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1 Spin-boson model

1.1 Definition

Spin-boson model describes an interaction between an ideal two-level atom and a quantum
scalar field. Two eigenvalues of the atom are embedded in the continuous spectrum when
no perturbation is added. See Figure 1. We are interested in investigating behaviors of
embedded eigenvalues after adding a perturbation. In particular we consider properties of
the bottom of the spectrum of spin-boson Hamiltonians by functional integrations. In this
article we show an outline of [HHL08].

Figure 1: Embedded eigenvalues

Let F =
⊕∞

n=0

(
⊗n

symL
2(Rd)

)
be the boson Fock space over L2(Rd), where the subscript

means symmetrized tensor product. We denote the boson annihilation and creation operators
by a(f) and a†(f), f, g ∈ L2(Rd), respectively, satisfying the canonical commutation relations

[a(f), a†(g)] = (f̄ , g), [a(f), a(g)] = 0 = [a†(f), a†(g)]. (1.1)

We use the informal expression a♯(f) =
∫
a♯(k)f(k)dk for notational convenience. Consider

the Hilbert space H = C2⊗F . Denote by dΓ(T ) be the second quantization of a self-adjoint
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operator T in L2(Rd). The operator on Fock space defined by Hf = dΓ(ω) is the free boson
Hamiltonian with dispersion relation ω(k) = |k|. The operator

ϕb(ĥ) =
1√
2

∫ (
a†(k)ĥ(−k) + a(k)ĥ(k)

)
dk, (1.2)

acting on Fock space is the scalar field operator, where h ∈ L2(Rd) is a suitable form factor
and ĥ is the Fourier transform of h. Denote by σx, σy and σz the 2× 2 Pauli matrices given
by

σx =

[
0 1
1 0

]
, σy =

[
0 −i
i 0

]
, σz =

[
1 0
0 −1

]
. (1.3)

With these components, the spin-boson Hamiltonian is defined by the linear operator

HSB = εσz ⊗ 1l + 1l⊗Hf + ασx ⊗ ϕb(ĥ) (1.4)

on H , where α ∈ R is a coupling constant and ε ≥ 0 a parameter.

1.2 A Feynman-Kac-type formula

In this section we give a functional integral representation of e−tHSB by making use of a
Poisson point process and an infinite dimensional Ornstein-Uhlenbeck process. First we
transform HSB in a convenient form to study its spectrum in terms of path measures.

Recall that the rotation group in R3 has an adjoint representation on SU(2). In particular,
for n = (0, 1, 0) and θ = π/2, we have e(i/2)θn·σσxe

−(i/2)θn·σ = σz and e(i/2)θn·σσze
−(i/2)θn·σ =

−σx. Let U = exp
(
iπ
4
σy

)
⊗ 1l = 1√

2

[
1 1
−1 1

]
⊗ 1l be a unitary operator on H . Then HSB

transforms as
H = UHSBU

∗ = −εσx ⊗ 1l + 1l⊗Hf + ασz ⊗ ϕb(ĥ). (1.5)

If ĥ/
√
ω ∈ L2(Rd) and h is real-valued, then ϕb(ĥ) is symmetric and infinitesimally small

with respect to Hf , hence by the Kato-Rellich theorem it follows that H is a self-adjoint
operator on D(Hf) and bounded from below.

To construct the functional integral representation of the semigroup e−tH , it is useful to
introduce a spin variable σ ∈ Z2, where Z2 = {−1,+1} is the additive group of order 2. For

Ψ =

[
Ψ(+)
Ψ(−)

]
∈ H , we have HΨ =

[
(Hf + αϕb(ĥ))Ψ(+)− εΨ(−)

(Hf − αϕb(ĥ))Ψ(−)− εΨ(+)

]
. Thus we can transform

H on H to the operator H̃ on L2(Z2;F ) by

(H̃Ψ)(σ) =
(
Hf + ασϕb(ĥ)

)
Ψ(σ) + εΨ(−σ), σ ∈ Z2. (1.6)

In what follows, we identify the Hilbert space H with L2(Z2;F ), and instead of H we
consider H̃, and use the notation H for H̃.

