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Abstract

We are concerned with the Nelson Hamiltonian Hℏ with semi-classical parameter
ℏ > 0. A classical object H(qs, ps, us, ūs) is defined by the solution {qs, ps, us} to
the Hamilton-Jacobi equation associated with the Nelson Hamiltonian. We show the
asymptotic behaviour of

e−i tℏHℏe
i
ℏ
∫ t
0 H(qs,ps,us,ūs)ds

as ℏ → 0. Furthermore we introduce Wigner measures µ0 on the particle-field phase
space X = R3 ×R3 ×L2(R3) appearing in the semi-classical limits of a family of trace
class operators {ρℏ, ℏ ∈ (0, 1)}. I.e.,

lim
ℏ→0

Tr(ρℏW(ξ′)) =

∫
X
e2πiRe(x,ξ′)Xdµ0(x)

for ξ′ ∈ X and W(ξ) denotes an exponential operator. The Wigner measure µt associ-
ated with the family of time evolutions of trace class operators {ρℏ(t), ℏ ∈ (0, 1)} are
given by

lim
ℏ→0

Tr(ρℏ(t)W(ξ′)) =

∫
X
e2πiRe(x,ξ′)Xdµt(x).

We show that µt(·) = µ0◦Φ−1
t (·), where Φt is the flow for the solution to the Hamilton-

Jacobi equation.

1 Hamilton-Jacobi equation for the Nelson model

In the RIMS conference held on December 6-8, 2021 we gave a talk on the title ”Newton

Maxwell equation through semi-classical analysis”. In this article, however, we are concerned

with the Nelson model on coherent states for the simplicity and demonstrate a motivation

why we are interested in the semiclassical analysis. This results are ultimately developed

in [2] for the Pauli-Fierz model in non-relativistic QED [10] and the semi-classical limit is
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investigated through the so-called Wigner measures. The Wigner measure is a probability

measure on the total phase space R3 × R3 × L2(R3). The Wigner measure is applied to

the semi-classical analysis in [7] for Schrödinger operators and is extended to an infinite

dimensional phase space in [3]. We refer [1, 4, 6, 5] for related investigations.

1.1 Semi-classical limit of Schrödinger operators

Before going to our main results, we introduce a semi-classical limit of Schrödinger operators

for the readers convenient. Let us consider 3D-Schrödinger operator of the form:

hℏ =
ℏ2

2m
D2

x + V (x),

where ℏ > 0 is a semi-classical parameter, m > 0 a mass of a particle, Dx = −i∇x and V is

an external potential. Let

H = H(q, p) =
p2

2m
+ V (q),

where (p, q) ∈ R3 × R3. The Hamilton-Jacobi equation associated with hℏ is
q̇t =

δH
δpt

=
pt
m
,

ṗt = −δH
δqt

= −∇V (qt).

(1.1)

Let (qt, pt) ∈ R3×R3 be the solution to (1.1). We are interested in the asymptotic behaviour

of

e−i tℏhℏe
i
ℏ
∫ t
0 H(qs,ps)ds

as ℏ → 0.

Let ξℏ be the 3D-dilation defined by

ξℏf(x) = ℏ3/4f(
√
ℏx),

and hence ξ∗ℏf(x) = ℏ−3/4f(x/
√
ℏ). Let us define the quadratic operator QSch

t by

QSch
t =

1

2m
D2

x + x · ∇2V (qt)x.

Then it actually follows that

lim
ℏ→0

∥e−i tℏhℏe
i
ℏ
∫ t
0 H(qs,ps)dsφ− e

i
ℏ (ptx−ℏqtDx)ξ∗ℏe

−i
∫ t
0 QSch

s dsξℏe
− i

ℏ (p0x−ℏq0Dx)φ∥ = 0. (1.2)
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This can be proven as follows. Let

γt = ξ∗ℏe
i
∫ t
0 QSch

s dsξℏe
− i

ℏ (ptx−ℏqtDx)e−i tℏhℏe
i
ℏ
∫ t
0 H(qs,ps)dsφ.

