Thresholds and resonances of Schroedinger operators on a lattice

Fumio Hiroshima Faculty of Math. Kyushu University

June. 28. 2017 RIMS Prof N. Obata 60 years birthday

- 2 Non-local Schrödinger operators on lattice
- Schrödinger operators with delta potentials on lattice
- 4 Concluding remarks

Lapalcian on $\ell^2(\mathbb{Z}^d)$:

$$L\psi(x) = -\frac{1}{2d} \sum_{|x-y|=1} (\psi(y) - \psi(x)).$$

Spectrum:

$$\sigma(L) = [0,2].$$

Delta potential:

Potential
$$V(x) = v \delta_0(x)$$

Definition

Schrödinger operators on *d*-dimensional lattice $\ell^2(\mathbb{Z}^d)$

$$L-V$$
.

Here

$$V\psi(x) = v\delta_0(x)\psi(x).$$

4

(1) v > 0: coupling constant
(2) δ₀(x): the delta function with mass at 0 ∈ Z^d.

Schrödinger operators on lattice (Review)

Fourier transformation *F* on torus

The *d*-dimensional torus: $\mathbb{T}^d = [-\pi, \pi]^d$ $F : \ell^2(\mathbb{Z}^d) \to L^2(\mathbb{T}^d)$ by $(F\psi)(\theta) = \sum_{x \in \mathbb{Z}^d} \psi(n) e^{-ix \cdot \theta}$.

$$F(L+V)F^{-1}\psi(\theta) = \left(1 + \frac{1}{d}\sum_{j=1}^{d}\cos\theta_{j}\right)\psi(\theta) + \frac{v}{(2\pi)^{d}}\int_{\mathbb{T}^{d}}\psi(\theta)d\theta.$$

Denote the right-hand side by H = H(v).

 $H\psi = g\psi + v(\Omega, \psi)\Omega, \quad \Omega = (2\pi)^{-d/2} \mathbb{1},$

where g is the multiplication by $g(\theta) = 1 + \frac{1}{d} \sum_{j=1}^{d} \cos \theta_j$.

Lemma 1. $\sigma_p, \sigma_{ac}, \sigma_{sc}$

(1) $\sigma_{sc}(H) = \emptyset$. (2) $\sigma_{p}(H) \cap (0,2] = \emptyset$. (3) $\sigma_{ac}(H) = [0,2]$.

Eigenvalues

$$H\psi = E\psi$$
, i.e., $v(\Omega, \psi)\Omega = (E-g)\psi$.
The critical value is given by $v_c = (2\pi)^d \left(\int_{\mathbb{T}^d} \frac{1}{g(\theta)} d\theta\right)^{-1}$.

Lemma 2. Solution of $H\psi = E\psi$

 $\begin{array}{ll} (d=1,2) \quad \psi = \frac{1}{E-g} \text{ and } E < 0 \text{ for each } v > 0. \\ (d=3,4) \quad \psi = \frac{1}{E-g} \text{ and } E < 0 \text{ for } v > v_c \text{ and no solution for} \\ v \le v_c. \ E = 0 \text{ is not e.v. for } v = v_c. \\ (d \ge 5) \quad \psi = \frac{1}{E-g} \text{ and } E \le 0 \text{ for } v \ge v_c \text{ and no solution for} \\ v < v_c. \ E = 0 \text{ is e.v. for } v = v_c. \end{array}$

Schrödinger operators on lattice (Review)

H. + Sasaki + Shirai + Suzuki 2012

Theorem

$$\begin{array}{l} (1) \ \sigma_{\rm ac}(H) = \sigma_{\rm ess}(H) = [0,2] \ \text{for all } v \geq 0. \\ (2) \ \sigma_{\rm sc}(H) = \emptyset \ \text{for all } v \geq 0. \\ (3) \ \sigma_{\rm p}(H) \\ (d = 1,2) \ \text{For each } v > 0, \ \exists_1 \ E < 0 \ \text{st } \sigma_{\rm p}(H) = \{E \\ (d = 3,4) \\ (v > v_c) \ \exists_1 \ E < 0 \ \text{st } \sigma_{\rm p}(H) = \{E\}. \\ (v \leq v_c) \ \sigma_{\rm p}(H) = \emptyset. \\ (d \geq 5) \\ (v > v_c) \ \exists_1 \ E < 0 \ \text{st } \sigma_{\rm p}(H) = \{E\}. \\ (v = v_c) \ \sigma_{\rm p}(H) = \{0\}. \\ (v < v_c) \ \sigma_{\rm p}(H) = \{0\}. \\ (v < v_c) \ \sigma_{\rm p}(H) = \emptyset. \end{array}$$

}.

