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Abstract

We are concerned with the Nelson Hamiltonian Hj with semi-classical parameter
h > 0. A classical object H(qs,ps,us,us) is defined by the solution {g¢s,ps,us} to
the Hamilton-Jacobi equation associated with the Nelson Hamiltonian. We show the

asymptotic behaviour of
. ) t _
6_7/%Hhe% fO H(gs,ps,us,ls)ds

as h — 0. Furthermore we introduce Wigner measures pg on the particle-field phase
space X = R3 x R? x L?(R?) appearing in the semi-classical limits of a family of trace
class operators {pp, h € (0,1)}. Le.,

lim Tr(phW(f/)) _ / e27riR0(ac,§/)X d,UzO(f)
h—0 X

for ¢ € X and W(§) denotes an exponential operator. The Wigner measure p; associ-
ated with the family of time evolutions of trace class operators {pp(t),h € (0,1)} are
given by

lim Tr(pp(t)W(E)) = / 2mR@E) X 1y, ().
h—0 X

We show that i (-) = oo ®; ' (+), where ®; is the flow for the solution to the Hamilton-
Jacobi equation.

1 Hamilton-Jacobi equation for the Nelson model

In the RIMS conference held on December 6-8, 2021 we gave a talk on the title ”Newton
Maxwell equation through semi-classical analysis”. In this article, however, we are concerned
with the Nelson model on coherent states for the simplicity and demonstrate a motivation
why we are interested in the semiclassical analysis. This results are ultimately developed

in [2] for the Pauli-Fierz model in non-relativistic QED [10] and the semi-classical limit is
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investigated through the so-called Wigner measures. The Wigner measure is a probability
measure on the total phase space R? x R? x L?(R3). The Wigner measure is applied to
the semi-classical analysis in [7] for Schrédinger operators and is extended to an infinite

dimensional phase space in [3]. We refer [1, 4, 6, 5] for related investigations.

1.1 Semi-classical limit of Schrodinger operators

Before going to our main results, we introduce a semi-classical limit of Schrodinger operators

for the readers convenient. Let us consider 3D-Schrodinger operator of the form:

h2
hh = %Di + V(J?),

where A > 0 is a semi-classical parameter, m > 0 a mass of a particle, D, = —iV, and V is

an external potential. Let
2

H=M(q,p) = 21—+ V(q),

2m
where (p, q) € R?® x R3. The Hamilton-Jacobi equation associated with hy is

. OH Pt
¢ = —— =
opy m
(1.1)
) oH
bt = —5—% = —VV<Qt>-

Let (q;, p;) € R* x R? be the solution to (1.1). We are interested in the asymptotic behaviour
of

e—i%hhe% fot H(gs,ps)ds

as h — 0.
Let &, be the 3D-dilation defined by

&f(x) = B f(Vha),
and hence & f(x) = i3/ f(x/v/h). Let us define the quadratic operator Q5" by

1
tSCh = %Dg +x- VQV(qt):L’

Then it actually follows that

. —itp, it i (py— —i [tQSe — i (poz—
}111_{%”6 ixhner Jo H(qs,ps)dsw_eﬁ(ptz hthz)g;;e ifo Q5 hds&e 7 (Poz hquz)ng —0. (1.2)



This can be proven as follows. Let

Ny = 5281‘ I Qfehdsfﬁe_%(p””_hq’wa)e_i%hhe% o H(qs,ps)ds(p‘
Then
t
) - . o )
||efl%hhe% IN H(qs,ps)dsgp_e%(pt:l?*thDz)ggefl Jo QEChdsgth%(pomthoD:c)QOH = ||’)/t—’}/OH < / ||’}/S HdS
0

We see that

) it 7 .t HSe i _;t
Mt —eido H(qs’ps)dsﬁ%(%pt)fgezfo Q2 hdsfhe 7 (prz—hat Dz) , z}t’thhgp

it . s [t HSch _ i _ _it
+€hf0 H(qs,ps)dSS;ZQezfo Q% ds§h€ +(pez }‘zth;c)6 zﬁhﬁso

