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Schrédinger operators on lattice (Review)

Lapalcian on ¢%(Z4):

1
Ly(x) = —5- (v(y) —w(x)
e—yl=1
Spectrum:
o(L)=[0,2]
Delta potential:
3
v

Potential V(x) = vy (x)
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Schrédinger operators on lattice (Review)

Definition

Schrédinger operators on d-dimensional lattice ¢%(Z4)

Here

Vy(x) = v (x)y(x).

(1) v > 0: coupling constant
(2) 8y (x): the delta function with mass at 0 € Z<.
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Schrédinger operators on lattice (Review)

Fourier transformation F on torus

The d-dimensional torus: T¢ = [, x]¢
F: (%) — L*(T9) by (Fy)(60) = Lyeze w(n)e ™.

d 1%
F(L+V)F ly(0) = <1+611 _Zlcosej> y(0)+ ) /W y(0)do.
J=

Denote the right-hand side by H = H(v).
Hy =gy +v(Qy)Q, Q= (r) 1,

where g is the multiplication by g(6) = 1+ 4 X_; cos6;.

Lemma 1. 6, Guc, Osc

(1) osc(H) =0. (2) 0,(H)N(0,2] = 0. (3)0ac(H) = [0,2].
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Schrédinger operators on lattice (Review)

Eigenvalues

Hy =FEvy,ie,v(Qy)Q=(E—g)y.
The critical value is given by v, = (2x)¢ (fw ﬁd@)

Lemma 2. Solution of Hy = Ey

(d=1,2) y/:EL_gandE<0foreachv>O.

(d=3,4) y= E%g and E < 0 for v > v, and no solution for

v<v..E=0isnote.v. forv=yv..

(d>5) w= ﬁ and E < 0 for v > v, and no solution for
v<v.. E=0ise.v. forv=v,.
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Schrédinger operators on lattice (Review)

H. + Sasaki + Shirai + Suzuki 2012

(1) 0ac(H) = 0ess(H) = [0,2] for all v > 0.

(2) ow(H)=0forallv>0.

(3) op(H)

(d=1,2) Foreachv>0, 3, E<O0sto,(H)={E}.
(d=3,4)

(v>v) JHE<Osto,(H)={E}.

(v<v.) op(H)=0.
(d=5)

(v>v) 3 E<Osto,(H)={E}.
(v=vc) op(H) = {0}.
(

Fumio Hiroshima 7



Schrédinger operators on lattice (Review)

Edge behavior
vv >0
d=34 o o 2
resonance
V=V,
d=5 - o(|) 4
threshold
V=V,
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Non-local Schrédinger operators on lattice

Non-local Schrédinger operator

We consider fractional Schrédinger operator L%/2 + V.

Non-local Schrédinger operator

For ¥ € C!((0,0)) st ¥'(x) > 0,

H="(L)+v6(x).

“Y(L)=F '¥(gF.
- Spectral mapping theorem yields that

* Resonance and threshold:
If ¥(0) is e.v. € L*(T?), we call it ¥(0)-threshold.
If ¥(0) is e.v.g L*(T¢), we call it ¥(0)-resonance.
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Non-local Schrédinger operators on lattice
Eigenvalues

Let H® = E®. We introduce two integrals:

do
i ST

de
9= | v

Lemma 3.

(1)Eisewv. of H <= I(E) <eand J(E) #0.
(2) If E is e.v. of H, then v and E satisfy relation:

v=(2m)?/J(E).

