SPIN-BOSON MODEL

Fumio Hiroshima (0 00 0O)

Faculty of Mathematics, Kyushu University
Fukuoka, 819-0395, Japan
hiroshima@math.kyushu-u.ac. jp

1 Spin-boson model

1.1 Definition

Spin-boson model describes an interaction between an ideal two-level atom and a quantum
scalar field. Two eigenvalues of the atom are embedded in the continuous spectrum when
no perturbation is added. See Figure 1. We are interested in investigating behaviors of
embedded eigenvalues after adding a perturbation. In particular we consider properties of
the bottom of the spectrum of spin-boson Hamiltonians by functional integrations. In this
article we show an outline of [HHLOS].
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Figure 1: Embedded eigenvalues

Let Z# = @, (®4,L*(R?)) be the boson Fock space over L*(R?), where the subscript
means symmetrized tensor product. We denote the boson annihilation and creation operators
by a(f) and a'(f), f,g € L*(RY), respectively, satisfying the canonical commutation relations

[a(f),a'(9)] = (f,9), la(f),alg)] = 0= la'(f),a'(g)]. (1.1)

We use the informal expression af(f) = [ a*(k)f(k)dk for notational convenience. Consider
the Hilbert space # = C?®.%. Denote by dI'(T') be the second quantization of a self-adjoint
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operator T in L?(R%). The operator on Fock space defined by H; = dI'(w) is the free boson
Hamiltonian with dispersion relation w(k) = |k|. The operator

J(h) = % / (af (k)i(—k) + a(k) (k) ) db. (1.2)

acting on Fock space is the scalar field operator, where h € L2(R?) is a suitable form factor
and h is the Fourier transform of h. Denote by o,,0, and o, the 2 x 2 Pauli matrices given

by
01 0 —1 1 0
O = {1 0} . Oy = L 0} , 0, = {O _1] . (1.3)

With these components, the spin-boson Hamiltonian is defined by the linear operator
Hgg = 0. @ 14+ 1@ Hy + ao, ® ¢u(h) (1.4)

on ¢, where o € R is a coupling constant and € > 0 a parameter.

1.2 A Feynman-Kac-type formula

In this section we give a functional integral representation of e~*#s® by making use of a
Poisson point process and an infinite dimensional Ornstein-Uhlenbeck process. First we
transform Hgg in a convenient form to study its spectrum in terms of path measures.
Recall that the rotation group in R® has an adjoint representation on SU(2). In particular,
for n = (0,1,0) and 6 = 7/2, we have e(/20noq e=(/20n0 — 5 and (/200 q =(/2)0n0 —

—0,. Let U = exp (z ay) ®1 = f [ 11 ﬂ ® 1 be a unitary operator on . Then Hgp

transforms as .
H:UHSBU*I—€O’x®]1—|—]l®Hf+OéUz®¢b(h). (15)

If h/\/w € L*(®R%) and h is real-valued, then ¢p(h) is symmetric and infinitesimally small
with respect to H¢, hence by the Kato-Rellich theorem it follows that H is a self-adjoint
operator on D(H;) and bounded from below.

To construct the functional integral representation of the semigroup e™*", it is useful to
introduce a spin variable o € Zy, where Zy = {—1, +1} is the additive group of order 2. For

= ‘II(+) we nave = (Hf_‘_abe(EL)) ( ) 8\11(—) us we can transriorm
V= [\H_J € A, we have [T [(Hf—acpb(h» w(o) —ew(r) transf

H on 4 to the operator H on L?(Zy;.%) by

tH

(AW (o) = (Hf n aggbb(ﬁ)) V(o) +eW(—0), o€ Zs. (1.6)

In what follows, we identify the Hilbert space # with L?(Zy;.%), and instead of H we
consider H, and use the notation H for H.

Let (2, X, P) be a probability space, and (/NV;);er be a two-sided Poisson process with unit
intensity on this space. We denote by D = {t € R| N;; # Ny } the set of jump points, and
define the integral with respect to this Poisson process by f W RAGRA +)AN, = Z e, f (r, N,)



for any predictable function f. In particular, we have for any continuous function g,
Jio 9(r, Ne2)dN, = 37 rep g(r,N,_). We write [""-..dN, for Jiosy - dN;. Note that
’ s<r<t ’

sz g(r, N_.)dN, is right-continuous in ¢ and the integrand ¢(r, N_,) is left-continuous in r
and thus a predictable process. Define the random process oy = o(—1)™, o € Zy. In the
Schrodinger representation the boson Fock space .%# can be realized as an L2-space over a
probability space (Q, 1), and the field operator ¢y, (f) with real-valued function f € L2(R)
as a multiplication operator, which we will denote by ¢(f). The identity function 1 on @
corresponds to the Fock vacuum €, in .%.