Let (Ω,Σ, P ) be a probability space, and (Nt)t∈R be a two-sided Poisson process with unit
intensity on this space. We denote by D = {t ∈ R |Nt+ ̸= Nt−} the set of jump points, and
define the integral with respect to this Poisson process by

∫
(s,t]

f(r,Nr)dNr =
∑

r∈D

r∈(s,t]
f(r,Nr)



3

for any predictable function f . In particular, we have for any continuous function g,∫
(s,t]

g(r,Nr−)dNr =
∑

r∈D
s<r≤t

g(r,Nr−). We write
∫ t+

s
· · · dNr for

∫
(s,t]

· · · dNr. Note that∫ t+

s
g(r,N−r)dNr is right-continuous in t and the integrand g(r,N−r) is left-continuous in r

and thus a predictable process. Define the random process σt = σ(−1)Nt , σ ∈ Z2. In the
Schrödinger representation the boson Fock space F can be realized as an L2-space over a
probability space (Q,µ), and the field operator ϕb(f̂) with real-valued function f ∈ L2(Rd)
as a multiplication operator, which we will denote by ϕ(f). The identity function 1l on Q
corresponds to the Fock vacuum Ωb in F .

Let (QE, µE) be a probability space associated with the Euclidean quantum field. The
Hilbert spaces L2(QE) and L2(Q) are related through the family of isometries {js}s∈R from

L2(Rd) to L2(Rd+1) defined by ĵsf(k, k0) =
e−itk0√

π

√
ω(k)

|k0|2+ω(k)2
f̂(k). Let ΦE(jsf) be a Gaus-

sian random variable on (QE, µE) indexed by jsf ∈ L2(Rd+1) with mean zero and covariance

EµE
[ΦE(jsf)ΦE(jtg)] =

1
2

∫
Rd e

−|s−t|ω(k)f̂(k)ĝ(k)dk. Also, let {Js}s∈R be the family of isome-
tries from L2(Q) to L2(QE) defined by Js:ϕ(f1) · · ·ϕ(fn): = :ΦE(jsf1) · · ·ΦE(jsfn):, where :X:
denotes Wick product of X. Then we derive that (JsΦ, JtΨ)L2(QE) = (Φ, e−|t−s|HfΨ)L2(Q).
We identify H as H ∼= L2(Z2;L

2(Q)) ∼= L2(Z2 ×Q).

Proposition 1.1 Let Φ,Ψ ∈ H and h ∈ L2(Rd) be real-valued. Then

(ε ̸= 0) (Φ, e−tHΨ)H = et
∑
σ∈Z2

EPEµE

[
J0Φ(σ0)e

−αΦE(
∫ t
0 σsjshds)εNtJtΨ(σt)

]
(1.7)

(ε = 0) (Φ, e−tHΨ)H = et
∑
σ∈Z2

EµE

[
J0Φ(σ)e

−αΦE(σ
∫ t
0 jshds)JtΨ(σ)

]
. (1.8)

Denote 1lH = 1lL2(Z2) ⊗ 1lL2(Q). Using the above proposition we can compute the vacuum
expectation of the semigroup e−tH .

Corollary 1.2 Let h ∈ L2(Rd) be a real-valued function. Then for every t > 0 it follows
that

(1lH , e−tH1lH ) = et
∑
σ∈Z2

EP

[
εNte

α2

2

∫ t
0 dr

∫ t
0 W (Nr−Ns,r−s)ds

]
, (1.9)

where the pair interaction potential W is given by

W (x, s) =
(−1)x

2

∫
Rd

e−|s|ω(k)|ĥ(k)|2dk. (1.10)

2 Ground state of the spin-boson

In the remainder of this paper we assume that h ∈ L2(Rd) is real-valued. Let E =
inf Spec(H). Assume that ε ̸= 0. Then e−tH , t > 0, is a positivity improving semigroup on
L2(Z2 ×Q), i.e., (Ψ, e−tHΦ) > 0 for Ψ,Φ ≥ 0 such that Ψ ̸≡ 0 ̸≡ Φ. By this we can see that
Ker(H − E) = 1 for ε ̸= 0. We consider the case of ε ̸= 0. Write ΦT = e−T (H−E)1l and

γ(T ) =
(1lH ,ΦT )

2

∥ΦT∥2
=

(1lH , eTH1lH )2

(1lH , e−2TH1lH )
. (2.1)
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A known criterion of existence of a ground state is [LHB11, Proposition 6.8].