Then

∥e−i tℏhℏe
i
ℏ
∫ t
0 H(qs,ps)dsφ−e

i
ℏ (ptx−ℏqtDx)ξ∗ℏe

−i
∫ t
0 QSch

s dsξℏe
− i

ℏ (p0x−ℏq0Dx)φ∥ = ∥γt−γ0∥ ≤
∫ t

0

∥γ̇s∥ds.

We see that

γ̇t =e
i
ℏ
∫ t
0 H(qs,ps)ds

i

ℏ
H(qt, pt)ξ

∗
ℏe

i
∫ t
0 QSch

s dsξℏe
− i

ℏ (ptx−ℏqtDx)e−i tℏhℏφ

+ e
i
ℏ
∫ t
0 H(qs,ps)dsξ∗ℏiQ̇e

i
∫ t
0 QSch

s dsξℏe
− i

ℏ (ptx−ℏqtDx)e−i tℏhℏφ

+ e
i
ℏ
∫ t
0 H(qs,ps)dsξ∗ℏe

i
∫ t
0 QSch

s dsξℏ

{
− i

ℏ
(ṗtx− ℏq̇tDx)

}
e−

i
ℏ (ptx−ℏqtDx)e−i tℏhℏφ

+ e
i
ℏ
∫ t
0 H(qs,ps)dsξ∗ℏe

i
∫ t
0 QSch

s dsξℏe
− i

ℏ (ptx−ℏqtDx)

{
− i

ℏ
hℏ

}
e−i tℏhℏφ.

We compute ξℏe
− i

ℏ (ptx−ℏqtDx)
{
− i

ℏhℏ
}
. By a shift operator e

i
ℏ (px−qℏDx),

hℏ →
(ℏDx + pt)

2

2m
+ V (x+ qt),

and by a scaling ξℏ,

→ (
√
ℏDx + pt)

2

2m
+ V (

√
ℏx+ qt).

Then the right-hand side above is

ξℏe
− i

ℏ (ptx−ℏqtDx)hℏ =
(
√
ℏDx + pt)

2

2m
+ V (

√
ℏx+ qt)

= H(qt, pt) +
√
ℏ
(
ptDx

m
+∇V (qt)x

)
+ ℏQSch

t +O(ℏ3/2). (1.3)

Furthermore

ξℏ

{
− i

ℏ
(ṗtx− ℏq̇tDx)

}
= − i√

ℏ
(ṗtx− q̇tDx)ξℏ.

Hence

γ̇t =ξ
∗
ℏe

i
∫ t
0 QSch

s ds

{
i

ℏ
H(qt, pt) + iQSch

t − i√
ℏ
(ṗtx− q̇tDx)−

i

ℏ
(1.3)

}
ξℏ

× e−
i
ℏ (ptx−ℏqtDx)e−i tℏhℏe

i
ℏ
∫ t
0 H(qs,ps)dsφ.
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By (1.1) we have

i

ℏ
H(qt, pt) + iQSch

t − i√
ℏ
(ṗtx− q̇tDx)−

i

ℏ
(1.3) = O(

√
ℏ).

Then (1.2) follows. In the semi-classical region we can see that

e−i tℏhℏe+
i
ℏ
∫ t
0 H(qs,ps)ds ∼ e

i
ℏ (ptx−ℏqtDx)ξ∗ℏe

−i
∫ t
0 QSch

s dsξℏe
− i

ℏ (p0x−ℏq0Dx).

Here we emphasize that QSch
s is independent of ℏ. We extend this kind of arguments to the

Nelson model in quantum field theory in what follows.

1.2 Nelson model

Let a†(f) and a(f) be the annihilation operator and the creation operator, respectively on

the boson Fock space over L2(R3):

F =
∞⊕
n=0

[⊗n
sL

2(R3)].

The adjoint relation is a(f)∗ = a†(f̄) and the CCR is given by [a(f), a†(g)] = (f̄ , g)1l and

[a♯(f), a♯(g)] = 0, where (f, g) denotes a scalar product on L2(R3) and it is linear in g and

anti-linear in f . Formally we write a♯(f) =
∫
a♯(k)f(k)dk. The field operator is given by

ϕ(f) =
1√
2
(a†(f) + a(f̄))

and its momentum conjugate by

Π(f) =
i√
2
(a†(f)− a(f̄)).

