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CCR representations and time operators

Let A and B be linear operators on a complex Hilbert space H ,

satisfying the canonical commutation relation (CCR)

[A,B] =−i1
on a dense subspace

D ⊂ D(AB)∩D(BA)

●We call D a CCR-domain for the pair (A,B).
● (H ,D ,{A,B}) is called a representation of CCR
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CCR representations and time operators

● Extension to d-degree system:
Let A j and B j be linear operators on H and D be a dense
subspace of H such that

D ⊂ ∩d
j,k=1[D(A jBk)∩D(BkA j)∩D(A jAk)∩D(B jBk)].

Then
(H ,D ,{A j,B j| j = 1, . . . ,d})

is also called a representation of CCR if

[A j,Bk] =−iδ jk1, [A j,Ak] = 0, [B j,Bk] = 0

hold on D .
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CCR representations and time operators

Example 1(Heizenberg) [Pi,Q j] =−iδi j1
Example 2 [− 1

2m P2,TAB] =−i, where

TAB =
m
2 ∑

j
(P−1

j Q j +Q jP−1
j )

Example 3(H.+Kuribayashi+Matsuzawa(09)) [ f (P),Tf ] =−i1,
where

Tf =
1
2 ∑

j
((∂ j f (P))−1Q+Q(∂ j f (P))−1)

Example 4 [
√

P2 +m2,T ] =−i1, T = · · · .
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CCR representations and time operators

We would like to consider CCR representation associated with
Schrödinger operator of the form:

H =
1

2m

d

∑
j=1

P2
j +V (Q)

on L2(Rd). One may infer that a quantum Hamiltonian H may
have a symmetric operator T corresponding to time, satisfying
CCR

[H,TH ] =−i1.

Such an operator TH is called a time operator of H. I.e.,

TH = i
d

dH

Difficulty

Let Hϕ = Eϕ . Then [H,T ]ϕ = HT ϕ −ET ϕ = (H −E)T ϕ =−iϕ
and T ϕ =−i(H −E)−1ϕ? Thus ϕ ̸∈ D(T ) for any e.v. ϕ of H.
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Hierarchy of time operators

Hierarchy of time operators

[Weyl relation] A pair (A,B) consisting of self-adjoint operators
A and B is called a weak Weyl representation if the Weyl
relations holds:

e−itAe−isB = eiste−isBe−itA

[Weak Weyl relation] A pair (A,B) consisting of a self-adjoint
operator A and symmetric operator B is called a weak Weyl
representation if

e−itAD(B)⊂ D(B)

Be−itAψ = e−itA(B+ t)ψ

holds for all ψ ∈ D(B) and all t ∈ R.

Important
Weyl relation =⇒ weak Weyl relation =⇒CCR
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Hierarchy of time operators

Definition (Ultra-strong time operator)

A self-adjoint operator T is called a ultra-strong time operator
of H if (H,T ) is a Weyl representation.

Definition (Strong time operator)

A symmetric operator T is called a strong time operator of H
on H if (H,T ) is a weak Weyl representation.

[Remark1] Let H > ∞ and T be the strong time op. of H. Then
T has no self-adjoint extension!
[Remark2] Let T be a strong time op. of H. Then σ(H) is
purely absolutely cont. In particular if H has an eigenvalue,
then H has no strong time op.

Fumio Hiroshima Time operators associated with Schrödinger operators 8



Hierarchy of time operators

Definition (weak time operator)
A symmetric operator T is called a weak time operator of H if a
dense subspace ∃Dw ⊂ D(T )∩D(H) s.t.

(Hϕ ,T ψ)− (T ϕ ,Hψ) =−i(ϕ ,ψ), ϕ ,ψ ∈ Dw.

We call Dw a weak-CCR domain for the pair (H,T ).
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Hierarchy of time operators

Definition (ultra-weak time operator)
Let D1 and D2 be dense subspaces of H . A sesquilinear form

t : D1 ×D2 → C

is called a ultra-weak time operator of H if dense subspaces
∃D and ∃E of D1 ∩D2 such that (i)–(iii) hold:

(i) E ⊂ D(H)∩D .
(ii) t[ϕ ,ψ]∗ = t[ψ,ϕ ], ϕ ,ψ ∈ D ,
(iii) HE ⊂ D1

t[Hϕ ,ψ]− t[Hψ,ϕ ]∗ =−i(ϕ ,ψ) ψ,ϕ ∈ E .

We call E an ultra-weak CCR-domain for (H, t) and D a
symmetric domain of t.
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Hierarchy of time operators

Remark
Weak time operator ⊂ ultra weak time operator

● Let T be a weak time operator of H.
● tT : H ×D(T )→ C by

tT [ϕ ,ψ] = (ϕ ,T ψ), ϕ ∈ H ,ψ ∈ D(T ).

● Then tT is an ultra-weak time operator of H.
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Hierarchy of time operators

Hierarchy of time operators

5 classes of time operators
ultra-strong time⊂strong time⊂ time⊂weak time⊂ultra-weak
time

※ The von Neumann uniqueness theorem yields that if (H,T )
satisfies Weyl relation (i.e., T is an ultra-strong time op.), then
H ∼=⊕P and T ∼=⊕Q.
※ The purpose of my talk is to find ultra-weak time op. of H.
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Absolutely cont. spectrum and strong time operators

Absolutely cont. spectrum and strong time operators

Scattering theory

Let H and H ′ be s.a. Assume
(A,1)∃W± = s- lim

t→±∞
eitH ′

Je−itHPac(H)

(A.2) lim
t→±∞

∥Je−itHPac(H)ψ∥= ∥Pac(H)ψ∥
(A.3)Ran(W±) = Hac(H ′). Let U± =W±⌈Hac(H).
Then U± : Hac(H)→ Hac(H ′) a unitary s.t. H ′

ac =U±HacU−1
± .

