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The method of renormalization of the Nelson Hamiltonian

Operator theory

Stochastic method

Perturbation theory
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A belief history of renormalization of the Nelson Hamiltonian

1963: Nelson, renormalization by stochastic method

1964: Nelson, renormalization by operator theory

1973: Fröhlich, asymptotic field of fiber Hamiltonian

2001: Ammari, HZV-type theorem for massive case

2005: Hirokawa+FH+Spohn, the existence of ground state

2012: Gérard-FH-Panati-Suzuki, renormalization on a manifold

2014: Gubinelli-FH-Lorinczi, renormalization by stochastic method

2016: Ammari-Falconi, semi-classical analysis

2017: Matte+Møller, FH, FKF and properties of ground state←
Todays talk.....
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Nelson model

▶Gaussian random variable ϕ(f ), f ∈ L2
R(R3), on (Q,Σ,µ)

Eµ [ϕ(f )] = 0, Eµ [ϕ(f )ϕ(g)] = 1
2(f ,g)L2(R3)

Cf.

ϕ(f ) =
1√
2

∫
a†(k)f̂ (k)+a(k)f̂ (−k)dk CCR [a(k),a†(k)] = δ (k −k ′).

▶Boson Fock space F = L2(Q,µ)
▶Total Hilbert space of the Nelson model is H = L2(R3)⊗F
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▶Nelson Hamiltonian with UV(ultraviolet) cutoff parameter ε > 0:

Hε = Hp⊗1l+1l⊗Hf +gϕ(ρε(·−x))

▶Hp =−1
2∆+V (x) is Schrödinger op. e.g., V is Kato class potential.

▶Hf = dΓ(ω(−i∇)) is free field Hamiltonian. I.e.,

Hf : ϕ(f1) · · ·ϕ(fn) := ∑
j
: ϕ(f1) · · ·ϕ(ω(−i∇)fj) · · ·ϕ(fn) :

Formally
Hf =

∫
ω(k)a†(k)a(k)dk

with the dispersion relation ω(k) = |k |.
▶By Kato-Rellich theorem Hε is s.a. on D(Hp)∩D(Hf) and Hε >−∃Cε .
▶Kato theory was introduced by Kato-Mugibayashi, Høegh Krohn, etc.
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▶UV cutoff function ρε with UV cutoff parameter ε > 0. The Fourier
transform of ρε is given by

ρ̂ε(k) =
e−ε|k |2/2√

ω(k)
1l|k |>λ ∈ L2(R3) ε > 0

▶Removal of UV cutoff:

lim
ε↓0

ρ̂ε(k) =
1√

ω(k)
1l|k |>λ ̸∈ L2(R3)

THEOREM (E. NELSON,1964)

Let Eε =−1
2
∫
|k |>λ |ρ̂ε(k)|2β (k)dk with β (k) = 1

ω(k)+|k |2/2 , where
Eε →−∞ as ε ↓ 0. Then a self-adjoint operator ∃Hren such that

lim
ε↓0

e−T (Hε−g2Eε ) = e−iπe−THreneiπ ,

where eiπ is a unitary operator called Gross transform.
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Stochastic method

[[Hp]]
▶(Bt)t∈R is BM on whole real line R on wiener space (Ω,F ,W ).

▶(f ,e−THpg)L2(R3) =
∫

dxEx
W [f (B−T )e−

∫ T
−T V (Bs)dsg(BT )]

[[Hf]] By B.Simon [P(ϕ)2 Euclidean quantum field theory]
▶JT = Γ(jT ) and jT : L2(R3)→ L2(R4), T ∈R, is the family of isometries:
▶j∗t js = e−|t−s|ω(−i∇) and J∗T JS = e−|T−S|Hf .
▶(Ψ,e−2THfΦ)F = Eµ [ΨJ∗−T JTΦ].

[[Hε ]] By (Lőrinczi-FH-Betz,11) for F ,G ∈H we have FKF for 0 < ε

(F ,e−2THε G)H =
∫

dxEx
W×µ

[
F (B−T )LT G(BT )

]
▶LT = e−

∫ T
−T V (Bs)dsJ∗−T e−gϕ(

∫ T
−T jsρε (·−Bs)ds)JT
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Vacuum expectation and double intergal

▶Fock vacuum 1l ∈F and f ,h ∈ L2(R3) are fixed.