Thus [ϕ(f),Π(g)] = iRe(f, g), [ϕ(f), ϕ(g)] = i Im(f, g) and [Π(f),Π(g)] = i Im(f, g) hold

true. Let Hf = dΓ(ω) be the second quantization of the multiplication by ω(k) = |k|. Here
|k| denotes the energy of a massless boson with momentum k ∈ R3.

The Nelson Hamiltonian [9, 8] is defined as s self-adjoint operator on the product Hilbert

space

H = L2(R3)⊗F

and is given by

H = (
1

2m
D2

x + V )⊗ 1l + 1l⊗Hf +HI,
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and the interaction by

HI = HI(x)ϕ(e
−ikxφ̂/

√
ω) =

1√
2

∫ {
e−ikqφ̂(k)√

ω(k)
a†(k) +

eikq ¯̂φ(k)√
ω(k)

a(k)

}
dk.

Here φ̂ is a cutoff function. We assume that ω
√
ωφ̂,

√
ωφ̂, φ̂/

√
ω, φ̂/ω ∈ L2(R3). Throughout

we suppose that V ∈ C2(R3) and bounded. Then H is self-adjoint on D(D2
x) ∩D(Hf) and

bounded from below. We introduce the semi-classical parameter ℏ > 0 by

Hℏ = (
ℏ2

2m
D2

x + V )⊗ 1l +
√
ℏHI + ℏ1l⊗Hf .

Let (q, p, u) ∈ R3 × R3 × L2(R3). The classical Nelson Hamiltonian is given by

H(p, q, u, ū) =
p2

2m
+ V (q) +

∫
R3

ω(k)|u(k)|2dk + U(q, u).

Here

U(q, u) =
1√
2

∫
R3

{
e−ikqφ̂(k)√

ω(k)
ū(k) +

eikq ¯̂φ(k)√
ω(k)

u(k)

}
dk.

The time evolution of (p, q, u) ∈ R3 × R3 × L2(R3) are governed by the Hamilton-Jacobi

equation:

(N)



q̇t =
δH
δpt

=
pt
m
,

ṗt = −δH
δqt

= −∇V (qt)−∇U(qt, ut),

iu̇t(k) =
δH
δūt

= ω(k)ut(k) +
e−ikqtφ̂(k)√

ω(k)
.

Here

∇U(qt, ut) =
1√
2

∫
R3

{
−ik e

−ikqtφ̂(k)√
ω(k)

ūt(k) + ik
eikqt ¯̂φ(k)√

ω(k)
ut(k)

}
dk.

Note that
√
ωφ̂ ∈ L2(R3) and then the right-hand side above is finite.

2 Coherent states and Weyl commutation relations

Now we define coherent states for the field and the particle. In general, when [A,B] is

c-number, then formally

eAeB = e
1
2
[A,B]eA+B
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holds true. Let W (f) = eiΠ(f). Then Weyl commutation relation holds:

W (f)W (g) = e−
i
2
Im(f,g)W (f + g).

Since W (ig) =−Φ(g), we can see that

W (f)W (ig) = e−
i
2
Re(f,g)W (f + ig).

Let z = q + ip ∈ R3 + iR3. Define T (z) = ei(px−qℏDx). Note that

[px− qℏDx, p
′x− q′ℏDx] = iℏ(qp′ − pq′) = iℏ Imz̄ · z′.

Hence

T (z)T (z′) = e−
i
2
ℏ Imz̄·z′T (z + z′)

and

T (z)T (iz′) = e−
i
2
ℏRez̄·z′T (z + iz′).

The coherent state smeared by u is defined by

W

(√
2u√
ℏ

)
Ω,

where Ω ∈ F is the Fock vacuum. Note that

W

(√
2u√
ℏ

)
= e

− 1√
ℏ
(a†(u)−a(ū))

.

Let (q, p) ∈ R3 × R3 be a point in the phase space and

ψℏ(x) = (πℏ)−3/4e−|x|2/(2ℏ).

Thus ∥ψℏ∥ = 1. The coherent state for the particle part is given by

ψℏ
q,p(x) = T ℏ

q,pψℏ,

where T ℏ
q,p = T

(
z
ℏ

)
for z = q + ip, i.e.,

T ℏ
q,p = exp

(
i

ℏ
(px− ℏqDx)

)
.

