Time operators associated with Schrödinger operators

Fumio Hiroshima (Faculty of Math. Kyushu University) and Asao Arai (Faculty of Sci. Hokkaido University)

Sep. 20. 2016 Bilbao Spain

CCR representations and time operators

- 2 Hierarchy of time operators
- 3 Absolutely cont. spectrum and strong time operators
- 4 Discrete spectrum and ultra-weak time operators
- 5 Ultra-weak time operators of Schrödinger operators

6 Summary

Let A and B be linear operators on a complex Hilbert space \mathcal{H} ,

satisfying the canonical commutation relation (CCR)

$$[A,B] = -i1$$

on a dense subspace

 $\mathscr{D} \subset D(AB) \cap D(BA)$

● We call D a CCR-domain for the pair (A,B).
 ● (ℋ, D, {A,B}) is called a representation of CCR

• Extension to *d*-degree system:

Let A_j and B_j be linear operators on \mathscr{H} and \mathscr{D} be a dense subspace of \mathscr{H} such that

$$\mathscr{D} \subset \cap_{j,k=1}^d [D(A_j B_k) \cap D(B_k A_j) \cap D(A_j A_k) \cap D(B_j B_k)].$$

Then

$$(\mathscr{H}, \mathscr{D}, \{A_j, B_j | j = 1, \dots, d\})$$

is also called a representation of CCR if

$$[A_j, B_k] = -i\delta_{jk}1, \quad [A_j, A_k] = 0, \quad [B_j, B_k] = 0$$

hold on \mathcal{D} .

Example 1(Heizenberg) $[P_i, Q_j] = -i\delta_{ij}$ 1 Example 2 $[-\frac{1}{2m}P^2, T_{AB}] = -i$, where

$$T_{AB} = \frac{m}{2} \sum_{j} (P_j^{-1} Q_j + Q_j P_j^{-1})$$

Example 3(H.+Kuribayashi+Matsuzawa(09)) $[f(P), T_f] = -i1$, where

$$T_f = \frac{1}{2} \sum_{j} ((\partial_j f(P))^{-1} Q + Q(\partial_j f(P))^{-1})$$

Example 4 $[\sqrt{P^2 + m^2}, T] = -i1, T = \cdots$.

We would like to consider CCR representation associated with Schrödinger operator of the form:

$$H = \frac{1}{2m} \sum_{j=1}^{d} P_j^2 + V(Q)$$

on $L^2(\mathbb{R}^d)$. One may infer that a quantum Hamiltonian *H* may have a symmetric operator *T* corresponding to time, satisfying CCR

$$[H,T_H]=-i1.$$

Such an operator T_H is called a **time operator** of *H*. I.e.,

$$T_H = i \frac{d}{dH}$$

Difficulty

Let $H\phi = E\phi$. Then $[H, T]\phi = HT\phi - ET\phi = (H - E)T\phi = -i\phi$ and $T\phi = -i(H - E)^{-1}\phi$? Thus $\phi \notin D(T)$ for any e.v. ϕ of H. Hierarchy of time operators

Hierarchy of time operators

[Weyl relation] A pair (A, B) consisting of self-adjoint operators A and B is called a weak Weyl representation if the **Weyl relations** holds:

$$e^{-itA}e^{-isB} = e^{ist}e^{-isB}e^{-itA}$$

[Weak Weyl relation] A pair (A, B) consisting of a self-adjoint operator A and symmetric operator B is called a **weak Weyl** representation if

$$e^{-itA}D(B) \subset D(B)$$

 $Be^{-itA}\psi = e^{-itA}(B+t)\psi$

holds for all $\psi \in D(B)$ and all $t \in \mathbf{R}$.

Important

Weyl relation \Longrightarrow weak Weyl relation \Longrightarrow CCR

Definition (Ultra-strong time operator)

A self-adjoint operator T is called a **ultra-strong time operator** of H if (H,T) is a Weyl representation.

Definition (Strong time operator)

A symmetric operator *T* is called a **strong time operator** of *H* on \mathcal{H} if (H,T) is a weak Weyl representation.

[Remark1] Let $H > \infty$ and T be the strong time op. of H. Then T has **no self-adjoint extension**!

[Remark2] Let *T* be a strong time op. of *H*. Then $\sigma(H)$ is purely absolutely cont. In particular **if** *H* **has an eigenvalue, then** *H* **has no strong time op.**

Definition (weak time operator)

A symmetric operator *T* is called a **weak time operator** of *H* if a dense subspace $\exists \mathscr{D}_{w} \subset D(T) \cap D(H)$ s.t.

$$(H\phi, T\psi) - (T\phi, H\psi) = -i(\phi, \psi), \quad \phi, \psi \in \mathscr{D}_{w}.$$

We call \mathscr{D}_{w} a weak-CCR domain for the pair (H, T).