It is delicate to evaluate I(x) and J(x) at x = y(2), y(0).
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Non-local Schrédinger operators on lattice
Density index

In order to study the case of E =¥(2) and E = ¥(0), we
introduce density index:

Definition of density index
We say that ¥ is of (a,b)-type or ¥ has density index (a,b)

whenever
Y(x)-—W¥ Y(2)—¥Y(2—
i o — (0 £0, lim (2) b( ) £0.
x—0+ x2 x—0 X
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Non-local Schrédinger operators on lattice
Density index

In order to study the case of E =¥(2) and E = ¥(0), we
introduce density index:

Definition of density index
We say that ¥ is of (a,b)-type or ¥ has density index (a,b)

whenever
Y(x)-—W¥ Y(2)—¥Y(2—
i o — (0 £0, lim (2) b( ) £0.
x—0+ x2 x—0 X

Let ¥ be of (a,b)-type.
(E=Y(Q2)) I[E)<owo<=d>1+4a,J(E) <oo<=d >1+2a.
(E=Y(0)) I(E) <oo<=d>1+4b,J(E) <co<=d > 1+2b.
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Non-local Schrédinger operators on lattice

Proof: Let ¥ be of (a,b)-type. Then we have at 6 = (0,...,0),

and at 0 =~ («,...,7),

Hence 1(¥(2))

Q

o “rdr, and similarly J(¥(2)) ~ [y T dr.
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Non-local Schrédinger operators on lattice

v>0 | 2-threshold | 2-resonance
d=1,2 X X
d=3,4 X V=1V,

d>>5 V=1V X

Table: Thresholds and resonances of L+ V with v >0

v <0 | O-threshold | O-resonance
d=1,2 X X
d=3,4 X V=1V,

d>>5 V=1V, X

Table: Thresholds and resonances of L+ V with v <0

Fumio Hiroshima



Non-local Schrédinger operators on lattice
H+ Lorinczi 2014

Let v, = (27)¢ /J(¥(2)) > 0 and vy = (27)¢ /J(¥(0)) < 0.

v>0 ¥(2)-threshold | W(2)-resonance
d<1+2b X X
14+2b<d<1+4b X V=V,
d>144b V=V, X
v<0 ¥(0)-threshold | W(0)-resonance
d<1+42a X X
142a<d<1+4a X V=1V
d>144a V=YV X
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Non-local Schrédinger operators on lattice
Normal type and fractional type

Normal type and fractional type

We call ¥ normal type if ¥ is (1,1)-type, and fractional type if ¥
is (a/2,1)-type with 0 < a < 2.

1) Let ¥ be of normal type. In this case the spectral edge
behaviour of ¥(L) +V is the same as that of L+ V.
2)

P(u) | u | u®/? | (u+m*)%2 —m | u+bu®/? | log(1+u®/?) |
Type | (1.1) | (0/2,1) | (1,1) [ (@21 | (a/2,1) |

3) Let ¥ be a Bernstein function with vanishing right limits:
W(u) = bu—i—/ (1—e)v(dy),
0

where b >0 and v is a Lévy measure with mass on (0,<o)
satisfying [; (1 Ay)v(dy) < ee. Then Wis of (a/2,1)-type.
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Non-local Schrédinger operators on lattice
Massive vs massless

Theorem. Relativistic Schrddinger operator on lattice

1) Let
H,=VL+m>—m+V.

2) Hy, is (1,1)-type for m > 0, and (1/2,1)-type for m = 0.
3) The edge behaviors of H,, for m > 0 are symmetric, but that
of g is not symmetric.
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Non-local Schrédinger operators on lattice

Edge behavior for d =3

e V=V

e V—=Vy

(m>0)

o— © V=Y

—@ V—V
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Schrédinger operators with delta potentials on lattice

Schrodinger operators with many delta potentials

V is the multi-delta function defined by

A
72( |
U
A
Potential V
Let A,u > 0.
py(x), if x=0
V(x) = 1o(x) + A =1 8(x), (V) (x) = ¢ Aw(x), if |x[=1
0, it |x|>1
Schrédinger operators with many delta potentials
Hy, =L-V,
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Schrédinger operators with delta potentials on lattice

Even part /7 , and odd part H}

(271:)‘1/2’ J (277:)‘1/2 Pl A (27t)d/2
- V is reduced to even part and odd part: V = V¢ u +V with

- ONS of L2(T9): {CO:# = Y2eost; ﬁsme}

t\)\»

“Sh

A d
Vfu -, €0 CO""EZ ,Cj)Cj,
- By Fourier transformation F, H,, is decomposed into

FHy,F~' = H; , & H under L*(T?) = Lg(TY) & L3(TY).