Note that ψℏ
q,p is normalized in L2(R3) for each (q, p) ∈ R3 × R3. We see that

T ℏ
q,p = e−

i
2

1
ℏpqe

i
ℏpxe−iqDx = e

i
2

1
ℏpqe−iqDxe

i
ℏpx.
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Let (qt, pt, ut) be the solution to (N). Define

Φℏ
t = T ℏ

qt,pt,ut
(ψℏ ⊗ Ω), t ≥ 0.

Here

T ℏ
q,p,u = T

(z
ℏ

)
⊗W

(√
2u√
ℏ

)
, z = q + ip,

is unitary. The unitary operator T ℏ
qt,pt,ut

is the shift operator such that

T ℏ∗
qt,pt,ut

xT ℏ
qt,pt,ut

= x+ qt,

T ℏ∗
qt,pt,ut

ℏDxT
ℏ
qt,pt,ut

= ℏDx + pt,

T ℏ∗
qt,pt,ut

√
ℏa(k)T ℏ

qt,pt,ut
=

√
ℏa(k) + ut(k),

T ℏ∗
qt,pt,ut

√
ℏa†(k)T ℏ

qt,pt,ut
=

√
ℏa†(k) + ūt(k).

From these relations we can see that

(x+ iℏDx)Φ
ℏ
t = (qt + ipt)Φ

ℏ
t ,√

ℏa(k)Φℏ
t = ut(k)Φ

ℏ
t ,√

ℏa†(k)Φℏ
t = ūt(k)Φ

ℏ
t .

The classical objects appear as the eigenvalues.

3 Semi-classical limits

In this section we shall prove that

lim
ℏ→0

∥e−i tℏHℏΦℏ − e−
i
ℏ
∫ t
0 H(qs,ps,us,ūs)dsT ℏ

qt,pt,ut
e−

i
ℏ
∫ t
0 Qℏ,sdsT ℏ∗

q0,p0,u0
Φℏ∥ = 0. (3.1)

Here
∫ t

0
Qℏ,sds is a quadratic operator derived from Hℏ. The strategy to see (3.1) is due to

the fact

T ℏ∗
qt,pt,ut

HℏT
ℏ
qt,pt,ut

= H(qt, pt, ut, ūt) +Qℏ,t + reminder +O(
√
ℏ).

This corresponds to (1.3) for Schrödinger operators. See (3.3). The quadratic term is given

by

Qℏ,t =
ℏ2

2m
D2

x +
1

2
x ·
(
∇2V (qt) +∇2U(qt, ut)

)
x+

√
ℏ∇HI(qt)x+ ℏHf .
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Here ∇HI(qs) = ϕ(−ike−ikqsφ̂/
√
ω), ∇2V (qt) = (∇α∇βV (qt))1≤α,β≤3 and ∇2U(qt, ut) =

(∇α∇βU(qt, ut))1≤α,β≤3 with

∇α∇βU(qt, ut) =
1√
2

∫
R3

{
−kαkβ

e−ikqtφ̂(k)√
ω(k)

ūt(k)− kαkβ
eikqt ¯̂φ(k)√

ω(k)
ut(k)

}
dk.

The main theorem is as follows.

Theorem 3.1 Let (q, p, u) ∈ R3×R3×L2(R3). Suppose that (qt, pt, ut) ∈ R3×R3×L2(R3)

is the solution to (N) with initial condition (q0, p0, u0) = (q, p, u). Then

∥e−i tℏHℏe
i
ℏ
∫ t
0 H(qs,ps,us,ūs)dsΦℏ − T ℏ

qt,pt,ut
e−

i
ℏ
∫ t
0 Qℏ,sdsT ℏ∗

q,p,uΦℏ∥ ≤ C
√
ℏ. (3.2)

Proof: Let ξℏ be the dilation defined by ξℏf(x) = ℏ3/4f(
√
ℏx), and hence ξ∗ℏf(x) = ℏ−3/4f(x/

√
ℏ).

In particular we have

ξ∗ℏψ1(x) = ψℏ(x).