Definition (ultra-weak time operator)

Let \mathscr{D}_1 and \mathscr{D}_2 be dense subspaces of \mathscr{H} . A sesquilinear form

 $\mathfrak{t}:\mathscr{D}_1\times\mathscr{D}_2\to C$

is called a **ultra-weak time operator** of *H* if dense subspaces $\exists \mathscr{D}$ and $\exists \mathscr{E}$ of $\mathscr{D}_1 \cap \mathscr{D}_2$ such that (i)–(iii) hold:

(i) $\mathscr{E} \subset D(H) \cap \mathscr{D}$. (ii) $\mathfrak{t}[\phi, \psi]^* = \mathfrak{t}[\psi, \phi], \phi, \psi \in \mathscr{D}$, (iii) $H\mathscr{E} \subset \mathscr{D}_1$

$$\mathfrak{t}[H\phi,\psi]-\mathfrak{t}[H\psi,\phi]^*=-i(\phi,\psi)\quad\psi,\phi\in\mathscr{E}.$$

We call \mathscr{E} an ultra-weak CCR-domain for (H, \mathfrak{t}) and \mathscr{D} a symmetric domain of \mathfrak{t} .

Remark

Weak time operator \subset ultra weak time operator

• Let *T* be a weak time operator of *H*. • $\mathfrak{t}_T : \mathscr{H} \times D(T) \to \mathbf{C}$ by

$$\mathfrak{t}_T[\phi,\psi] = (\phi,T\psi), \quad \phi \in \mathscr{H}, \psi \in D(T).$$

• Then t_T is an ultra-weak time operator of *H*.

Hierarchy of time operators

5 classes of time operators

ultra-strong time \subset strong time \subset time \subset weak time \subset ultra-weak time

[≫] The von Neumann uniqueness theorem yields that if (H,T) satisfies Weyl relation (i.e., *T* is an ultra-strong time op.), then $H \cong \oplus P$ and $T \cong \oplus Q$.

% The purpose of my talk is to find ultra-weak time op. of *H*.

Absolutely cont. spectrum and strong time operators

Scattering theory

Let *H* and *H'* be s.a. Assume
(A,1)
$$\exists W_{\pm} = s$$
- $\lim_{t \to \pm \infty} e^{itH'} J e^{-itH} P_{ac}(H)$
(A.2) $\lim_{t \to \pm \infty} ||Je^{-itH}P_{ac}(H)\psi|| = ||P_{ac}(H)\psi||$
(A.3)Ran(W_{\pm}) = $\mathscr{H}_{ac}(H')$. Let $U_{\pm} = W_{\pm} \lceil \mathscr{H}_{ac}(H)$.
Then $U_{\pm} : \mathscr{H}_{ac}(H) \to \mathscr{H}_{ac}(H')$ a unitary s.t. $H'_{ac} = U_{\pm}H_{ac}U_{\pm}^{-1}$.

Theorem (Arai (06), Strong time operators)

Assume (A.1)–(A.3). Suppose that H_{ac} has a strong time op. T. Then $T'_{\pm} = U_{\pm}TU_{\pm}^{-1}$ are strong time op. of H'_{ac} . I.e.,

$$[H,T] = -i1 \Longrightarrow [H',T'_{\pm}] = -i1.$$

[Example] $H = \frac{1}{2} \sum_{j} P_{j}^{2}$ and H' = H + V. Hence $T_{H'} = U_{\pm} T_{AB} U_{\pm}^{-1}$ is the strong time op. of H_{ac} .

Discrete spectrum and ultra-weak time operators

[Question] Let $H = H_p \oplus H_{ac}$.

We know that $T_{H_{ac}}$ can be derived by scattering theory. How can we construct T_{H_p} ?

Galapon(02), Arai-Matsuzawa(08)

Let $\{e_n\}_{n=1}^{\infty}$ be a complete orthonormal bases. Suppose that $\sigma(H) = \{E_j\}_{j=1}^{\infty}$, every E_j is simple, and $\sum_{j=1}^{\infty} \frac{1}{E_j^2} < \infty$. Then

$$T\phi = i\sum_{n=1}^{\infty} \left(\sum_{m \neq n} \frac{(e_m, \phi)}{E_n - E_m}\right) e_n$$

is a time operator of H. I.e.,

$$[H,T]\phi = -i\phi.$$

Ultra-weak time op. of the case $\sigma(H) = \sigma_{disc}(H) = \{E_n\}_{n=1}^{\infty}$

 $[E_n \to \infty]$ Let $\lim_{n\to\infty} E_n = \infty$. Then time op. $\exists T$ of H.

 $[E_n \to 0]$ Let $E_n < 0$, $\lim_{n\to\infty} E_n = 0$ and $0 \notin \sigma_p(H)$. Then ultra weak time op. $\exists T$ of H.

Remark 1: In the case of $E_n \rightarrow \infty$, *T* is usually of the form

$$T = \oplus_{j=1}^{\infty} T_j$$

and each T_j is a weak time operator of some simple self-adjoint operator H_j and $H = \bigoplus_j H_j$ (Sasaki+Wada(14)).