Hiu :g—VfH, Hy =g—-V}.

- Estimate of the odd part is rather easier than that of even part.

Fumio Hiroshima 19




Schrédinger operators with delta potentials on lattice
Even part

) (g —z)“V;fu is a finite-rank operator.
) Mgy = Z{co, - ,ca}

) May1 = (g —Z)_lMd+1 forz e C\[O,Z]

) Cy: Mgy — CHL ¢y CHY — My, are the maps:

wo
_ R -
C . ! ) — (g—z) ! (NWOCQ-i-Z . WjCj) €My
Wa =
(¢, c0)
Cr:Myi120— G(Cd+1.
<¢,Cd>

5) L2(T9) > My, = Ca+1 &5 cd+l S cdl =y, L2(TY)
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Schrédinger operators with delta potentials on lattice

Matrix representation and BSP

(§—2)7'V§, =C1C®0 under LY(T) = Myt ® My, ;.

Define G.(z) = CoCy : CI*! — C4+1,
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Schrédinger operators with delta potentials on lattice

Matrix representation and BSP

(§—2)7'V§, =CiC, @0 under L(T) = M1 @My .
Define G.(z) = CoCy : CI*! — C4+1,

Lemma 7. BSP for z € C\ [0,2]
(@) zis e.v.of Hy <= 1€ 6(Ge(z)) <= det(Ge(z) — 1) =0.

wo
(b) z=| : | € C¥! satisfies G.(z)Z =Z < H;, f=zf,ie.
Wa
1 1 R
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Schrédinger operators with delta potentials on lattice

Proof:
(1) Hy f=z2f = [f= (g—Z)flVfuf-
(2) zisewv. of H;, <= 1€0((g—2)'V5,)
— 1€ G(C]Cz) 1€ G(CzC]).
C.f.
o(C1C2) \ {0} = o (C2C1) \ {0}

(B8) &C1Z=Z = f=(g—2)'V},f=CiCf, where

f=CZ.
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Schrédinger operators with delta potentials on lattice

Extension: g~ ! is not bounded in L2(T9) as well as in L!(T9). It
is however obvious that

Lo(T) 5 f =g Vi, feLe(T)) d>3.

For d >3, C; and G, can be extended. C,C, : L} (T¢) — LL(T?).

Ge(O) = 6261 : (CdJrl — Cd+1.

Lemma 8. BSP forz=0ford >3

(@) H,, f = 0 has a solution in L'(T?) <= 1 € 6(Gc(0)).
wo
(b)IfZz=] : | € C¢! satisfies G.(0)Z = Z, then

Wq

1
f(0)= (2”)% ()<[J 0+\/_Zw]cos9)
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Schrédinger operators with delta potentials on lattice

G.(z) is also defined for z € (—,0] for d > 3. Let

_ 1 1
ad) = oo, (8 =2)"'e0) = (557 |, 57 =240

b(z) = \2<co, (g=2)"ej) = (271r)d /Jl‘d g((:ge—jzde’

1 - 1 cos? 0;
c(@) = §<C” (g=2)"¢j) = (2m)d /H‘d 2(0) —zde’
1 1 1 cos 6;cos 0;

L

d(z) = 5{ei(8=2)"¢j) = (2m)d 8(6)—z

de, i# ],
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Schrédinger operators with delta potentials on lattice

Factorization of det(G.(z) — 1)

Lemma 9. Factorization of det(G.(z) —I)

“Y(2) #0
+ det(Ge(z) —T) = 0 <= H,(A, ) = 0 or 8.(A;2) =0
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Schrédinger operators with delta potentials on lattice

Zeros of H,(A,u) and hyperbola

H,(A,u) can be extended from z € (—e,0) to z € (—eo,0] for

d>3as
Hz(lnu):{ ( (

We define the family of hyperbola ), indexed by z € (—<0,0] by

U, 7<0,
s —d)—d, z=0.