To show (3.2), the Cook method is applied. Let

νt = ξℏe
i
ℏ
∫ t
0 Qℏ,sdsT ℏ∗

qt,pt,ut
e−i tℏHℏe

i
ℏ
∫ t
0 H(qs,ps,us,ūs)dsξ∗ℏΦ1,

where Φ1 = ψ1 ⊗ Ω. Since ν0 = ξℏT
∗
q,p,uξ

∗
ℏ , we have νt − ν0 =

∫ t

0
ν̇sds and then the left-hand

side of (3.2) can be written as ∥νt − ν0∥. We note that

νt − ν0 =

∫ t

0

ξℏe
i
ℏ
∫ s
0 Qℏ,rdr

(
i

ℏ
H(qs, ps, us, ūs) +

i

ℏ
Qℏ,s + Cs −

i

ℏ
Hℏ(s)

)
T ℏ∗
qs,ps,us

e−i sℏHℏξ∗ℏΦ1ds,

where
d

ds
T ℏ∗
qs,ps,us

= CsT
ℏ∗
qs,ps,us

.

Since T ℏ
qt,pt,ut

acts as the shift by x→ x+qt, ℏDx → ℏDx+pt and
√
ℏa(k) →

√
ℏa(k)+u(k),

we used the intertwining property:

T ℏ∗
qt,pt,ut

Hℏ = Hℏ(t)T
ℏ∗
qt,pt,ut

,

where

Hℏ(t) =
(ℏDx + pt)

2

2m
+ V (x+ qt) +

∫
R3

ω(k)(
√
ℏa†(k) + ūt(k))(

√
ℏa(k) + ut(k))dk

+

∫
R3

{
e−ik(x+qt)√

ω(k)
φ̂(k)(

√
ℏa†(k) + ūt(k)) +

e+ik(x+qt)√
ω(k)

¯̂φ(k)(
√
ℏa(k) + ut(k))

}
dk

=
(ℏDx + pt)

2

2m
+ V (x+ qt) + U(x+ qt, ut) + ℏHf +

∫
R3

ω(k)|ut(k)|2dk

+
√
ℏ
√
2ϕ(ωut) +

√
ℏHI(x+ qt). (3.3)
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We shall estimate the term ξℏ
(
i
ℏH(qs, ps, us, ūs) +

i
ℏQℏ,s + Cs − i

ℏHℏ(s)
)
ξ∗ℏ . Since

ξℏH(qs, ps, us, ūs)ξ
∗
ℏ = H(qs, ps, us, ūs),

we investigate

i

ℏ
H(qs, ps, us, ūs) +

i

ℏ
ξℏQℏ,sξ

∗
ℏ + ξℏ

(
Cs −

i

ℏ
Hℏ(s)

)
ξ∗ℏ .

We can directly compute Ct as

Ct = − i

ℏ
(ṗtx− ℏq̇tDx)−

1√
ℏ
{
a†(u̇t)− a(u̇t)

}
.

Note that ξℏxξ
∗
ℏ = x

√
ℏ and ξℏDxξ

∗
ℏ = Dx/

√
ℏ. Then

ξℏCtξ
∗
ℏ = − i√

ℏ
{
ṗtx− q̇tDx − (a†(iu̇t) + a(iu̇t))

}
.

Next we compute ξℏHℏ(t)ξ
∗
ℏ . By (3.3) we have

ξℏHℏ(t)ξ
∗
ℏ =

(
√
ℏDx + pt)

2

2m
+ V (

√
ℏx+ qt) + U(

√
ℏx+ qt, ut)

+
√
ℏHI(ℏx+ qt) +

√
ℏ
√
2ϕ(ωut) +

∫
R3

ω(k)|ut(k)|2dk + ℏHf .

