3.6 (Finiteness of quadratic moment of negative eigenvalues)
Let d = 3 and V ≤ 0. Suppose that∫

R3

|V (x)|7/2dx <∞. (3.5)

Theorem 3.7 Let d = 3 and V be an Agmon potential. Suppose Assumptions 3.4, 3.5
and 3.6, Then the generalized weak time operator associated with HV exists.

Proof: By Proposition 3.3, σsc(HV ) = ∅ and the wave operator Ω(HV , H0) exists. Then
Tac = ΩTABΩ

∗ is a strong time operator associated with Hac by Proposition 3.2. Under
Assumptions 3.4 and 3.5 we can see that σ(HV ) = {Ej}∞j=1∪[0,∞), E1 < E2 < · · · < 0,

σp(HV ) = {0} ∪ {Ej}∞j=1, and σac(HV ) = [0,∞). Furthermore Assumption 3.6 implies∑∞
j=1E

2
j <∞. Then the theorem follows from Theorem 2.5. qed

Example 3.8 Let d = 3. Suppose that U ∈ L∞(R3). Then

V (x) =
U(x)

(1 + |x|2)1/2+ϵ

is an Agmon potential for all ϵ > 0. Suppose that U is negative, continuous, spherically
symmetric and satisfies that U(x) ∼ 1/|x|α for |x| → ∞ with 0 < α < 1. For each α,
we can chose ϵ > 0 such that 2ϵ+α < 1. Hence V satisfies (3.2),(3.3) and (3.5). Hence
a generalized weak time operator THV

associated with HV exists.

3.3 Long range potentials: Hydrogen atoms

In this section we show an example of long range potentials. Let d = 3. The Schrödinger
operator associated with a hydrogen atom is defined by

Hhyd = H0 −
1

|x|
. (3.6)
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Theorem 3.9 There exists a generalized weak time operator THhyd
associated with

Hhyd.

Proof: It is well known that σsc(Hhyd) = ∅, σp(Hhyd) = {−1
2
j−2}∞j=1 and σac(Hhyd) =

[0,∞). The modified wave operator ΩD(Hhyd, H0) is defined by ΩD(Hhyd, H0) = s−
lim
t→∞

eitHhydUD(t) with some unitary operator UD(t). See [RS79, Theorem XI.71]. Then

Ω = ΩD(H,H0) plays a roll of Ω in Proposition 3.2. Then the theorem follows from
Theorem 2.5. qed

4 Time operator associated with f (H)

In this section we construct a time operator associated with f(H) with some function
f : R → R. The assumption we need is as follows.

Assumption 4.1 (1) Let f ∈ C2(R \K) be injective and L = {λ ∈ R \K; f ′(λ) = 0},
where K is a closed subset of R, and both of the Lebesgue measures of K and L are
zero. (2)

∑∞
j=1 f(Ej)

2 <∞

Assume that f satisfies Assumption 4.1. Let σ(H) = {Ej}j ∪ [0,∞) and σac(H) =
[0,∞). We define f(H) by the spectral resolution of H. Then σ(f(H)) = {f(Ej)}∞j=1∪
f([0,∞)). Let Tac be a strong time operator associated with Hac. Then the strong time
operator associated with f(Hac) is given by

Tf(Hac) =
1

2
(Tacf ′(H)−1 + f ′(H)−1Tac)⌈D

by Proposition 1.6. Here D = {ρ(Hac)D(T ); ρ ∈ C∞
0 (R \ L ∪K)}. Define T f

ac by

T f
ac =

1

2
(Tacf ′(H)−1 + f ′(H)−1Tac)⌈D (4.1)

is a strong time operator associated with f(Hac). Let

T f
d ϕ = i

∞∑
n=1

(∑
m ̸=n

(ēm, ϕ)

f(En)− f(Em)

)
ēn.

Then T f
d is a weak time operator associated with f(Hd). Define T

f
HV

= T f
d ⊕ T f

ac.

Theorem 4.2 Suppose Assumption 1.6. Then T f
HV

is a generalized weak time operator

associated with f(HV ) with a CCR domain D(T f
ac)⊕H−1

p E f . I.e.,

T f
HV

(f(HV )ϕ, ψ)− T f
HV

(ϕ, f(HV )ψ) = −i(ϕ, ψ). (4.2)
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We give examples. Let f(x) = 1− e−βx. Then

∞∑
j=1

(1− e−βEj)2 ≤ c
∞∑
j=1

E2
j

with some constant c. Define f(H) = 1l − e−βH . Thus the generalized time operator
associated with f(H) exists.

References

[AB61] Y. Aharonov and D. Bohm, Time in the quantum theory and the uncertainty relation for
time and energy, Phys. Rev. 122 (1961), 1649–1658.

[Ara05] A. Arai, Generalized weak Weyl relation and decay of quantum dynamics, Rev. Math. Phys.
17 (2005), 1071–1109.

[Ara06] A. Arai, Mathematical Quantum Phenomena, Asakura Butsurigaku Taikei 12, in japanese,
Asakura Shoten, 2006.

[Ara07] A. Arai, Spectrum of time operators, Lett. Math. Phys. 80 (2007), 211–221.

[Ara08] A. Arai, On the uniqueness of the canonical commutation relations, Lett. Math. Phys. 85
(2008), 15–25. Erratum: Lett. Math. Phys. 89 (2009), 287.

[Ara09] A. Arai, Necessary and sufficient conditions for a Hamiltonian with discrete eigenvalues to
have time operators, Lett. Math. Phys. 87 (2009), 67–80.

[AM08] A. Arai and Y. Matsuzawa, Construction of a Weyl representation from weak Weyl represen-
tation of the canonical commutation relation, Lett. Math, Phys. 83(2008), 201–211.

[AM09] A. Arai and Y. Matsuzawa, Time operators of a Hamiltonian with purely discrete spectrum,
Rev. Math. Phys. 20 (2008), 951–978.

[Gal02] E. A. Galapon, Self-adjoint time operator is the rule for discrete semi-bounded Hamiltonians,
Proc. R. Soc. Lond. A 458 (2002), 2671–2689.

[GCB04] E. A. Galapon, R. F. Caballar and R. T. Bahague Jr., Confined quantum time of arrivals,
Phys. Rev. Lett. 93 (2004), 180406.

[Dor84] G. Dorfmeister and J. Dorfmeister, Classification of certain pairs of operators (P,Q) satisfying
[P,Q] = −iId, J. Funct. Anal. 57 (1984), 301–328.

[HKM09] F. Hiroshima, S. Kuribayashi and Y. Matsuzawa, Strong time operator associated with
generalized Hamiltonians, Lett. Math. Phys. 87 (2009), 115–123.

[Hir15] F. Hiroshima, Generalized time operator associated with Schrödinger operators, in prepara-
tion.

[Lie76] E. H. Lieb, Bounds on the eigenvalues of the Laplacian and Schrödinger operators, Bull. AMS
82 (1976), 751–753.

[Lie80] E. H. Lieb, The number of bound states of one-body Schrödinger operators and the Weyl
problem, Proc. of the Math. Soc. Symposia in Pure Math. 36 (1980), 241–252.



Weak Time operator 13

[Miy01] M. Miyamoto, A generalized Weyl relation approach to the time operator and its connection
to the survival probability, J. Math. Phys. 42 (2001), 1038–1052.

[RS79] M. Reed and B. Simon, Method of Modern Mathematical Physics III, Academic Press, New
York, 1983.

[RS78] M. Reed and B. Simon, Method of Modern Mathematical Physics IV, Academic Press, New
York, 1978.
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