▶(f ⊗1l,e−2THε h⊗1l) =
∫

dxEx
W

[
f (B−T )h(BT )e

g2
2 Sε e−

∫ T
−T V (Bs)ds

]
▶Pair interaction

Sε =
∫ T

−T
ds

∫ T

−T
dtWε(Bt −Bs, t−s)

▶Pair potential

Wε(Bt −Bs, t−s) =
1
2

∫
|ρ̂ε(k)|2e−i(Bt−Bs)·ke−ω(k)|t−s|dk .

▶The diagonal part of Sε is singular at ε = 0 =⇒ Eε . Then

Sε = SOD +SD
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FIGURE: Sε
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▶Let φε(x , t) =
1
2

∫
|ρ̂ε(k)|2

e−ik ·x−ω(k)|t |

ω(k)+ |k |2/2
dk .

▶Ito formula:
f (t ,Bt)− f (0,0) =

∫ t
0 ∇f (s,Bs)dBs +

∫ t
0(∂s+ 1

2∆x)f (s,Bs)ds

φε(BT −Bs,T −s)−φε(0,0) =
∫ T

s
∇φε(Bt −Bs, t−s)dBt −

∫ T

s
Wε(Bt −Bs, t−s)dt

▶−φε(0,0) = Eε

▶Sε = SOD +Yε +Zε +4T φε(0,0)︸ ︷︷ ︸
diagonal part=SD

with

Yε = 2
∫ T

−T
ds

∫ s

s−τ
∇φε(Bt −Bs, t−s) ·dBt ← dangerous part

Zε =−2
∫ T

−T
φε(Bs+τ −Bs,(s+ τ)−s)ds

SOD = 2
∫ T

−T
ds

∫ T

s+τ
dtWε(Bt −Bs, t−s)

Sren
ε = Sε +4TEε = SOD +Yε +Zε

for any τ > 0. τ is the width of the diagonal part of [−T ,T ]× [−T ,T ].
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Let Kε = (f ⊗1l,e−2T (Hε−g2Eε )h⊗1l) =
∫
R3 Ex

W

[
f (B−T )h(BT )e

g2
2 Sren

ε

]
dx

THEOREM (GUBINELLI+FH+LORINCZI, JFA 14)

▶∃Sren st lim
ε↓0

Kε =
∫
R3

Ex
W

[
f (B−T )h(BT )e

g2
2 Sren

]
dx

▶∃C st |Kε | ≤ ∥f∥∥h∥eCT

▶∃C ′ st infσ(Hε −g2Eε)≥ C ′

▶∃ limε↓0(F ,e−2T (Hε−g2Eε )G) for F ,G ∈ ∃Dense D .

▶The uniform lower bound implies that

∃ lim
ε↓0

(F ,e−2T (Hε−g2Eε )G) ∀F ,G ∈H .

THEOREM (COROLLARY)

∃Hren such that lim
ε↓0

e−T (Hε−g2Eε ) = e−THren
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Physical interpretation of Eε

▶V = 0 and infσ(Hε) = E(g2) = E(0)+g2Eε +O(g3)

THEOREM (FH2015, PREPRINT)

lim
g→0

E(g2)−E(0)
g2 = Eε

E(g2) =− 1
2T

lim
T→∞

log(f ⊗1l,e−2THε f ⊗1l)
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The most crucial fact is that we do
not know the explicit form of UV
renormalized Hamiltonian Hren and
the domain!
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FKF and ground state
▶(F ,e−2THε G) =∫

dxEx
W×µ

[
e−

∫ T
−T V (Bs)dsF (B−T )J∗−T e−gϕ(

∫ T
−T jsρε (·−Bs)ds)JT G(BT )