Edge behavior

8

Non-local Schrödinger operator

We consider fractional Schrödinger operator $L^{\alpha/2} + V$.

Non-local Schrödinger operator

For $\Psi \in C^1((0,\infty))$ st $\Psi'(x) > 0$,

 $H = \Psi(L) + v \delta_0(x).$

- $\Psi(L) = F^{-1}\Psi(g)F$.
- · Spectral mapping theorem yields that

$$\sigma(\Psi(L)) = \Psi(\sigma(L)) = [\Psi(0), \Psi(2)].$$

Resonance and threshold:

If $\Psi(0)$ is e.v. $\in L^2(\mathbb{T}^d)$, we call it $\Psi(0)$ -threshold. If $\Psi(0)$ is e.v. $\notin L^2(\mathbb{T}^d)$, we call it $\Psi(0)$ -resonance.

Eigenvalues

Let $H\Phi = E\Phi$. We introduce two integrals:

$$egin{aligned} I(x) &= \int_{\mathbb{T}^d} rac{d heta}{|x-\Psi(g(heta))|^2} \ J(x) &= \int_{\mathbb{T}^d} rac{d heta}{x-\Psi(g(heta))}. \end{aligned}$$

Lemma 3.

(1) *E* is e.v. of $H \iff I(E) < \infty$ and $J(E) \neq 0$. (2) If *E* is e.v. of *H*, then *v* and *E* satisfy relation:

 $v = (2\pi)^d / J(E).$

It is delicate to evaluate I(x) and J(x) at $x = \psi(2), \psi(0)$.

Density index

In order to study the case of $E = \Psi(2)$ and $E = \Psi(0)$, we introduce density index:

Definition of density index

We say that Ψ is of (a,b)-type or Ψ has density index (a,b) whenever

$$\lim_{x\to 0+}\frac{\Psi(x)-\Psi(0)}{x^a}\neq 0,\quad \lim_{x\to 0}\frac{\Psi(2)-\Psi(2-x)}{x^b}\neq 0.$$

Density index

In order to study the case of $E = \Psi(2)$ and $E = \Psi(0)$, we introduce density index:

Definition of density index

We say that Ψ is of (a,b) -type or Ψ has density index (a,b) whenever

$$\lim_{x \to 0+} \frac{\Psi(x) - \Psi(0)}{x^a} \neq 0, \quad \lim_{x \to 0} \frac{\Psi(2) - \Psi(2 - x)}{x^b} \neq 0.$$

Lemma 4.

Let Ψ be of (a,b)-type. $(E = \Psi(2)) \quad I(E) < \infty \iff d \ge 1 + 4a, \quad J(E) < \infty \iff d \ge 1 + 2a.$ $(E = \Psi(0)) \quad I(E) < \infty \iff d \ge 1 + 4b, \quad J(E) < \infty \iff d \ge 1 + 2b.$ Proof: Let Ψ be of (a,b)-type. Then we have at $\theta \approx (0,...,0)$,

$$\Psi(2) - \Psi(g(\theta)) \approx \left(\frac{1}{2d} \sum_{j=1}^{d} \theta_j^2\right)^a$$

and at $\theta \approx (\pi, \ldots, \pi)$,

$$\Psi(g(\boldsymbol{\theta})) - \Psi(0) \approx \left(\frac{1}{2d} \sum_{j=1}^{d} (\boldsymbol{\theta}_j - \boldsymbol{\pi})^2\right)^b.$$

Hence $I(\Psi(2)) \approx \int_0^1 \frac{r^{d-1}}{r^{4a}} dr$, and similarly $J(\Psi(2)) \approx \int_0^1 \frac{r^{d-1}}{r^{2b}} dr$.