Proposition 2.1 A ground state of H exists if and only if lim
T→∞

γ(T ) > 0.

By Corollary 1.2 we have

∥ΦT∥2 = e2TE
∑
σ∈Z2

EP

[
εNT e

α2

2

∫ T
−T dt

∫ T
−T W (Nt−Ns,t−s)ds

]
, (2.2)

(1lH ,ΦT ) = eTE
∑
σ∈Z2

EP

[
εNT e

α2

2

∫ 0
−T dt

∫ 0
−T W (Nt−Ns,t−s)ds

]
. (2.3)

Note that
∣∣∣∫ 0

−T
dt
∫ T

0
W (Nt −Ns, t− s)ds

∣∣∣ ≤ 1
2

∥∥∥ĥ/ω∥∥∥2 uniformly in T and in the paths.

Theorem 2.2 If ĥ/ω ∈ L2(Rd), then H has a ground state and it is unique.

Proof: We can show that limT→∞ γ(T ) > 0 by using (2.2) and (2.3). Then the theorem
follows from Proposition 2.1.

2

It is a known fact thatHSB has a parity symmetry. Let P = σz⊗(−1)N , where N = dΓ(1l)
denotes the number operator in F . From Spec(σz) = {−1, 1} and Spec(N) = {0, 1, 2, ...} it
follows that Spec(P ) = {−1, 1}. Then H can be decomposed as H = H+ ⊕ H− and H

can be reduced by H±.

Corollary 2.3 Let φSB be the ground state of HSB. Then φSB ∈ H−.

3 Path measure associated with the ground state

In this section we set ε = 1 for simplicity. Let X = D(R; Z2) be the space of càdlàg paths
with values in Z2, and G the σ-field generated by cylinder sets. Thus σ· : (Ω,Σ, P ) → (X ,G )
is an X -valued random variable. We denote its image measure byWσ, i.e., Wσ(A) = σ−1

· (A)
for A ∈ G , and the coordinate process by (Xt)t∈R, i.e., Xt(ω) = ω(t) for ω ∈ X . Hence
Proposition 1.1 can be reformulated in terms of (Xt)t∈R as

(Φ, e−tHΨ)H = et
∑
σ∈Z2

Eσ
WEµE

[
J0Φ(X0)e

−αΦE(
∫ t
0 Xsjshds)JtΨ(Xt)

]
. (3.1)

Here EWσ = Eσ
W so that Eσ

W [X0 = σ] = 1. Let (Z2,B) be a measurable space with σ-

field B = {∅, {−1}, {+1},Z2}. We see that the operator Q[S,T ] = J∗
Se

ΦE(−α
∫ T
S Xsjshds)JT :

L2(Q) → L2(Q) is bounded.
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Corollary 3.1 Let −∞ < t0 ≤ . . . ≤ tn < ∞ and A0, ..., An ∈ B. Then

(1) (Φ, 1lA0e
−(t1−t0)H1lA1e

−(t2−t1)H · · · e−(tn−tn−1)H1lAnΨ)

= etn−t0
∑
σ∈Z2

Eσ
WEµE

[(
n∏

j=0

1lAj
(Xtj)

)
Φ(Xt0)Q[t0,tn]Ψ(Xtn)

]
,

(2) (1lA0 , e
−(t1−t0)H1lA1e

−(t2−t1)H · · · e−(tn−tn−1)H1lAn)

= etn−t0
∑
σ∈Z2

Eσ
W

[
e

α2

2

∫ tn
t0

dt
∫ tn
t0

dsW (Xs,Xt,t−s)
n∏

j=0

1lAj
(Xtj)

]
,

where W (x, y, t) =
xy

2

∫
Rd

e−|t|ω(k)ĥ(k)2dk.