]
▶The Baker-Campbell-Hausdorff formula: eX+Y = eX eY e−

1
2 [X ,Y ] if

[X ,Y ] commutes with X and Y . We have

e2TEε J∗−T e−gϕ(
∫ T
−T jsρε (·−Bs)ds)JT

= e
g2
2 Sε+2TEε J∗−T e−a†( g√

2

∫ T
−T jsρε (·−Bs)ds)e−a( g√

2

∫ T
−T jsρε (·−Bs)ds)JT

= e
g2
2 Sε+2TEε e−a†( g√

2

∫ T
−T e−|s+T |ω ρ̂ε e−ikBs ds)e−THf︸ ︷︷ ︸

bounded op.

e−THfe−a( g√
2

∫ T
−T e−|s−T |ω ρ̂ε eikBs ds)︸ ︷︷ ︸

bounded op.

ε→0→ e
g2
2 Srenea†(UT )e−2THfea(ŪT )

UT =− g√
2

∫ T

−T

e−|s+T |ω(k)√
ω(k)

e−ikBsds ∈ L2(R3
k ) a.s.(∗)

To prove (*) is non-trivial!
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THEOREM (MATTE AND MØLLER 2017)
Let F ,G ∈H . Then

(F ,e−THrenG)

=
∫

dxEx
W [e−

∫ T
−T V (Bs)dse

g2
2 Sren(F (B0),ea†(UT )e−2THfea(ŪT )G(Bt))].

[Ground state of QFT model with UV cutoff]
Bach,Fröhlich and Sigal, Adv Math 1997, CMP 1999
Arai and Hirokawa, JFA 1997
Griesemer,Lieb and Loss, Inventiones 2001

COROLLARY (HIROKAWA+FH+SPOHN ADV MATH 05, MM17)
There exists a g0 > 0 such that Hren has the ground state and it is
unique providing that |g|< g0.

Proof: The existence of ground state is due to [HHS 05] and the
uniqueness can be derived from [MM17] and the Perron-Frobenius
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Expectations wrt ground state φg of Hren

Gibbs measure is useful to estimate the ground state expectations. Let
φg be the ground state of Hren.
▶Let 0≤ ϕ ∈ L2(R3) and since (ϕ ⊗1l,φg) ̸= 0,

ϕ ε
T =

e−THε ϕ ⊗1l
∥e−THε ϕ ⊗1l∥

ε↓0→ ϕT =
e−THrenϕ ⊗1l
∥e−THrenϕ ⊗1l∥

T→∞→ φg

▶(φg,Oφg) = lim
T→∞

lim
ε↓0

(ϕ ε
T ,Oϕ ε

T ) = lim
T→∞

lim
ε↓0

(e−THε ϕ ⊗1l,Oe−THε ϕ ⊗1l)
∥e−THε ϕ ⊗1l∥2

▶On the Wiener space (Ω,F ,W ) the finite volume Gibbs measure is
defined by

µT (A) =
1

ZT

∫
R3

dxEx
W

[
1lAϕ(B−T )ϕ(BT )e

g2
2 Sren

]
for A ∈F .
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Examples

(1) Number of bosons dΓ(1l|k |<Λ) = NΛ

▶lim
T
(ϕT ,e−βNΛϕT ) = lim

T
EµT [e

−(1−e−β )
∫ 0
−T ds

∫ T
0 dtWΛ ]

▶WΛ =
∫

λ<|k |<Λ

1
ω(k)

e−|t−s|ω(k)e−ik(Bt−Bs)dk

(2) Gaussian domination

▶lim
T
(ϕT ,eikϕ(f )ϕT ) = lim

T
e−

|k |2
4 ∥f∥

2
EµT [e

+ikST ]

▶lim
T
(ϕT ,e−βϕ(f )2

ϕT ) = lim
T

1√
1+β∥f∥2/2

EµT

[
e
−

βS2
T

2(1+β∥f∥2/2)

]
▶ST =

1
2

∫ T

−T
ds

∫
λ<|k |

e−|s|ω(k)

ω(k)
e−ikBs f (k)dk .
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Gibbs measure

▶Question:
µT → µ (T → ∞)?