4 e Iy H(qs,ps)d852eif3 QfChds§h {_%(ptx _ hthr)} e_%(p”—hquz)e_i%hhgo

it .t 4Sch T 7 ot
—|—@th H(QwPS)de;;ezfo Q5 ds&e + (ptx—hqeDy) {—ﬁhh}e Zhhhgp'

We compute {;»Le_%(ptx_h%Dx) {—%hh}. By a shift operator e%(m_th”)7

(th + pt)2

hy, —
h 2m

+ V(ZC -+ (]t),

and by a scaling &,
2
_, (WAD: +p)?
2m

+V(Vhz +q).

Then the right-hand side above is

ghe—%(pw—hthm)hﬁ _

—(\/ﬁDQj; P’ + V(Vhz + q)

= ) + VA (P20 £ Va)e) +HQE OB, (13)

Furthermore

&n {—%(pt:c - thDx)} = _%i(]')tﬂf - Qth)§h~

Hence

A =€t Jo Q3" {ﬁH(Qtapt) +iQy " — ﬁ(ptfb’ — ¢D,) — ﬁ(1-3)} &n

i _itp, it
w e #Ptr—ha D) —ighn o3 [y H(qs,ps)dsso‘



By (1.1) we have

?

- (1.3) = O(Vh).

i e i
—H(q,pe) + Q7" — —= (P — ¢, Dy)

h Vh

Then (1.2) follows. In the semi-classical region we can see that

» - . ot sen .
e~ irhnet i Jo Hiagsps)ds e%(ptx*hfItDz)é‘;:e*'L Jo Q3¢ ds&ief%(poxthoDz)_

Here we emphasize that Q3" is independent of h. We extend this kind of arguments to the

Nelson model in quantum field theory in what follows.

1.2 Nelson model

Let af(f) and a(f) be the annihilation operator and the creation operator, respectively on
the boson Fock space over L?(IR3):

(@5 L*(R?))].

P

f:

S
I
o

The adjoint relation is a(f)* = af(f) and the CCR is given by [a(f),a'(g)] = (f,¢)1 and
[a*(f),a*(g)] = 0, where (f, g) denotes a scalar product on L?(R?) and it is linear in g and
anti-linear in f. Formally we write a*(f) = [ a*(k) f(k)dk. The field operator is given by

(a'(f) +a(f))

and its momentum conjugate by

1 _

(f) = —=(a'(f) = a(f)).

Thus [¢(f),I1(g)] = iRe(f,9), [6(f), #(g9)] = ilm(f,g) and [I(f),II(g)] = iIm(f,g) hold
true. Let Hy = dI'(w) be the second quantization of the multiplication by w(k) = |k|. Here

|k| denotes the energy of a massless boson with momentum &k € R3.
The Nelson Hamiltonian [9, 8] is defined as s self-adjoint operator on the product Hilbert
space
H=L*R®F

and is given by

1
HZ(%DE;—FV)@II—FI[@Hf—FHIa



and the interaction by

= Hi()ote 3 /va) = — [ { _”L*p (k) + ikqﬂ” <k>}dk

Here ¢ is a cutoff function. We assume that w/we, v/w, p/+/w, p/w € L*(R?). Throughout
we suppose that V' € C?(R3) and bounded. Then H is self-adjoint on D(D?) N D(H;) and

bounded from below. We introduce the semi-classical parameter i > 0 by

h2
Hy=(=—D?+V)® 1+ VhH, + hl® H;.

2m
Let (¢, p,u) € R® x R® x L*(R?). The classical Nelson Hamiltonian is given by

2

H(p,q,u, i) = 2p—m +V(q) + /]1@3 w(k)[u(k)|*dk 4+ U(q, u).