[Example 1: Two photon Rabi Hamiltonian]

Let $\omega = 1$ and $g \ge 0$.

$$H_R = \Delta \sigma_z + g(a^{\dagger^2} + a^2) + a^{\dagger}a.$$

$$(g < 1/2)$$

 $\sigma(H_R) = \{E_n\} \Longrightarrow \exists$ Time op.

$$\begin{array}{l} (g = 1/2) \\ \Longrightarrow H_R \cong \begin{pmatrix} P^2 - \frac{1}{2} + \Delta & 0 \\ 0 & Q^2 - \frac{1}{2} - \Delta \end{pmatrix} \Longrightarrow \sigma(H_R) = [-\frac{1}{2} - \Delta, 0) \\ \Longrightarrow \exists \text{ Strong time op.} \end{array}$$

[Example 2: NcHO]

Let A and J be 2×2 matrices defined by

$$A = \begin{pmatrix} lpha & 0 \\ 0 & eta \end{pmatrix}, \quad lpha, eta \ge 0, \quad J = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}.$$

Let $\alpha\beta > 1$. Then the **non-commutative harmonic oscillator** is defined by

$$H(\alpha,\beta) = A \otimes \left(\frac{1}{2}P^2 + \frac{1}{2}Q^2\right) + J \otimes \left(QP + \frac{1}{2}\right)$$

 $\Longrightarrow \exists$ Time operator

Definition (class $S(\mathcal{H})$)

A self-adjoint operator H on \mathcal{H} is said to be in the class $S(\mathcal{H})$ if it has the following properties (H.1)–(H.4):

- (H.1) $\sigma_{\rm sc}(H) = \emptyset$.
- (H.2) $\sigma_{\rm ac}(H) = [0,\infty).$
- (H.3) $\sigma_{\text{disc}}(H) = \sigma_{p}(H) = \{E_{n}\}_{n=1}^{\infty}, E_{1} < E_{2} < \dots < 0,$ $\lim_{n \to \infty} E_{n} = 0 \text{ (hence } 0 \notin \sigma_{p}(H)\text{).}$
- (H.4) There exists a strong time operator T_{ac} of H_{ac} in $\mathscr{H}_{ac}(H)$.

Theorem (Arai-H.(16) Ultra-weak time op. of H)

Let $H \in S(\mathscr{H})$. Then $\exists t_H$ ultra-weak time op.

Proof:

$$H = H_{\rm p} \oplus H_{\rm ac},$$

where $H_p = H \lceil_{\mathscr{H}_p(H)} H_{ac} = H \lceil_{\mathscr{H}_{ac}(H)}$. • By (H.3), H_p has an **ultra-weak time op**. \mathfrak{t}_p such that

$$\mathfrak{t}_{\mathrm{p}}[H_{\mathrm{p}}\phi,\psi]-\mathfrak{t}_{\mathrm{p}}[\phi,H_{\mathrm{p}}\psi]=-i(\phi,\psi), \hspace{1em} \phi,\psi\in \exists \mathscr{E}_{\mathrm{p}}.$$

• By (H.4), H_{ac} has a strong time op. T_{ac} such that

$$[H_{\rm ac},T_{\rm ac}]=-i1$$

 $\bullet \mathfrak{t}_H : (\mathscr{H}_{\mathrm{ac}}(H) \oplus \mathscr{D}_p) \times (D(T_{\mathrm{ac}}) \oplus \mathscr{D}_p) \to \mathbf{C}$ by

 $\mathfrak{t}_{H}[\phi_{1}\oplus\phi_{2},\psi_{1}\oplus\psi_{2}]=(\phi_{1},T_{\mathrm{ac}}\psi_{1})+\mathfrak{t}_{\mathrm{p}}[\phi_{2},\psi_{2}].$

Example (Agmon potential)

Let $d \ge 3$. Suppose that $U \in L^{\infty}(\mathbb{R}^3)$. Then

$$V(x) = \frac{U(x)}{(1+|x|^2)^{1/2+\varepsilon}}$$

is an Agmon potential for all $\varepsilon > 0$. Suppose that *U* is negative, continuous, spherically symmetric and satisfies that $U(x) = -1/|x|^{\alpha}$ for |x| > R with $0 < \alpha < 1$ and R > 0. Let $2\varepsilon + \alpha < 2$. Then *H* has an ultra-weak time operator.

Example (hydrogen atom)

The hydrogen Schrödinger operator $H_{hyd} = -\Delta - \gamma/|x|$ is self-adjoint with $D(H_{hyd}) = D(H_0)$. The Coulomb potential $-\gamma/|x|$ with d = 3 is not an Agmon potential. But we can show that H_{hyd} has an ultra-weak time operator.

(1) We construct an ultra-weak time op. t of $H = \frac{1}{2}P^2 + V$:

$$\mathfrak{t}(H\phi,\psi)-\mathfrak{t}(H\psi,\phi)^*=-i(\phi,\psi)$$

(2) t is **densely** defined. (3-1) We assume $\sigma_{sc}(H) = \emptyset$ and $0 \notin \sigma_p(H)$. (3-2) We assume $\#\sigma_{disc}(H) = \infty$ or $\#\sigma_{disc}(H) = 0$. (4) H_{hyd} is included in our results.

Reference: A. Arai and F. Hiroshima, Ultra-Weak Time Operators of Schrödinger Operators, arXiv:1607.04702, 2016