Let (Qg, k) be a probability space associated with the Euclidean quantum field. The
Hilbert spaces L?*(Qg) and L?(Q) are related through the family of isometries {j;}ser from

L2(RY) to L*(R4!) defined by j/s?(k;,ko) = e:;t;() |k0‘2+w f( ). Let ®g(jsf) be a Gaus-

sian random variable on (g, ur) indexed by js f € L2(Rd+1) with mean zero and covariance
E,s [Pe(js /) Pr(jig)] = L [rae™!s tok) £(k)g(k)dk. Also, let {J,}ser be the family of isome-
tries from L*(Q) to L2(QE) defined by Js:¢(f1) - &(fn): = :Pr(Jsf1) - - Pr(js fn):, Where :X:
denotes Wick product of X. Then we derive that (J,®, ;¥) 2 = (P, e W) 12 0.
We identify 7 as 7 = L*(Zy; L*(Q)) = L*(Zy X Q).

Proposition 1.1 Let ®,V € 57 and h € L*(R?) be real-valued. Then

(#0) (D,eW)yp =€ Y EpE,, [Jocb(oo) —a@s(fy UsjshdS)gNtthf(at)} (1.7)
[ASYA)

(e=0) (@.eT)y=c > E,, [JO e=o®u(7 jshdS)Jt\IJ(a)] . (1.8)
oEZy

Denote 1, = l2(z,) ® 112(g). Using the above proposition we can compute the vacuum
expectation of the semigroup e,

Corollary 1.2 Let h € L*(RY) be a real-valued function. Then for every t > 0 it follows
that .
(L, e 1) = ¢t Z Ep [gNte% Jy dr Jo W (N, =Ner—s)ds]| (1.9)
OEZ2

where the pair interaction potential W is given by

W (z,s) = % /R ) e~ 5 b (k) [2dk. (1.10)

2 Ground state of the spin-boson

In the remainder of this paper we assume that h € L?(RY) is real-valued. Let E =
inf Spec(H). Assume that e # 0. Then e ¢ > 0, is a positivity improving semigroup on
L*(Zy x Q), ie., (U, e Hd) > 0 for ¥, ® > 0 such that ¥ # 0 £ &. By this we can see that
Ker(H — E) = 1 for € # 0. We consider the case of € # 0. Write ®7 = e 7# =51 and

(L, @7)* (L, e 1)?

T) = = .
=8 = (L, e 7L,)

(2.1)



A known criterion of existence of a ground state is [LHB11, Proposition 6.8].

Proposition 2.1 A ground state of H exists if and only if Tlim ~(T) > 0.
—00

By Corollary 1.2 we have

2
|@r|2 = 2TF Z Ep [gNTQTf_TT dt [T W(Nt—NS,t—s)ds] ’ (2.2)
OEZLy
a2
(L, 1) =™ Y Ep [gNTeTfETdtffTW<Nt*Ns¢*S>dﬂ . (2.3)
OEZ>

2
Note that ’fBT dt fOT W (N; — Ny, t — s)ds‘ <3 Hh/w” uniformly in 7" and in the paths.

Theorem 2.2 If h/w € LA(R?), then H has a ground state and it is unique.

Proof: We can show that limr_,., y(7") > 0 by using (2.2) and (2.3). Then the theorem
follows from Proposition 2.1.
O

It is a known fact that Hgp has a parity symmetry. Let P = 0,®(—1)", where N = dI'(1)
denotes the number operator in .#. From Spec(o,) = {—1,1} and Spec(N) ={0,1,2,...} it
follows that Spec(P) = {—1,1}. Then % can be decomposed as 7 = 5, & # and H
can be reduced by 7.

Corollary 2.3 Let pgp be the ground state of Hsg. Then pspg € .

3 Path measure associated with the ground state

In this section we set ¢ = 1 for simplicity. Let 2" = D(R;Zs) be the space of cadlag paths
with values in Zy, and ¢ the o-field generated by cylinder sets. Thus o. : (2,%, P) — (27,9)
is an 2 -valued random variable. We denote its image measure by W7, i.e., W7 (A) = o1 (A)
for A € ¢4, and the coordinate process by (Xi)ier, i.€., Xi(w) = w(t) for w € 2. Hence
Proposition 1.1 can be reformulated in terms of (X;)er as

(@,07W) = ¢ Y EYE,, [J0q>(X0)e—a‘1’E(f5 Xejshds) 1 (x,)] . (3.1)

oEZy

Here Epo = EY, so that Ej,[Xg = o] = 1. Let (Z3, %) be a measurable space with o-
field = {0,{—1},{+1},22}. We see that the operator Qg7 = JiePe(—afs Xajshds) J .
L*(Q) — L*(Q) is bounded.