U(g,u) = % /R3 {%a(k) - eikq@k)u(k;)} dk.
u)

€ R3 x R3 x L*(R?) are governed by the Hamilton-Jacobi

Here

The time evolution of (p, ¢,

equation:
(. 0t _n
qt - 5pt - ma
. OH
(N) < Pt = o —VVi(q) — VU(qs, w),
. oM e~ ka (k)
(k) = — =wk)u(k)+ —=
\ e(k) 5, (k)u (k) =0
Here

—ikqt k ikqt k
VU (gi, 1) = i) oy + z’ke—“p()ut(k)} dk.

1
V2 Jps { w(k) w(k)
Note that /wp € L*(R?) and then the right-hand side above is finite.

2 Coherent states and Weyl commutation relations

Now we define coherent states for the field and the particle. In general, when [A, B] is

c-number, then formally

1
¢AoB — o3lAB] A+B



holds true. Let W(f) = e™¥). Then Weyl commutation relation holds:
W(HW(g) = e 2UIW(f + ).
Since W (ig) =~*¥), we can see that
W)W (ig) = e 2RIV (f +ig).
Let z = g +ip € R® +4R3. Define T(z) = ¢P*=4D=)  Note that
[px — qhD,,p'v — ¢hD,| = ih(qp’ — pq') = ihIlmz - 2.

Hence
T(2)T(2) = e 2"™=' (5 4 2)

and
T(2)T(i2') = e 2" 7 (2 4 i2)).

The coherent state smeared by u is defined by

V2u
v ()"

where ) € F is the Fock vacuum. Note that

W (ﬂU> _ el w—a(@)

4

Vh

Let (q,p) € R3 x R? be a point in the phase space and
Thus [[¢;]] = 1. The coherent state for the particle part is given by

h _

q,p(x) - Tq,p¢h7
where T;fp =T (%) for z = q+1p, i.e.,

" = ! hgD
up = €XD ﬁ(pa: — hgD,) | .
Note that ¢  is normalized in L*(R?) for each (¢,p) € R* x R?. We see that
th’p — o5 EPMpEPTe—iaDs _ 5594, —iqDx P
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Let (g, pt, us) be the solution to (N). Define

=1 (Pp®Q), t>0.

qt,Pt,ut

Here
Z \/§u
T, =T(3)ew (2], 2=q+ip,
q,p,u h ® \/ﬁ q + p
is unitary. The unitary operator Tq’z e 15 the shift operator such that
T xTh =+ q,

qt,pt,ut qt,pt,ut

hok h o
TQt,PmUt thTtImpt,Ut - hDI + D,
Th Nha(k)TE = Vha(k) + (),
T NR(R)TE = Vha' (k) + (k).

From these relations we can see that

(z +ihD,)®} = (q; + ip) P},
Vha(k)®! = u, (k)®!,
Vhat(k)®" = u,(k)®].

The classical objects appear as the eigenvalues.

3 Semi-classical limits

In this section we shall prove that

. —itHy —iftH(qs,ps,US,ﬂs)ds h —1ftQh,Sds hsk .
%1_{1(1)”6 " (I)h_e no TQt»pt,ute e TQO,ZJOMOCI)EH = 0. (31)

Here f(f Qn.sds is a quadratic operator derived from Hj. The strategy to see (3.1) is due to

the fact
Ty H il

qt,Pt,Ut qt,Pt,Ut

= H(q, pr, ur, Ug) + Qne + reminder + O(\/ﬁ)
This corresponds to (1.3) for Schrodinger operators. See (3.3). The quadratic term is given
by

h?

1
Qnt = %Di + 3% (VV(q) + VU (@, ) & + VAV Hi(q,)x + hH.



Here VHi(q,) = ¢(—ike™™=3/\/w), V2V (q) = (VaVaV(@))1<ap<s and VU (g, u) =
(VaVaU(qr, ut))1<a,8<3 With

1 e~ e p(k etha o (k
VaVsUlau) = 5 | {—kakﬁ—wuat(/ﬁ) gk, e k)
R

—— (k) dk.
w(k) w(k) ()}

The main theorem is as follows.