Now we make the assumption that ĥ/ω ∈ L2(Rd), so that there is a unique ground
state φg ∈ H . Let G[−T,T ] = σ(Xt, t ∈ [−T, T ]) be the family of sub-σ-fields of G and
G =

∪
T≥0 G[−T,T ]. Let G = σ(G). Define the probability measure µT on (X ,G) by

µT (A) =
e2T

ZT

∑
σ∈Z2

Eσ
W

[
1lAe

α2

2

∫ T
−T dt

∫ T
−T dsW (Xt,Xs,t−s)

]
, A ∈ G, (3.2)

where ZT is the normalizing constant such that µT (X ) = 1. This probability measure is
a Gibbs measure for the pair interaction potential W , indexed by the bounded intervals
[−T, T ]. Let µ∞ be a probability measure on (X ,G). The sequence of probability measures
(µn)n is said to converge to the probability measure µ∞ in local weak topology whenever
limn→∞ |µn(A) − µ∞(A)| = 0 for all A ∈ G[−t,t] and t ≥ 0. By the definition it is seen
that whenever µT → µ∞ in local weak sense, we have that limT→∞ EµT

[f ] = Eµ∞ [f ] for any
bounded G[−t,t]-measurable function f .

We define below a probability measure ρT on (X ,G[−T,T ]) and an additive set function
µ on (X ,G). The unique extension of µ to a probability measure on (X , Ḡ) is denoted
by µ∞. We shall prove that µT (A) = ρT (A) for all A ∈ G[−t,t] with t ≤ T , and show that
ρT (A) → µ(A) as T → ∞, which implies that µT converges to µ∞ in the sense of local weak.

We define the finite dimensional distributions indexed by Λ = {t0, . . . , tn} ⊂ [−T, T ] with
t0 ≤ . . . ≤ tn. Let

µΛ
T (A0 × · · · × An) =

e2T

ZT

∑
σ∈Z2

Eσ
W

[(
n∏

j=0

1lAj
(Xtj)

)
e

α2

2

∫ T
−T dt

∫ T
−T dsW (Xt,Xs,t−s)

]
(3.3)

be a probability measure on (ZΛ
2 ,B

Λ), where ZΛ
2 = ×n

j=1Z
tj
2 and BΛ = ×n

j=1B
tj for Λ =

{t1, ..., tn}, and Ztj
2 and Btj are copies of Z2 and B, respectively. Clearly, G is a finitely

additive family of sets. Define an additive set function on (X ,G) by

µ(A) = e2Ete2t
∑
σ∈Z2

Eσ
W
[
1lA(φg(X−t), Q[−t,t]φg(Xt))H

]
, A ∈ G[−t,t]. (3.4)
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Note that µ(X ) = (φg, e
−2t(H−E)φg) = 1. There exists a unique probability measure µ∞ on

(X ,G) such that µ∞⌈G= µ. In particular, µ∞(A) = µ(A), for every A ∈ G[−t,t] and t ∈ R. In
order to show that µT (A) → µ∞(A) for every A ∈ G[−t,t], we define the probability measure
ρT on (X ,G[−T,T ]) for A ∈ G[−t,t] with t ≤ T by

ρT (A) = e2Ete2t
∑
σ∈Z2

Eσ
W

[
1lA

(
ΦT−t(X−t)

∥ΦT∥
, Q[−t,t]

ΦT−t(Xt)

∥ΦT∥

)]
. (3.5)

Remark 3.2 Both µ and ρT are well defined. I.e., for A ∈ G[−s,s] ⊂ G[−t,t] with s ≤ t ≤ T

µ(A) = e2Ese2s
∑
σ∈Z2

Eσ
W
[
1lA(φg(X−s), Q[−s,s]φg(Xs))

]
= e2Ete2t

∑
σ∈Z2

Eσ
W
[
1lA(φg(X−t), Q[−t,t]φg(Xt))

]
,

ρT (A) = e2Ese2s
∑
σ∈Z2

Eσ
W

[
1lA

(
ΦT−s(X−s)

∥ΦT∥
, Q[−s,s]

ΦT−s(Xs)

∥ΦT∥

)]
= e2Ete2t

∑
σ∈Z2

Eσ
W

[
1lA

(
ΦT−t(X−t)

∥ΦT∥
, Q[−t,t]

ΦT−t(Xt)

∥ΦT∥

)]
.