Corollary 3.1 Let —oco <ty <...<t, <oo and Ag,...,A, € B. Then

(1) (®, Ty e 0], o~ (t)H o=t DH], )

— ptn—to Z E{‘/V]EME [(H Xt] ) Xto)Q[to tn]qj(th)

oEZLy =0

(2) (]IA()? 6_(t1—tO)H]]A16—(t2—t1)H e —(tn— tn_l)H]lAn)

n
pln—to Z Ea [e 5 ftn dtftn dsW (X s,X¢,t—s) H ﬂAj(th)] ’
§=0

OEZ>
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where W (z,y,t) = %/ e by (k)2 .
R4

Now we make the assumption that h/w € L?*(R%), so that there is a unique ground
state @, € . Let G_pq1 = o(Xy,t € [=T,T]) be the family of sub-o-fields of ¢ and
G=Urs09 71 Let G = 0(G). Define the probability measure yur on (2°,G) by

2

A)
pr(A) =7

Z ]EW |:]1A6 . fT dth dsW(Xt X, t— S) ’ A c 6’ (32)

OEZLs

where Zr is the normalizing constant such that ur(Z2°) = 1. This probability measure is
a Gibbs measure for the pair interaction potential W, indexed by the bounded intervals
[T, T). Let piso be a probability measure on (27, G). The sequence of probability measures
(fn)n is said to converge to the probability measure po, in local weak topology whenever
limy, oo [ptn(A) — floo(A)| = 0 for all A € 4,4 and ¢ > 0. By the definition it is seen
that whenever jir — [0 in local weak sense, we have that limy_,o E,,. [f] = E,_[f] for any
bounded ¥|_; y-measurable function f.

We define below a probability measure pr on (2°,%_r 1)) and an additive set function
won (Z,G). The unique extension of p to a probability measure on (27,G) is denoted
by pieo. We shall prove that urp(A) = pr(A) for all A € 4,4 with ¢t < T, and show that
pr(A) = u(A) as T'— oo, which implies that pur converges to i in the sense of local weak.

We define the finite dimensional distributions indexed by A = {t¢,...,t,} C [T, 7] with
to <...<t,. Let

M%(Ao X X Ap) = ZT Z]EW [(H La, (X, )) €7 e T AW (40X ) (3.3)
7=0

O0EZL

be a probability measure on (Z4, %"), where 7z = x;?;lz;j and B* = x7_ B4 for A =
{t1,...,tn}, and z’;j and A are copies of Z, and 4, respectively. Clearly, G is a finitely
additive family of sets. Define an additive set function on (2", G) by

p(A) = e*Fle? Z By [1a(0g(X_t), Qurnpe(Xe)) ], A€ %Gy (3.4)

OEZ2



Note that ju(27) = (¢g, e 2H=E)p,) = 1. There exists a unique probability measure i, on
(2, G) such that pie[g= p. In particular, pe(A) = u(A), for every A € 4, and t € R. In
order to show that pr(A) — pieo(A) for every A € ¢4, 4, we define the probability measure
pron (£, 9 _rm) for A€ 94y with t <T by

oL o P (X ) (I)T_t(Xt)ﬂ
i = (e e )| 33)

Remark 3.2 Both p1 and pr are well defined. Le., for A€ 954 C Gy withs <t <T

u(A) = P2e® Yy B [La(pg(Xoy), Qs sipe(Xs))]

o€Z2
— 2Bt 2 Z ES), [ﬂA(¢g(X_t), Q[—t,t]90g<Xt))} )
OEZ2
d S(X—S) Pr_ S(XS)
2Es 2s E ]l = —
pr(A > By [l N Qe T, [Pl
oEZ2
Ori(X o) Pri(Xi)
2Et % Tt s
ca (R et )|

The family of probability measures p5 on (z3, #*) indexed by A = {to,...,t,} C [T, T] is
defined by

P (Agx - X Ay) :62Et€2tZE% [(H ]lAj(th)> (q)THCtD( : )_,Q[ tt]q)ﬂq;()”(t))

O0EZ>

(3.6)

for arbitrary t such that -7 < —t < ... <t;3 < ... <t, <t <T. To show that ur = pr,
we prove that their finite dimensional distributions coincide.

Lemma 3.3 Let A = {tg,t1,....t,} and Ag X --- x A, € B*. Then pr(Ay x --- x A,) =
pp(Ag x -+ x Ay), and pr(A) = pr(A) follows for A€ Gy and t <T.