$\nu > 0$	2-threshold	2-resonance
d = 1, 2	×	×
<i>d</i> = 3,4	×	$v = v_c$
$d \ge 5$	$v = v_c$	×

Table: Thresholds and resonances of L+V with v > 0

v < 0	0-threshold	0-resonance
d = 1, 2	×	×
d = 3, 4	×	$v = v_c$
$d \ge 5$	$v = v_c$	×

Table: Thresholds and resonances of L+V with v < 0

H+ Lorinczi 2014

Let
$$v_2 = (2\pi)^d / J(\Psi(2)) > 0$$
 and $v_0 = (2\pi)^d / J(\Psi(0)) < 0$.

v > 0	$\Psi(2)$ -threshold	$\Psi(2)$ -resonance
d < 1 + 2b	×	×
$1+2b \le d < 1+4b$	×	$v = v_2$
$d \ge 1 + 4b$	$v = v_2$	×

v < 0	$\Psi(0)$ -threshold	$\Psi(0)$ -resonance
d < 1 + 2a	×	×
$1 + 2a \le d < 1 + 4a$	×	$v = v_0$
$d \ge 1 + 4a$	$v = v_0$	×

Table: Thresholds and resonances of density index (a,b)

Normal type and fractional type

Normal type and fractional type

We call Ψ *normal type* if Ψ is (1,1)-type, and *fractional type* if Ψ is $(\alpha/2,1)$ -type with $0 < \alpha < 2$.

1) Let Ψ be of normal type. In this case the spectral edge behaviour of $\Psi(L) + V$ is the same as that of L + V. 2)

3) Let Ψ be a Bernstein function with vanishing right limits:

$$\Psi(u) = bu + \int_0^\infty (1 - e^{-uy}) v(dy),$$

where $b \ge 0$ and v is a Lévy measure with mass on $(0,\infty)$ satisfying $\int_0^{\infty} (1 \land y) v(dy) < \infty$. Then Ψ is of $(\alpha/2, 1)$ -type.

Massive vs massless

Theorem. Relativistic Schrödinger operator on lattice

1) Let

$$H_m = \sqrt{L + m^2} - m + V.$$

2) H_m is (1,1)-type for m > 0, and (1/2,1)-type for m = 0. 3) The edge behaviors of H_m for m > 0 are symmetric, but that of g is not symmetric. Non-local Schrödinger operators on lattice

Edge behavior for d = 3

Schrödinger operators with delta potentials on lattice

Schrödinger operators with many delta potentials

V is the multi-delta function defined by

Let
$$\lambda, \mu \ge 0$$
.

$$V(x) = \mu \delta_0(x) + \lambda \sum_{|s|=1} \delta_s(x), (V\psi)(x) = \begin{cases} \mu \psi(x), & \text{if } x = 0 \\ \lambda \psi(x), & \text{if } |x| = 1 \\ 0, & \text{if } |x| > 1 \end{cases}$$

Schrödinger operators with many delta potentials

$$H_{\lambda\mu} = L - V,$$

Schrödinger operators with delta potentials on lattice

Even part $H_{\lambda u}^{e}$ and odd part H_{λ}^{o}

• ONS of
$$L^2(\mathbb{T}^d)$$
: $\left\{ c_0 = \frac{1}{(2\pi)^{d/2}}, c_j = \frac{\sqrt{2}\cos\theta_j}{(2\pi)^{d/2}}, s_j = \frac{\sqrt{2}\sin\theta_j}{(2\pi)^{d/2}} \right\}$

• V is reduced to even part and odd part: $V = V_{\lambda\mu}^{e} + V_{\lambda}^{o}$ with

$$V_{\lambda\mu}^{\rm e} = \mu \langle \cdot, \mathbf{c}_0 \rangle \mathbf{c}_0 + \frac{\lambda}{2} \sum_{j=1}^d \langle \cdot, \mathbf{c}_j \rangle \mathbf{c}_j, \quad V_{\lambda}^{\rm o} = \frac{\lambda}{2} \sum_{j=1}^d \langle \cdot, \mathbf{s}_j \rangle \mathbf{s}_j.$$

• By Fourier transformation F, $H_{\lambda\mu}$ is decomposed into

$$FH_{\lambda\mu}F^{-1} = H^{e}_{\lambda\mu} \oplus H^{o}_{\lambda} \text{ under } L^{2}(\mathbb{T}^{d}) = L^{2}_{e}(\mathbb{T}^{d}) \oplus L^{2}_{o}(\mathbb{T}^{d}).$$

$$H^{\mathrm{e}}_{\lambda\mu} = g - V^{\mathrm{e}}_{\lambda\mu}, \quad H^{\mathrm{o}}_{\lambda} = g - V^{\mathrm{o}}_{\lambda}.$$

· Estimate of the odd part is rather easier than that of even part.