Theorem 3.1 Let (q,p,u) € R x R? x L*(R3). Suppose that (g;, ps, us) € R3 x R® x L*(R3)
is the solution to (N) with initial condition (qo, po,wo) = (¢, p,u). Then

”e—i%Hﬁe% I H(qs,ps,us,ﬂs)dsq) _h e ~iJ Qh,stT(Z;’u@hH < CvVh. (3.2)

qt,Pt,Ut

Proof: Let &, be the dilation defined by &, f () = #*/* f(v/ha), and hence & f (z) = =34 f (x/VR).

In particular we have
& (@) = Yn().
To show (3.2), the Cook method is applied. Let

t it _
= fh@h fo Qn, SdStht*pt Ut ZﬁHﬁeh fo ’H(qs,ps,us,us)dsé.;;q)17

where ®; = ¢; ® (. Since vy = {1, &, we have vy — vg = fot vsds and then the left-hand

side of (3.2) can be written as |1, — vp]|. We note that

vy — g = / é'heh IS Qnrdr (hH(qs’pS’ Us, us) + th +Cs — h ( )) ths*ps w *i%th;;q)ldS,

where

d Fux Fux
E qs;Ps;Us = C qu »Ps Us
Since T} ., acts as the shift by * — z+¢;, hD; — hD,+p, and Vha(k) = Vha(k)+u(k),

we used the intertwining property:

Th* Hh — Hﬁ( )Th*

where
Hy(t) :W +V(z+q)+ /R's w(k’)(\/f_iaT(k;) + u,(k ))(\/_a( k) + u(k))dk
e~ k(@) - etik(ztar) _
T /R 3 {Wgo(k)(\/f_’w(k) + (k) + Ws@(lﬂ)(\/ﬁa(/ﬂ) + m(k))} dk
:(hDac +pt)2

+V(r+q)+U(r+ ¢, w) + hH + / w(k)|ug(k))*dk
2m R3

+ VIV20(wuy) + VRH (z + q). (3.3)



We shall estimate the term & (£H(gs, ps, s, Us) + £Qns + Cs — tHy(s)) & Since

§EH<QS7Z737 us7 ﬂs)’f}t = H(q87p87 u87 ﬁ8)7

we investigate
1 1

%H<QS7pS7US7aS> + ﬁéh@h,sé_; + gh (Cs - %HfL(S)) 5;

We can directly compute C} as

?

Cy N

(Pex — hg:Dy) {a' (i) — a(i)} .

b
Vh
Note that 28 = 2v/h and EnDLES = Dz/\/i_i Then
§n Gy = _ﬁ {ptx — ¢ Dy — (aT(zut) + a(@ut))} .
Next we compute &,Hj(t)E;. By (3.3) we have

(ﬁDz + pt)2

EnHp(1)E5, = om + V(\/ﬁx +q) + U(\/ﬁx + i, up)
+ VRH(hx + ;) + VIV 26 (wu,) + / 3 w(k)|ug(k)|[*dk + hH;.

V(Vhz 4+ q) = V(g) + VAVV (¢)z + %hm -V (q)x + O(K?),

1
UVhx + g, u) = Ulge, ws) + VEVU (qr, )z + 57195 VU (g, ug)x + O(R/?),
VRH (Vhx + ¢) = VEH{(¢:) + hV Hy(q)z + O(1*?),

we see that
1
&n (Ct - ;_LHn(t)) 3

1 1 1
= {%Di + 2% V2V (q)x + 3% VU (q,ut)x + VHi(q)r + Hf}

{%pr + VV(q)z + VU (g, u)z + V20 (vVwu) + Hy(gy)

SE

i — oDy — (al (i) + (7)) }

ot Vi) + [wluFak+ Ula,u) | + OV

~.