By

V (
√
ℏx+ qt) = V (qt) +

√
ℏ∇V (qt)x+

1

2
ℏx · ∇2V (qt)x+O(ℏ3/2),

U(
√
ℏx+ qt, ut) = U(qt, ut) +

√
ℏ∇U(qt, ut)x+

1

2
ℏx · ∇2U(qt, ut)x+O(ℏ3/2),

√
ℏHI(

√
ℏx+ qt) =

√
ℏHI(qt) + ℏ∇HI(qt)x+O(ℏ3/2),

we see that

ξℏ

(
Ct −

i

ℏ
Hℏ(t)

)
ξ∗ℏ

= −i
{

1

2m
D2

x +
1

2
x · ∇2V (qt)x+

1

2
x · ∇U(qt, ut)x+∇HI(qt)x+Hf

}
− i√

ℏ

{
1

m
pDx +∇V (qt)x+∇U(qt, ut)x+

√
2ϕ(

√
ωut) +HI(qt)

+ṗtx− q̇tDx − (a†(iu̇t) + a(iu̇t))
}

− i

ℏ

{
1

2m
p2t + V (qt) +

∫
ω(k)|ut(k)|2dk + U(qt, ut)

}
+O(

√
ℏ).
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The second term of the right-hand side above is identically zero by equation (N). Hence

ξℏ

(
Ct −

i

ℏ
Hℏ(t)

)
ξ∗ℏ = − i

ℏ
ξℏQℏ,tξ

∗
ℏ −

i

ℏ
H(qt, pt, ut, ūt) +O(

√
ℏ). (3.4)

It follows that

∥νt − ν0∥

≤
∫ t

0

∥∥∥∥( iℏH(qs, ps, us, ūs) +
i

ℏ
ξℏQℏ,sξ

∗
ℏ + ξℏ(Cs −

i

ℏ
Hℏ(s))ξ

∗
ℏ

)
ξℏT

∗
qs,ps,us

e−i sℏHℏξ∗ℏΦ1

∥∥∥∥ ds
≤ tC

√
ℏ∥Φ1∥

with some constant C > 0 by (3.4). Then the theorem follows.

4 Wigner measures

In this section we introduce Wigner measures on the phase space R3×R3×L2(R3) appearing

in the semi-classical limits of a family of trace class operators {ρℏ, ℏ ∈ (0, 1)}. This has been
studied in e.g., [7, 3].

4.1 Examples

We recall that

T ℏ
qt,pt,ut

= T
(zt
ℏ

)
⊗W

(√
2ut√
ℏ

)
,

where zt = qt + ipt ∈ R3 + iR3 and ut ∈ L2(R3) are the solution to (N). In the previous

section we consider the asymptotic behavior of T ℏ
qt,pt,ut

as ℏ → 0 in the sense of Theorem 3.1.

Note that ∥T
(
z
ℏ

)
⊗W

(√
2u√
ℏ

)
Φℏ∥ = 1 but (Φℏ, T

(
z
ℏ

)
⊗W

(√
2u√
ℏ

)
Φℏ) → 0 as ℏ → 0.

In this section the following strategy is taken to analyze the asymptotic behavior of

coherent vector T
(
z
ℏ

)
⊗ W

(√
2u√
ℏ

)
Φℏ as ℏ → 0. For each z = q + ip ∈ R3 + iR3 and

u ∈ L2(R3), we define the trace class operator Cℏ(z, u) by

Cℏ = Cℏ(z, u) = |T
(z
ℏ

)
⊗W

(√
2u√
ℏ

)
Φℏ⟩⟨T

(z
ℏ

)
⊗W

(√
2u√
ℏ

)
Φℏ|.

This is a one-rank operator. Let z′ = q′ + ip′ ∈ R3 + iR3 nd u′ ∈ L2(R3). We prepare the

operator

W = W(z′, u′) = T (2πiz′)⊗W (
√
2πi

√
ℏu′) = e2πi(q

′x+p′ℏDx) ⊗ e−
√
2πi

√
ℏϕ(u′).

We consider the asymptotic behaviour of the trace Tr(CℏW).
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Lemma 4.1 Let z = q+ ip, z′ = q′+ ip′ ∈ R3+ iR3 and u, u′ ∈ L2(R3). Then it follows that

lim
ℏ→0

Tr(Cℏ(z, u)W(z′, u′)) = e2πiRe((u,u′)+z̄·z′).