Even part

1)
$$(g-z)^{-1}V^{e}_{\lambda\mu}$$
 is a finite-rank operator.
2) $M_{d+1} = \mathscr{L}\{c_0, \cdots, c_d\}$
3) $\tilde{M}_{d+1} = (g-z)^{-1}M_{d+1}$ for $z \in \mathbb{C} \setminus [0,2]$
4) $C_2 : M_{d+1} \to \mathbb{C}^{d+1}, C_1 : \mathbb{C}^{d+1} \to \tilde{M}_{d+1}$ are the maps:

$$C_{1}: \mathbb{C}^{d+1} \ni \begin{pmatrix} w_{0} \\ \vdots \\ w_{d} \end{pmatrix} \mapsto (g-z)^{-1} \left(\mu w_{0}c_{0} + \frac{\lambda}{2} \sum_{j=1}^{d} w_{j}c_{j} \right) \in \tilde{M}_{d+1}$$
$$C_{2}: M_{d+1} \ni \phi \mapsto \begin{pmatrix} \langle \phi, c_{0} \rangle \\ \vdots \\ \langle \phi, c_{d} \rangle \end{pmatrix} \in \mathbb{C}^{d+1}.$$

5) $L^2_{\mathrm{e}}(\mathbb{T}^d) \supset M_{d+1} \cong \mathbb{C}^{d+1} \xrightarrow{C_2} \mathbb{C}^{d+1} \xrightarrow{C_1} \mathbb{C}^{d+1} \cong \tilde{M}_{d+1} \subset L^2_{\mathrm{e}}(\mathbb{T}^d)$

Matrix representation and BSP

Lemma 6.

$$(g-z)^{-1}V^{e}_{\lambda\mu} = C_1C_2 \oplus 0$$
 under $L^2_{e}(\mathbb{T}^d) = M_{d+1} \oplus M^{\perp}_{d+1}$.

Define $G_{e}(z) = C_2 C_1 : \mathbb{C}^{d+1} \to \mathbb{C}^{d+1}$.

Matrix representation and BSP

Lemma 6.

$$(g-z)^{-1}V^{e}_{\lambda\mu} = C_1C_2 \oplus 0 \text{ under } L^2_e(\mathbb{T}^d) = M_{d+1} \oplus M^{\perp}_{d+1}.$$

Define $G_{\mathbf{e}}(z) = C_2 C_1 : \mathbb{C}^{d+1} \to \mathbb{C}^{d+1}$.

Lemma 7. BSP for $z \in \mathbb{C} \setminus [0,2]$

(a)
$$z$$
 is e.v.of $H^{e}_{\lambda\mu} \iff 1 \in \sigma(G_{e}(z)) \iff \det(G_{e}(z) - I) = 0.$
(b) $Z = \begin{pmatrix} w_{0} \\ \vdots \\ w_{d} \end{pmatrix} \in \mathbb{C}^{d+1}$ satisfies $G_{e}(z)Z = Z \iff H^{e}_{\lambda\mu}f = zf$, i.e.
 $f(\theta) = \frac{1}{(2\pi)^{d/2}} \frac{1}{g(\theta) - z} \left(\mu w_{0} + \frac{\lambda}{\sqrt{2}} \sum_{j=1}^{d} w_{j} \cos \theta_{j}\right)$

Proof:

(1)
$$H_{\lambda\mu}^{e}f = zf \iff f = (g-z)^{-1}V_{\lambda\mu}^{e}f.$$

(2) $z \text{ is e.v. of } H_{\lambda\mu}^{e} \iff 1 \in \sigma((g-z)^{-1}V_{\lambda\mu}^{e})$
 $\iff 1 \in \sigma(C_{1}C_{2}) \iff 1 \in \sigma(C_{2}C_{1}).$
C.f.
 $\sigma(C_{1}C_{2}) \setminus \{0\} = \sigma(C_{2}C_{1}) \setminus \{0\}.$
(3) $C_{2}C_{1}Z = Z \iff f = (g-z)^{-1}V_{\lambda\mu}^{e}f = C_{1}C_{2}f, \text{ where}$
 $f = C_{1}Z.$

Extension: g^{-1} is not bounded in $L^2_e(\mathbb{T}^d)$ as well as in $L^1_e(\mathbb{T}^d)$. It is however obvious that

$$L^1_{\mathrm{e}}(\mathbb{T}^d) \ni f \mapsto g^{-1} V^{\mathrm{e}}_{\lambda\mu} f \in L^1_{\mathrm{e}}(\mathbb{T}^d) \quad d \ge 3.$$