The family of probability measures ρΛT on (ZΛ
2 ,B

Λ) indexed by Λ = {t0, ..., tn} ⊂ [−T, T ] is
defined by

ρΛT (A0×· · ·×An) = e2Ete2t
∑
σ∈Z2

Eσ
W

[(
n∏

j=0

1lAj
(Xtj)

)(
ΦT−t(X−t)

∥ΦT∥
, Q[−t,t]

ΦT−t(Xt)

∥ΦT∥

)]
(3.6)

for arbitrary t such that −T ≤ −t ≤ . . . ≤ t0 ≤ . . . ≤ tn ≤ t ≤ T . To show that µT = ρT ,
we prove that their finite dimensional distributions coincide.

Lemma 3.3 Let Λ = {t0, t1, ..., tn} and A0 × · · · × An ∈ BΛ. Then µΛ
T (A0 × · · · × An) =

ρΛT (A0 × · · · × An), and µT (A) = ρT (A) follows for A ∈ G[−t,t] and t ≤ T .

Proof: The former statement follows from Corollary 3.1 and the later from Kolmogorov
consistency theorm. 2

Theorem 3.4 Suppose ĥ/ω ∈ L2(Rd). Then the probability measure µT on (X ,G) converges
in local weak sense to µ∞ as T → ∞.

Proof: Let A ∈ G[−T,T ]. Then µT (A) = ρT (A). Since
ΦT

∥ΦT ∥ → φg as T → ∞, we can see that

ρT (A) → µ(A) as T → ∞. Since µ(A) = µ∞(A), the theorem follows. 2

In the case when ε ̸= 1 a parallel discussion to the previous section can be made. We
summarize this in the theorem below.

Theorem 3.5 Suppose ĥ/ω ∈ L2(Rd). Then the probability measure µε
T on (X ,G) converges

in local weak sense to µε
∞ as T → ∞.

We also write µg for µε
∞ for notational convenience.
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4 Ground state properties

In this section without proofs we show to be able to express ground state expectations of
some observables in terms of the limit measure µg discussed in the previous section.

4.1 Expectations of functions of the form ξ(σ)F (ϕ(f))

Theorem 4.1 Let f be a G[−εt,εt]-measurable function on X . Then

Eµg[f ] = e2Eεte2εt
∑
σ∈Z2

Eσ
W

[(
φg(X−εt), Q

(ε)
[−εt,εt]φg(Xεt)

)
f
]
. (4.1)

An immediate consequence of Theorem 4.1 is the following.

Corollary 4.2 Let fj : Z2 → C, j = 0, ..., n, be bounded functions. Then

Eµg

[
n∏

j=0

fj(Xεtj)

]
= (φg, f0e

−(t1−t0)(H−E)f1 · · · e−(tn−tn−1)(H−E)fnφg). (4.2)

In particular, we have for all bounded functions ξ, f and g that

Eµg [ξ(X0)] = (φg, ξ(σ)φg), (4.3)

Eµg [f(Xt)g(Xs)] = (f(σ)φg, e
−|t−s|(H−E)g(σ)φg). (4.4)

Theorem 4.3 Let ĥ/ω ∈ L2(Rd), f ∈ L2(Rd) be real-valued, ξ : Z2 → C be a bounded
function, and β ∈ R. Then

(φg, ξ(σ)e
iβϕ(f)φg) = e−

β2

4
∥f∥2Eµg

[
ξ(X0)e

iβK(f)
]
, (4.5)

where K(f) is a random variable on (X ,G) given by K(f) = α
2

∫∞
−∞(e−|r|ωĥ, f̂)Xεrdr.