[Existence of infinite volume Gibbs measure with UV cutoff]

Spohn, CMP 90, SB model

Osada-Spohn, Ann Prob 99, Nelson model (some approximation)

Betz-FH-Lorinzi-Minlos-Spohn, RMP 01, Nelson model

Betz-Spohn 02, translation invariant Nelson model

Hirokawa-FH-Lorinczi, Math Z 14, SB model

FH., Adv Math 14, semi-relativistic PF model
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F[−S,S] = σ(Br , r ∈ [−S,S]) and we set G = σ(∪S≥0F[−S,S])

THEOREM (GIBBS MEASURE FH2017)
Let µT be the finite volume Gibbs measure on (Ω,G ). There exists a
prob. measure µ∞ on (Ω,G ) such that µT → µ∞ as T → ∞ in the local
weak sense. I.e., µT (A)→ µ∞(A) for A ∈F[−S,S]∀S .

Proof: The ground state φg exists and φg > 0. Then
ϕT = e−T (Hren−E)ϕ ⊗1l with E = infσ(Hren) and ϕT → φg.

µT (A) = e2ES
∫

dxEx
W

[
1lA(

ϕT−S(B−S)

∥ϕT∥
,KS

ϕT−S(BS)

∥ϕT∥
)

]
for A ∈F[−S,S]

where
KS = e

g2
2 Srene−

∫ S
−S V (Bs)dsea†(US)e−2SHfea(ŪS).

We then have

lim
T

µT (A)= µ∞(A)= e2ES
∫

dxEx
W
[
1lA(φg(B−S),KSφg(BS))

]
for A∈F[−S,S]

FUMIO HIROSHIMA ANALYSIS OF QFT WITHOUT UV T. KATO CENTENNIAL CONF. 20 / 23



Applications of Gibbs mesures

(1) Number of bosons
▶(φg,e−βNΛφg) = Eµ∞ [e

−(1−e−β )
∫ 0
−∞ ds

∫ ∞
0 dtWΛ ]

▶(φg,e+βNΛφg) = Eµ∞ [e
−(1−e+β )

∫ 0
−∞ ds

∫ ∞
0 dtWΛ ]< ∞ for β > 0 by an

analytic continuation on β ∈ C

(2) Gaussian domination

▶(φg,e+βϕ(f )2φg) =
1√

1−β∥f∥2/2
Eµ∞

[
e
+ βS2∞

2(1−β∥f∥2/2)

]
▶(φg,eβϕ(f )2φg)< ∞ for β < 1/(2∥f∥2)
▶ lim

β↑1/(2∥f∥2)
(φg,eβϕ(f )2

φg) = ∞
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Weak coupling limit
Let ω(k) =

√
|k |2 +ν2.

▶N-body model Hε = hp +Hf +
N

∑
j=1

ϕ(ρε(·−xj)), where

hp =
N

∑
j=1

(−1
2
∆j)+V (x1, ...,xN)

▶Hε(κ) = hp +κ2Hf +κ
N

∑
j=1

ϕ(ρε(·−xj)), κ > 0

▶Eε(κ) =−
g2N

2

∫
R3
|ρ̂ε(k)|2

κ2

κ2ω(k)+ |k |2/2
dk .

THEOREM (GHL 14, EFFECTIVE POTENTIAL)

lim
κ→∞

lim
ε↓0

(f ⊗1l,e−T (Hε (κ)−Eε (κ))h⊗1l) = (f ,e−Theffh), where

heff =−
1
2

N

∑
j=1

∆j +V (x1, ...,xN)− g2

4π ∑
i<j

e−ν |xi−xj |

|xi −xj |
.
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Concluding remarks

1. Relativistic Nelson model: for d = 2 by Møller etc 2016.
cf Fröhlich (1973)

2. Non-trivial lower bound of infσ(Hren) by G. Bley etc 2016

3. Translation invariant case

▶V = 0 =⇒ Hε =
∫ ⊕
R3 Hε(P)dP

▶Nelson model with total momentum P

Hε(P) =
1
2
(P−Pf )

2 +ϕ(ρ̂ε)+Hf, P ∈ R3

THEOREM (UV RENORMALIZATION)

∃Hren(P) such that limε↓0 e−T (Hε (P)−Eε ) = e−THren(P) for ∀P ∈ R3.
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