The second term of the right-hand side above is identically zero by equation (N). Hence

6 (Com 1) 6 = ~360u8 - (Hamuet) +OVRL  (34)
It follows that
vt = voll
< [ (500 ) + 3610065+ 6C— LG ) 6T 01010
< tCVh||4|
with some constant C' > 0 by (3.4). Then the theorem follows. |

4 Wigner measures

In this section we introduce Wigner measures on the phase space R? x R3 x L?(R?) appearing
in the semi-classical limits of a family of trace class operators {pp, A € (0,1)}. This has been
studied in e.g., [7, 3].

4.1 Examples

We recall that
\/éut
- (ﬁ) L e
qt,pt,ut FL ® \/7_1 )

where z; = ¢ + ip; € R? +4iR? and w; € L*(R?) are the solution to (). In the previous

section we consider the asymptotic behavior of T(Z ey @8 = 0 in the sense of Theorem 3.1.

Note that ||T (%) ®W(%) Byl = 1 but (&, T (2 )®W< )%) 5 0as fi— 0.
In this section the following strategy is taken to analyze the asymptotic behavior of
coherent vector T (%) ® W( )CIDh as h — 0. For each z = ¢+ ip € R3 +iR? and

u € L*(R3), we define the trace class operator Cp(z,u) by

Cp = Ca(z,u) = |T (%) QW (%‘) o) (T (h) QW (‘%’“) ;.

This is a one-rank operator. Let 2/ = ¢/ +ip’ € R3 +iR? nd v’ € L*(R?). We prepare the

operator
W =W( W) = T(2miz") @ W(V2rivVhu') = 2™ #+D2) g o=V2rivig(w'),

We consider the asymptotic behaviour of the trace Tr(C,WV).

10



Lemma 4.1 Let z = q+ip, 2’ = ¢ +ip/ € R*+iR* and u, v’ € L*(R®). Then it follows that
lim Tr(Cp(z, u)W(2', 1)) = 2mi Re((uu')+2:2")
h—0
Proof: The formulae W (f)* = W(—f) and T(2)* = T(—z), and
(W ()W (ig)W ()Q) = (Q, W (ig)Q)ei Rel/:9)

and
(T(2)0, T(iz"\T(2)) = (v, T(i2')1p)e B

are useful. We see that Tr(Cp(z, u)W(2',u’)) can be decomposed into two factors:
Tr(Ch(z, WW(Z', )

= (T (%) n, T (2miz")T (%) Un) - (W (*f/_%‘) Q, W (V2riv T YW <{/§g> Q).

Then the field part turns out to be

\/_U \/_U . / 2mi Re(u,u’)
(W (\/ﬁ> Q, W (V2mivVhu'\W (\/ﬁ) Q) = (Q, W (V2rivViu')Q)e

and the particle part

(T (%) o, T(2mi2)T (%) Wn) = (n, T(2miz Yip)e2 iRz,

We also see that
lim (€2, W (v 2miv/Td ) Q) e2miBe(un) — p2miRe(uu')
H

Since ¢y — §(x) and T(2miz') — ¢*™7* as h — 0, we can see that
lim(@bh, T(27Tizl)f,7[)h)€27riRe§.Z’ _ eszei-z"
h—0

Then the lemma is proven. [

4.2 Wigner measures

Let X = R® x R? x L*(R?). Set

(& &)x =qd +pr' +ilap — pd) + (u, )

11



for € = (¢,p,u) € X and & = (¢,p',v') € X. We define W(¢') = W(2',u') = W(¢,p/, )
and Cp(&) = Cr(z,u) = Ci(q, p,u). Then the statements of Lemma 4.1 can be rewritten as

lim Tr(Cy () W(E)) = 2 Felex,

Furthermore
p2miRe(€.8)x _ / e Re(g&’g)xdl’f (@),
X

where pe(x) is the Dirac measure d¢(z) on the phase space X with mass at x = £. This
is called the Wigner measure associated with {Cs(€),h € (0,1)}. In [2] we consider Wigner
measures fio associated with a general family of trace class operators {ps, h € (0,1)} on the
total Hilbert space L*(R?) ® F. Le.,

limTr(phW(f')):/ 2 Re@ENx g0 ().
h—0 X

The existence and the uniqueness of the measure g associated with {pp, A € (0,1)} are
established in [2] but for the Pauli-Fierz model which is rather complicated than the Nelson
model.