Proof: The formulae W (f)∗ = W (−f) and T (z)∗ = T (−z), and

(W (f)Ω,W (ig)W (f)Ω) = (Ω,W (ig)Ω)eiRe(f,g)

and

(T (z)ψ, T (iz′)T (z)ψ) = (ψ, T (iz′)ψ)eiRez̄·z′

are useful. We see that Tr(Cℏ(z, u)W(z′, u′)) can be decomposed into two factors:

Tr(Cℏ(z, u)W(z′, u′))

= (T
(z
ℏ

)
ψℏ, T (2πiz

′)T
(z
ℏ

)
ψℏ) · (W

(√
2u√
ℏ

)
Ω,W (

√
2πi

√
ℏu′)W

(√
2u√
ℏ

)
Ω).

Then the field part turns out to be

(W

(√
2u√
ℏ

)
Ω,W (

√
2πi

√
ℏu′)W

(√
2u√
ℏ

)
Ω) = (Ω,W (

√
2πi

√
ℏu′)Ω)e2πiRe(u,u′)

and the particle part

(T
(z
ℏ

)
ψℏ, T (2πiz

′)T
(z
ℏ

)
ψℏ) = (ψℏ, T (2πiz

′)ψℏ)e
2πiRez̄·z′ .

We also see that

lim
ℏ→0

(Ω,W (
√
2πi

√
ℏu′)Ω)e2πiRe(u,u′) = e2πiRe(u,u′).

Since ψ2
ℏ → δ(x) and T (2πiz′) → e2πiq

′x as ℏ → 0, we can see that

lim
ℏ→0

(ψℏ, T (2πiz
′)ψℏ)e

2πiRez̄·z′ = e2πiRez̄·z′ .

Then the lemma is proven.

4.2 Wigner measures

Let X = R3 × R3 × L2(R3). Set

(ξ, ξ′)X = qq′ + pp′ + i(qp′ − pq′) + (u, u′)

11



for ξ = (q, p, u) ∈ X and ξ′ = (q′, p′, u′) ∈ X. We define W(ξ′) = W(z′, u′) = W(q′, p′, u′)

and Cℏ(ξ) = Cℏ(z, u) = Cℏ(q, p, u). Then the statements of Lemma 4.1 can be rewritten as

lim
ℏ→0

Tr(Cℏ(ξ)W(ξ′)) = e2πiRe(ξ,ξ′)X .

Furthermore

e2πiRe(ξ,ξ′)X =

∫
X

e2πiRe(x,ξ′)Xdµξ(x),

where µξ(x) is the Dirac measure δξ(x) on the phase space X with mass at x = ξ. This

is called the Wigner measure associated with {Cℏ(ξ), ℏ ∈ (0, 1)}. In [2] we consider Wigner

measures µ0 associated with a general family of trace class operators {ρℏ, ℏ ∈ (0, 1)} on the

total Hilbert space L2(R3)⊗F . I.e.,

lim
ℏ→0

Tr(ρℏW(ξ′)) =

∫
X

e2πiRe(x,ξ′)Xdµ0(x).

The existence and the uniqueness of the measure µ0 associated with {ρℏ, ℏ ∈ (0, 1)} are

established in [2] but for the Pauli-Fierz model which is rather complicated than the Nelson

model.

We can show that any Borel probability measure µ on X is a Wigner measure. We define

the family of trace class operators by

ρℏ =

∫
X

Cℏ(ξ)dµ(ξ), ℏ ∈ (0, 1).

Proposition 4.2 [2, Lemma 4.3] The Wigner measure of {ρℏ, ℏ ∈ (0, 1)} is µ.

Proof: It is straightforward to see that

Tr[ρℏW(ξ′)] =

∫
X

Tr(Cℏ(ξ)W(ξ′))dµ(ξ) →
∫
X

e2πiRe(ξ,ξ′)Xdµ(ξ).

Then the proposition follows.

4.3 Time evolution of Wigner measures and flows

The time evolution of the Wigner measure is given by

lim
ℏ→0

Tr(ρℏ(t)W(ξ′)) =

∫
X

e2πiRe(x,ξ′)Xdµt(x),

where

ρℏ(t) = e−i tℏHℏρℏe
i tℏHℏ .
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Here we give an example. Fix ξ = (z, u) = (q, p, u) ∈ X. Let

Cℏ(ξ)(t) = e−i tℏHℏCℏ(ξ)ei
t
ℏHℏ .