Q\'

9: ={(A, 1) € R?[H(A, 1) = 0}.
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Schrédinger operators with delta potentials on lattice

U
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Schrédinger operators with delta potentials on lattice

H 1 u |
,,,,,,,,, T — d—zff——a—fwfﬂ:f,,,,,,,ﬁf
N \ 1

N 3
\} A \! A
) a(z)
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Schrédinger operators with delta potentials on lattice




Schrédinger operators with delta potentials on lattice

U

Figure: Hyperbola $, for z=0
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Schrédinger operators with delta potentials on lattice

(1)
@ Let (A,u) € GoUT L. Then H,(A,u) # 0 for z € (—e0,0).
@ Let (A,u) €Ty. Then Hy(A,u) =0.
@ Let (A,u) € Go. Then Hy(A,u) #0.
(2)
@ Let (A,u) € GiUTk. Then 3; z € (—o0,0) st H,(A,u) =0.
@ Let (A,u) €. Then Hy(A,u) = 0.
(3) Let (A, 1) € Go. Then Jz; € (—e0,0) st Ho(A,1;z;) =0, =1,2.
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Schrédinger operators with delta potentials on lattice

Zeros of 6.(1;z

Define &.(1;z) by

T

Let a =1lim,_,o_ c¢(z) —d(z). Note that a > 0 and we set

1
Ae=—.
(04

Lemma 11.

Let A < A.. Then §.(A:z) # 0 for any z € (—o,0).

Let A = A.. Then 6.(2;0) =0, and z = 0 has multiplicity d — 1.
Let A > A.. Then 6.(A;-) has the unique zero in (—e,0) with
multiplicity d — 1.
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Schrédinger operators with delta potentials on lattice
(6]
Case of H

In the case of H} we can proceed in a similar way to the the
case of Hy, and rather easier than that of Hj,. We can define
the matrix G,(z) and show that

det(G,(z) — 1) = (As(z) — l)d,
sin2 9;
where s(z) = w Ja ﬁde. Let

1
A= 10

Lemma

Let A < A,. Then det(G,(z) —I) # 0 for any z € (—e,0).

Let A = A;. Then det(G,(0) —I) = 0 and z = 0 has multiplicity d.
Let A > A,. Then det(G,(-) —I) has the unique zero in (—oo,0)
with multiplicity 4.
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Schrédinger operators with delta potentials on lattice

H+ Z. Muminov and U. Kuljanov 2016

—‘BG\ Cdr1

Dat1 | p,,

57.)0 As )Lc
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Schrédinger operators with delta potentials on lattice

Dy | Dy | Dy | Dgy1 | Daya | Dy Doy
E.v.<0 0 1 2 d+1 d—+2 2d 2d +1

By, Sk Cr

Ev<0 |k k k
i=2 -

Res.0 d=3,4 1 Z;§ 2_ d>2 -
i>5 - =
i=2 -

Th.0 i=34 = j;g | dz2 -
a>5 1 =
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Schrédinger operators with delta potentials on lattice
Table

Point A Point B
E.v.<0 1 d+1
— d=2
d=3,4
d>5
— d=2
4 d d=3,4
d+1 d>5

= |

Res.0

ES
—

INvARI

Th.0

QU XX

VI
Ll w| | n| vl
|

ala—|
|
—
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Concluding remarks

(1) In the case of d = 1,2 point (0,0) is included in hyperbola §,.

(2) Fractional Schrédinger operator with multi-delta function.
(3) Resonance appears for d = 2.
(4) 3A st Hy,, has only one negative eigenvalue for V.
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