For $d \ge 3$, C_1 and C_2 can be extended. $\overline{C}_1 \overline{C}_2 : L_e^1(\mathbb{T}^d) \to L_e^1(\mathbb{T}^d)$.

$$G_{\mathrm{e}}(0) = \overline{C}_2 \overline{C}_1 : \mathbb{C}^{d+1} \to \mathbb{C}^{d+1}.$$

Lemma 8. BSP for z = 0 for $d \ge 3$

(a) $H_{\lambda\mu}^{e}f = 0$ has a solution in $L^{1}(\mathbb{T}^{d}) \iff 1 \in \sigma(G_{e}(0)).$ (b) If $Z = \begin{pmatrix} w_{0} \\ \vdots \\ w_{d} \end{pmatrix} \in \mathbb{C}^{d+1}$ satisfies $G_{e}(0)Z = Z$, then

$$f(\boldsymbol{\theta}) = \frac{1}{(2\pi)^{\frac{d}{2}}} \frac{1}{g(\boldsymbol{\theta})} \left(\mu w_0 + \frac{\lambda}{\sqrt{2}} \sum_{j=1}^d w_j \cos \theta_j \right)$$

 $G_{\mathrm{e}}(z)$ is also defined for $z \in (-\infty, 0]$ for $d \geq 3$. Let

$$\begin{split} a(z) &= \langle c_0, (g-z)^{-1} c_0 \rangle = \frac{1}{(2\pi)^d} \int_{\mathbb{T}^d} \frac{1}{g(\theta) - z} d\theta, \\ b(z) &= \frac{1}{\sqrt{2}} \langle c_0, (g-z)^{-1} c_j \rangle = \frac{1}{(2\pi)^d} \int_{\mathbb{T}^d} \frac{\cos \theta_j}{g(\theta) - z} d\theta, \\ c(z) &= \frac{1}{2} \langle c_j, (g-z)^{-1} c_j \rangle = \frac{1}{(2\pi)^d} \int_{\mathbb{T}^d} \frac{\cos^2 \theta_j}{g(\theta) - z} d\theta, \\ d(z) &= \frac{1}{2} \langle c_i, (g-z)^{-1} c_j \rangle = \frac{1}{(2\pi)^d} \int_{\mathbb{T}^d} \frac{\cos \theta_i \cos \theta_j}{g(\theta) - z} d\theta, \quad i \neq j, \end{split}$$

Factorization of $det(G_e(z) - I)$

Lemma 9. Factorization of $det(G_e(z) - I)$

$$det(G_{e}(z) - \mathbf{I}) = \gamma(z) \mathbb{H}_{z}(\lambda, \mu) \delta_{c}(\lambda; z),$$
$$\mathbb{H}_{z}(\lambda, \mu) = \left(\lambda - \frac{a(z)}{b(z)}\right) \left(\mu - (d - z)\right) - n,$$
$$\delta_{c}(\lambda; z) = \left(\lambda(c(z) - d(z)) - 1\right)^{d - 1}.$$

•
$$\gamma(z) \neq 0$$

• det
$$(G_{\mathrm{e}}(z) - \mathrm{I}) = 0 \iff \mathbb{H}_{z}(\lambda, \mu) = 0$$
 or $\delta_{c}(\lambda; z) = 0$

Zeros of $\mathbb{H}_{z}(\lambda,\mu)$ and hyperbola

 $\mathbb{H}_{z}(\lambda,\mu)$ can be extended from $z \in (-\infty,0)$ to $z \in (-\infty,0]$ for $d \geq 3$ as

.

$$\bar{\mathbb{H}}_{z}(\lambda,\mu) = \begin{cases} \mathbb{H}_{z}(\lambda,\mu), & z < 0, \\ (\lambda - \frac{a(0)}{b(0)})(\mu - d) - d, & z = 0. \end{cases}$$

We define the family of hyperbola \mathfrak{H}_z indexed by $z \in (-\infty, 0]$ by

$$\mathfrak{H}_z = \{(\lambda, \mu) \in \mathbb{R}^2 | \bar{\mathbb{H}}_z(\lambda, \mu) = 0\}.$$

Figure: Hyperbola \mathfrak{H}_z

Figure: Hyperbola \mathfrak{H}_z moves as $z: 0 \to -\infty$

Figure: Hyperbola \mathfrak{H}_z for z = 0

Lemma 10.