By using Theorem 4.3 the functionals (φg, ξ(σ)F (ϕ(f))φg) can be represented in terms of
averages with respect to the path measure µg. Consider the case when F is a polynomial
or a Schwartz test function. We will show in Corollary 2.2 below that φg ∈ D(e+βN) for all
β > 0, thus φg ∈ D(ϕ(f)n) for every n ∈ N.

Corollary 4.4 Let ĥ/ω ∈ L2(Rd), f ∈ L2(Rd) be real-valued, and ξ : Z2 → C a bounded
function. Also, let hn(x) = (−1)nex

2/2 dn

dxn e
−x2/2 be the Hermite polynomial of order n. Then

(φg, ξ(σ)ϕ(f)
nφg) = inEµg

[
ξ(X0)hn

(
−iK(f)

∥f∥2−1/2

)]
(∥f∥2−1/2)n, n ∈ N. (4.6)

In the next corollary we give the path integral representation of (φg, ξ(σ)F (ϕ(f))φg) for
F ∈ S (R), where S (R) denotes the space of rapidly decreasing, infinitely many times
differentiable functions on R.

Corollary 4.5 Let ĥ/ω ∈ L2(Rd), f ∈ L2(Rd) be real-valued, F ∈ S (R), and ξ : Z2 → C a
bounded function. Then (φg, ξ(σ)F (ϕ(f))φg) = Eµg [ξ(X0)G (K(f))], where G = F̌ ∗ ǧ and

g(β) = e−β2∥f∥2/4.
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4.2 Exponential moments of the field operator

In this section we show that (φg, e
βϕ(f)2φg) < ∞ for some β > 0.

Theorem 4.6 Let ĥ/ω ∈ L2(Rd) and f ∈ L2(Rd) be a real-valued function. If −∞ < β <

1/∥f∥2, then φg ∈ D(e(β/2)ϕ(f)
2
),

∥e(β/2)ϕ(f)2φg∥2 =
1√

1− β∥f∥2
Eµg

[
e

βK2(f)

1−β∥f∥2

]
, (4.7)

and limβ↑1/∥f∥2 ∥e(β/2)ϕ(f)
2
φg∥ = ∞.

Theorem 4.6 says that ∥e(β/2)ϕ(f)2φg∥ < ∞. Using this fact we can obtain explicit formulae
of the exponential moments (φg, e

βϕ(f)φg) of the field.

Corollary 4.7 If ĥ/ω ∈ L2(Rd) and f ∈ L2(Rd) is a real-valued function, then φg ∈
D(eβϕ(f)) and

(φg, e
βϕ(f)φg) = (φg, cosh(βϕ(f))φg) = e

β2

4
∥f∥2Eµg

[
eβK(f)

]
, (4.8)

(φg, σe
βϕ(f)φg) = (φg, σ sinh(βϕ(f))φg) = e

β2

4
∥f∥2Eµg

[
X0e

βK(f)
]
. (4.9)

4.3 Expectations of second quantized operators

We consider expectations of the form (φg, e
−βdΓ(ρ(−i∇))φg), where ρ is a real-valued multipli-

cation operator given by the function ρ. An important example is ρ = 1l giving the boson
number operator N = dΓ(1l). We obtain the expression

(ΦT , ξ(σ)e
−βdΓ(ρ(−i∇))ΦT )

∥ΦT∥2
= Eµε

T

[
ξ(X0)e

−α2
∫ 0
−T dt

∫ T
0 W ρ,β(Xεt,Xεs,t−s)ds

]
, (4.10)

where W ρ,β(x, y, T ) = xy
2

∫
Rd |ĥ(k)|2e−|T |ω(k)(1− e−βρ(k))dk. Denote

W ρ,β
∞ =

∫ 0

−∞
dt

∫ ∞

0

W ρ,β(Xεt, Xεs, t− s)ds. (4.11)

Notice that |W ρ,β
∞ | ≤ ∥ĥ/ω∥2/2 < ∞, uniformly in the paths in X .