Theorem (Arai (06), Strong time operators)

Assume (A.1)–(A.3). Suppose that Hac has a strong time op. T .
Then T ′

± =U±TU−1
± are strong time op. of H ′

ac. I.e.,

[H,T ] =−i1 =⇒ [H ′,T ′
±] =−i1.

[Example] H = 1
2 ∑ j P2

j and H ′ = H +V . Hence TH ′ =U±TABU−1
±

is the strong time op. of Hac.
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Discrete spectrum and ultra-weak time operators

Discrete spectrum and ultra-weak time operators

[Question] Let H = Hp ⊕Hac.
We know that THac can be derived by scattering theory. How can
we construct THp?

Galapon(02), Arai-Matsuzawa(08)
Let {en}∞

n=1 be a complete orthonormal bases. Suppose that
σ(H) = {E j}∞

j=1, every E j is simple, and ∑∞
j=1

1
E2

j
< ∞. Then

T ϕ = i
∞

∑
n=1

(
∑

m̸=n

(em,ϕ)
En −Em

)
en

is a time operator of H. I.e.,

[H,T ]ϕ =−iϕ .
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Discrete spectrum and ultra-weak time operators

Ultra-weak time op. of the case σ(H) = σdisc(H) = {En}∞
n=1

[En → ∞] Let limn→∞ En = ∞. Then time op. ∃T of H.

[En → 0] Let En < 0, limn→∞ En = 0 and 0 ̸∈ σp(H). Then ultra
weak time op. ∃T of H.

Remark 1: In the case of En → ∞, T is usually of the form

T =⊕∞
j=1Tj

and each Tj is a weak time operator of some simple self-adjoint
operator H j and H =⊕ jH j (Sasaki+Wada(14)).
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Discrete spectrum and ultra-weak time operators

[Example 1: Two photon Rabi Hamiltonian]

Let ω = 1 and g ≥ 0.

HR = ∆σz +g(a†2
+a2)+a†a.

(g < 1/2)
σ(HR) = {En} =⇒∃ Time op.

(g = 1/2)

=⇒ HR ∼=
(

P2 − 1
2 +∆ 0

0 Q2 − 1
2 −∆

)
=⇒ σ(HR) = [−1

2 −∆,0)

=⇒∃ Strong time op.
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Discrete spectrum and ultra-weak time operators

[Example 2: NcHO]

Let A and J be 2×2 matrices defined by

A =

(
α 0
0 β

)
, α,β ≥ 0, J =

(
0 −1
1 0

)
.

Let αβ > 1. Then the non-commutative harmonic oscillator
is defined by

H(α,β ) = A⊗ (
1
2

P2 +
1
2

Q2)+ J⊗ (QP+
1
2
)

=⇒∃ Time operator
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Ultra-weak time operators of Schrödinger operators

Definition (class S(H ))

A self-adjoint operator H on H is said to be in the class S(H ) if it
has the following properties (H.1)–(H.4):

(H.1) σsc(H) = /0.

(H.2) σac(H) = [0,∞).

(H.3) σdisc(H) = σp(H) = {En}∞
n=1, E1 < E2 < · · ·< 0,

limn→∞ En = 0 (hence 0 ̸∈ σp(H)).

(H.4) There exists a strong time operator Tac of Hac in Hac(H).
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Ultra-weak time operators of Schrödinger operators

Theorem (Arai-H.(16) Ultra-weak time op. of H)

Let H ∈ S(H ). Then ∃tH ultra-weak time op.

Proof:
H = Hp ⊕Hac,

where Hp = H⌈Hp(H) Hac = H⌈Hac(H).
● By (H.3), Hp has an ultra-weak time op. tp such that

tp[Hpϕ ,ψ]− tp[ϕ ,Hpψ] =−i(ϕ ,ψ), ϕ ,ψ ∈ ∃Ep.

● By (H.4), Hac has a strong time op. Tac such that

[Hac,Tac] =−i1

● tH : (Hac(H)⊕Dp)× (D(Tac)⊕Dp)→ C by

tH [ϕ1 ⊕ϕ2,ψ1 ⊕ψ2] = (ϕ1,Tacψ1)+ tp[ϕ2,ψ2].
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Ultra-weak time operators of Schrödinger operators

Example (Agmon potential)

Let d ≥ 3. Suppose that U ∈ L∞(R3). Then

V (x) =
U(x)

(1+ |x|2)1/2+ε

is an Agmon potential for all ε > 0. Suppose that U is negative,
continuous, spherically symmetric and satisfies that U(x) =−1/|x|α
for |x|> R with 0 < α < 1 and R > 0. Let 2ε +α < 2. Then H has an
ultra-weak time operator.

Example (hydrogen atom)

The hydrogen Schrödinger operator Hhyd =−∆− γ/|x| is self-adjoint
with D(Hhyd) = D(H0). The Coulomb potential −γ/|x| with d = 3 is
not an Agmon potential. But we can show that Hhyd has an ultra-weak
time operator.
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Summary

Summary

(1) We construct an ultra-weak time op. t of H = 1
2 P2 +V :

t(Hϕ ,ψ)− t(Hψ,ϕ)∗ =−i(ϕ ,ψ)

(2) t is densely defined.
(3-1) We assume σsc(H) = /0 and 0 ̸∈ σp(H).
(3-2) We assume #σdisc(H) = ∞ or #σdisc(H) = 0.
(4) Hhyd is included in our results.

Reference: A. Arai and F. Hiroshima, Ultra-Weak Time
Operators of Schrödinger Operators, arXiv:1607.04702, 2016
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