Let (λ, μ) ∈ G₀ ∪ Γ_L. Then H _z(λ, μ) ≠ 0 for z ∈ (-∞, 0). Let (λ, μ) ∈ Γ_L. Then H ₀(λ, μ) = 0. Let (λ, μ) ∈ G₀. Then H ₀(λ, μ) ≠ 0. Let (λ, μ) ∈ G₁ ∪ Γ_R. Then ∃₁ z ∈ (-∞, 0) st H _z(λ, μ) = 0. Let (λ, μ) ∈ Γ_R. Then H ₀(λ, μ) = 0. Let (λ, μ) ∈ G₂. Then ∃z_j ∈ (-∞, 0) st H ₀(λ, μ; z_j) = 0, j = 1, 2.

Zeros of $\delta_c(\lambda; z)$

Define $\bar{\delta}_c(\lambda;z)$ by

$$ar{oldsymbol{\delta}}_c(oldsymbol{\lambda};z) = \left\{egin{array}{ll} oldsymbol{\delta}_c(oldsymbol{\lambda};z), & z\in(-\infty,0),\ (oldsymbol{\lambda}lpha-1)^{d-1}, & z=0. \end{array}
ight.$$

Let $\alpha = \lim_{z\to 0^-} c(z) - d(z)$. Note that $\alpha > 0$ and we set

$$\lambda_c = \frac{1}{lpha}$$

Lemma 11.

Let $\lambda \leq \lambda_c$. Then $\overline{\delta}_c(\lambda;z) \neq 0$ for any $z \in (-\infty,0)$. Let $\lambda = \lambda_c$. Then $\overline{\delta}_c(\lambda;0) = 0$, and z = 0 has multiplicity d-1. Let $\lambda > \lambda_c$. Then $\overline{\delta}_c(\lambda;\cdot)$ has the unique zero in $(-\infty,0)$ with multiplicity d-1.

Case of H_{λ}^{o}

In the case of $H_{\lambda\mu}^{o}$ we can proceed in a similar way to the the case of $H_{\lambda\mu}^{e}$ and rather easier than that of $H_{\lambda\mu}^{e}$. We can define the matrix $G_{o}(z)$ and show that

$$\det(G_o(z)-I)=(\lambda s(z)-1)^d,$$

where
$$s(z) = rac{1}{(2\pi)^d} \int_{\mathbb{T}^d} rac{\sin^2 heta_j}{s(heta) - z)} d heta$$
. Let $\lambda_s = rac{1}{s(0)}$

Lemma

Let $\lambda \leq \lambda_s$. Then $\det(G_o(z) - I) \neq 0$ for any $z \in (-\infty, 0)$. Let $\lambda = \lambda_s$. Then $\det(G_o(0) - I) = 0$ and z = 0 has multiplicity d. Let $\lambda > \lambda_s$. Then $\det(G_o(\cdot) - I)$ has the unique zero in $(-\infty, 0)$ with multiplicity d. Schrödinger operators with delta potentials on lattice

H+ Z. Muminov and U. Kuljanov 2016

	D_0	D_1	D_2	D_{d+1}	D_{d+2}	D_{2d}	D_{2d+1}
E.v. <0	0	1	2	d+1	d+2	2d	2d + 1

	B_k	S_k	C_k
E.v.<0	k	k	k
Res.0	$\begin{array}{c c} d = 2 & - \\ \hline d = 3, 4 & 1 \\ \hline d \ge 5 & - \end{array}$	$\frac{d=2}{d\geq 3} \frac{2}{-d}$	$d \ge 2$ –
Th.0	$\begin{array}{c c} d = 2 & - \\ \hline d = 3, 4 & - \\ \hline d \ge 5 & 1 \end{array}$	$\frac{d=2}{d\geq 3} \frac{d}{d}$	$d \ge 2$ $d-1$

	Point A	Point B
E.v. <0	1	d+1
	d = 2 -	d = 2 -
Res.0	d = 3, 4 1	d = 3, 4 1
	$d \ge 5$ –	$d \ge 5$ –
	d = 2 -	d = 2 1
Th.0	d = 3, 4 d	d = 3, 4 d - 1
	$d \ge 5$ $d+1$	$d \ge 5$ d

(3) Resonance appears for d = 2.

(4) $\exists \lambda$ st $H_{\lambda\mu}$ has only one negative eigenvalue for $\forall \mu$.