We can show that any Borel probability measure p on X is a Wigner measure. We define

the family of trace class operators by

o = /X C(E)du(€), he (0,1).

Proposition 4.2 |2, Lemma 4.3] The Wigner measure of {pn, h € (0,1)} is p.

Proof: 1t is straightforward to see that

el = [

X

TH(CAEW(E))du(€) — /X TR 1 (€).

Then the proposition follows. ]

4.3 Time evolution of Wigner measures and flows

The time evolution of the Wigner measure is given by

lim Tr(pr(t)WV(E)) = / 2 Re@ X dyy, (),
h—0 X

where

it i
pr(t) = e~ intlnppetntin,

12



Here we give an example. Fix £ =

We set

Here & =

(Z71L) =

Ch(&)(t) = e RInC, (€)',

(z,u) =

ngT(h)@)W(\/\/_]_g),

2t \/éut
TIe, =T (—) ® W ,
T (ﬁ)
(Gt, pe,ur) € X is the solution to (V) with the initial condition &
(qvpa ) S X SIIICG Ch(f) =

(21, w) =

Tr(Ch()OW(E) =
Tr(Ch(E)WV(S) =

By Theorem 3.1, we can see that

Te @) (TePy|, we have

(Tft CI)7L7 W(§ )Tﬁt q)ﬁ) :

(q,p,u) € X. Let

—iLHp % fo H(4sps,us,iis)ds —+ Jo Qnsdsrp
e 'rtlhen Jo 5:Ps)Us,Us ~ jgt@ R Jo @h, ]2

in a semi-classical region. Let us define

f{h — Hh - H(prsa Us, as)’
1
= —D? ¢
Qt 2 2

<vwma+v0@mmm+¢(

Thus @), is quadratic and independent of . Note that

S

i t
+ Jo Qn,sdse* _
7 Jo Qn.s fﬁ =

e
et fo Qsds

—ikqs

(Te®p, T IW(E e 7T, By,),

~

¥

>I+Hf
w

and in particular e/ @95 ig independent of h. By (4.3) we have a corollary.

Corollary 4.3 It follows that

1f0 hthS NT f e ’LfondSé- 60’ B — 0.

Here A ~ B means that limy_,o ||A® — B®|| = 0.

13

=¢=

(4.4)



Hence

Tr(Cu(€) (HW(E)) ~ (Te&re™ 0 V46,0 W(E) T &re ™ b @5,y
= (G B @BD) TEW(E) T e i @00y
= (eii fot Qsdsq)l, fﬁW(él)fze*i fot Qsdsq)1)€2m' Re(gt,g).

Furthermore
EW(E)E; = EmRTHIDD)  (VEriVEs) _,

as h — 0. Then

lim Tr(Cy () (YW(E) = [y |22 R — 2rihetee), (4.5)

h—0

(4.5) has been rigorously proven and ultimately generalized in [2, Theorem 1.4].
A relationship between o and i, is given through solutions to (V). Let &, : X — X be
such that & = ®,(£) is the solution to (N) with the initial condition &, = &.

Theorem 4.4 [2, Theorem 1.4] It follows that p;(-) = po o ®;'(-).

By this we can see that

i TH(CHE)OW(E) = [ g0 @7 (0) (46)

h—0

and hence
/ €2m’Re(:z,ﬁ’)Xdlu£ o (I);I(SL’) _ eQﬂiRe(&,ﬁ’)X.
X

Then (4.5) follows. As a corollary we can see that

lim Tr(C, () (HW(E)) = lim Tr(Ca(E)V(E))-

h—0
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