Theorem 4.8 Suppose that ĥ/ω ∈ L2(Rd) and ξ : Z2 → C is a bounded function. Then

(φg, ξ(σ)e
−βdΓ(ρ(−i∇))φg) = Eµg

[
ξ(X0)e

−α2W ρ,β
∞
]
, β > 0. (4.12)

Corollary 4.9 Suppose that ĥ/ω ∈ L2(Rd) and ξ : Z2 → C is a bounded function. Then

(φg, ξ(σ)e
−βNφg) = Eµg

[
ξ(X0)e

−α2(1−e−β)W∞
]
, (4.13)

where W∞ =
∫ 0

−∞ dt
∫∞
0

W (Xεt, Xεs, t− s)ds. Furthermore φg ∈ D(eβN) for all β ∈ C and

(φg, e
βNφg) = Eµg

[
e−α2(1−eβ)W∞

]
(4.14)

follows.
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5 Van Hove representation

The van Hove Hamiltonian is defined by the self-adjoint operator

HvH(ĝ) = Hf + ϕb(ĝ) (5.1)

in Fock space F . Suppose that ĝ/ω ∈ L2(Rd) and define the conjugate momentum by

πb(ĝ) =
i√
2

∫ (
a†(k)

ĝ(k)

ω(k)
− a(k)

ĝ(−k)

ω(k)

)
dk.

Then eiπb(ĝ)HvH(ĝ)e
−iπb(ĝ) = Hf − 1

2
∥ĝ/ω∥2 and the ground state of HvH(ĝ) is given by

φvH(ĝ) = e−iπb(ĝ)Ωb. On the other hand, clearly the spin-boson Hamiltonian H with ε = 0

is the direct sum of van Hove Hamiltonians since H =

[
Hf + αϕb(ĥ) 0

0 Hf − αϕb(ĥ)

]
and

Hf ± αϕb(ĥ) are equivalent. Therefore the ground state of H with ε = 0 can be realized as

φg =

[
φvH(αĥ)

φvH(−αĥ)

]
. Thus in this case

(φg, e
iβϕ(f)φg)H =

1

2

∑
σ=±1

(φvH(σαĥ), e
iβϕb(f̂)φvH(σαĥ))F (5.2)

and the right hand side above equals (Ωb, e
iβ(ϕb(f̂)+α(ĥ/ω,f̂))Ωb)F = e−β2∥f̂∥2/4+iβα(ĥ/ω,f̂). When

ε ̸= 0 we can derive similar but non-trivial representations. Define the random boson field
operator Ψ(f̂) = ϕb(f̂) + K(f) on F . Let χ = α

2
ω(k)ĥ(k)

∫∞
−∞ e−|s|ω(k)Xεsds. Note that

χ ∈ L2(Rd), K(f) = (χ, f̂), moreover, χ/ω ∈ L2(Rd), whenever ĥ/ω ∈ L2(Rd), and χ = σαĥ
for ε = 0. We define the random van Hove Hamiltonian by HvH(χ).

Theorem 5.1 If ĥ/ω ∈ L2(Rd), then

(φg, e
iβϕ(f)φg) = Eµg

[
(Ωb, e

iβΨ(f̂)Ωb)
]
= Eµg

[
(φvH(χ), e

iβϕb(f̂)φvH(χ))
]
. (5.3)

Corollary 5.2 Suppose ĥ/ω ∈ L2(Rd) and F ∈ S (R). Then we have

(φg, F (ϕ(f))φg) = Eµg

[
(Ωb, F (Ψ(f̂))Ωb)

]
= Eµg

[
(φvH(χ), F (ϕ(f̂))φvH(χ))

]
, (5.4)

∥eβϕ(f)2/2φg∥2 = Eµg

[
∥eβΨ(f̂)2/2Ωb∥2

]
= Eµg

[
∥eβϕb(f̂)

2/2φvH(χ)∥2
]
. (5.5)
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