We set

Tξ = T
(z
ℏ

)
⊗W

(√
2u√
ℏ

)
,

Tξt = T
(zt
ℏ

)
⊗W

(√
2ut√
ℏ

)
.

Here ξt = (zt, ut) = (qt, pt, ut) ∈ X is the solution to (N) with the initial condition ξ0 = ξ =

(z, u) = (q, p, u) ∈ X. Since Cℏ(ξ) = |TξΦℏ⟩⟨TξΦℏ|, we have

Tr(Cℏ(ξ)(t)W(ξ′)) = (TξΦℏ, e
i tℏHℏW(ξ′)e−i tℏHℏTξΦℏ), (4.1)

Tr(Cℏ(ξt)W(ξ′)) = (TξtΦℏ,W(ξ′)TξtΦℏ). (4.2)

By Theorem 3.1, we can see that

e−i tℏHℏe
i
ℏ
∫ t
0 H(qs,ps,us,ūs)ds ∼ Tξte

− i
ℏ
∫ t
0 Qℏ,sdsT ∗

ξ (4.3)

in a semi-classical region. Let us define

Ĥℏ = Hℏ −H(qs, ps, us, ūs),

Qt =
1

2m
D2

x +
1

2
x · (∇2V (qt) +∇2U(qt, ut))x+ ϕ

(
−ike−ikqt

φ̂√
ω

)
x+Hf .

Thus Qt is quadratic and independent of ℏ. Note that

ξℏe
− i

ℏ
∫ t
0 Qℏ,sdsξ∗ℏ = e−i

∫ t
0 Qsds

and in particular e−i
∫ t
0 Qsds is independent of ℏ. By (4.3) we have a corollary.

Corollary 4.3 It follows that

e−i
∫ t
0

1
ℏ Ĥℏds ∼ Tξtξ

∗
ℏe

−i
∫ t
0 QsdsξℏT

∗
ξ0
, ℏ → 0. (4.4)

Here A ∼ B means that limℏ→0 ∥AΦ−BΦ∥ = 0.
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Hence

Tr(Cℏ(ξ)(t)W(ξ′)) ∼ (Tξtξ
∗
ℏe

−i
∫ t
0 QsdsξℏΦℏ,W(ξ′)Tξtξ

∗
ℏe

−i
∫ t
0 QsdsξℏΦℏ)

= (ξ∗ℏe
−i

∫ t
0 QsdsΦ1, T

∗
ξtW(ξ′)Tξtξ

∗
ℏe

−i
∫ t
0 QsdsΦ1)

= (e−i
∫ t
0 QsdsΦ1, ξℏW(ξ′)ξ∗ℏe

−i
∫ t
0 QsdsΦ1)e

2πiRe(ξt,ξ).

Furthermore

ξℏW(ξ′)ξ∗ℏ = e2πi
√
ℏ(q′x+p′Dx) ⊗ e−

√
2πi

√
ℏϕ(u′) → 1l

as ℏ → 0. Then

lim
ℏ→0

Tr(Cℏ(ξ)(t)W(ξ′)) = ∥Φ1∥2e2πiRe(ξt,ξ) = e2πiRe(ξt,ξ). (4.5)

(4.5) has been rigorously proven and ultimately generalized in [2, Theorem 1.4].

A relationship between µ0 and µt is given through solutions to (N). Let Φt : X → X be

such that ξt = Φt(ξ) is the solution to (N) with the initial condition ξ0 = ξ.

Theorem 4.4 [2, Theorem 1.4] It follows that µt(·) = µ0 ◦ Φ−1
t (·).

By this we can see that

lim
ℏ→0

Tr(Cℏ(ξ)(t)W(ξ′)) =

∫
X

e2πiRe(x,ξ′)Xdµξ ◦ Φ−1
t (x) (4.6)

and hence ∫
X

e2πiRe(x,ξ′)Xdµξ ◦ Φ−1
t (x) = e2πiRe(ξt,ξ′)X .

Then (4.5) follows. As a corollary we can see that

lim
ℏ→0

Tr(Cℏ(ξ)(t)W(ξ′)) = lim
ℏ→0

Tr(Cℏ(ξt)W(ξ′)).
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