Proof: The former statement follows from Corollary 3.1 and the later from Kolmogorov

consistency theorm. a

Theorem 3.4 Suppose hjw € L*(RY). Then the probability measure pp on (Z,G) converges
i local weak sense to i as T — oco.

Proof: Let A € 4_p1). Then pup(A) = pr(A). Since ” 1 — g as T — 00, we can see that
pr(A) — p(A) as T'— oo. Since u(A) = po(A), the theorem follows. O

In the case when € # 1 a parallel discussion to the previous section can be made. We
summarize this in the theorem below.

Theorem 3.5 Suppose hjw € L*(R%). Then the probability measure ji5 on (2, G) converges
in local weak sense to ps, asT — oo.

We also write p, for pf, for notational convenience.



4 Ground state properties

In this section without proofs we show to be able to express ground state expectations of
some observables in terms of the limit measure j, discussed in the previous section.

4.1 Expectations of functions of the form &(o)F(4(f))

Theorem 4.1 Let f be a 9_.;.q-measurable function on 2 . Then
Bulf] = 2P 3wy | (X o) QU yee(Xa) f] - (4.1)
oEZLy
An immediate consequence of Theorem 4.1 is the following.

Corollary 4.2 Let f; : Zo — C, 7 =0,...,n, be bounded functions. Then

Ng [H f] et ] QDg, f e —(t1—to)(H— E)f —(th—tn—1)(H—FE) fn@g) (42)

In particular, we have for all bounded functions &, f and g that
By, [§(Xo)] = (g, £(0) ), (4.3)
E, [[(X)9(Xo)] = (F(0) g, e 1HEg(0) ). (4.4)

Theorem 4.3 Let hjw € L2(RY), f € L2(R?) be real-valued, € : Zy — C be a bounded
function, and B € R. Then

. 8 .
(0g: £(0)eP? PN py) = e~ THIPR, [¢(X,)ePKN] (4.5)
where K(f) is a random variable on (2, G) given by K(f) = %f_oooo(e*|T|"JiL, HXopdr.

By using Theorem 4.3 the functionals (g, &(0)F(¢(f))pe) can be represented in terms of
averages with respect to the path measure p,. Consider the case when F' is a polynomial
or a Schwartz test function. We will show in Corollary 2.2 below that ¢, € D(e™#") for all
B >0, thus ¢, € D(¢(f)") for every n € N.

Corollary 4.4 Let hjw € LA(R?), f € L*(R?) be real-valued, and € : Zy — C a bounded
function. Also, let h,(z) = (—1)"e”" /2L e=7*/2 be the Hermite polynomial of order n. Then

n - —iK f — n
(a0 00) = "5 |60k (ol ) | U122, e o)
In the next corollary we give the path integral representation of (¢4, £(0)F(o(f))g,) for
F € Z(R), where .#(R) denotes the space of rapidly decreasing, infinitely many times
differentiable functions on R.

Corollary 4.5 Let hjw € L2(RY), f € LA(R%) be real-valued, F € .#(R), and & - Zy — C a
bounded function. Then (94 §(@)F(0())¢e) = By [€(X0)G (K ()], where G = Fx 3 and

g(8) = e B4



4.2 Exponential moments of the field operator

In this section we show that (i, €#W)*,) < oo for some 3 > 0.

Theorem 4.6 Let ﬁ/w € LQ(Rd) and f € L2<Rd) be a real-valued function. If —oo < f <
1/ f11?, then o, € D(eP/29W)%),

1 BE2(f)
||e(ﬂ/2)¢(f)290g||2 S |:61—5If2:| , (4.7)

u.
VI=BIfPE
. 2
and limgp 2 (|20 gy ]| = co.

Theorem 4.6 says that ||e(?/29U)p, || < co. Using this fact we can obtain explicit formulae
of the exponential moments (¢, e?*V,) of the field.

Corollary 4.7 If fz/w € L*(RY) and f € L*(RY) is a real-valued function, then o, €
D(ePY)) and

(06 #Dp) = (g, cosh(B6(F))pg) = €T IR, [PKD] (4.8)
(e €D 0,) = (g, 0 sinh(Bo(f))pe) = €T 1I°E,, [Xoe D] . (4.9)

4.3 Expectations of second quantized operators

We consider expectations of the form (¢, e #(P=V) ) where p is a real-valued multipli-
cation operator given by the function p. An important example is p = 1 giving the boson
number operator N = dI'(1). We obtain the expression

—Bdl(p(=iV))
(@Tag(g)chq) ”: Or) —E,. [g(Xo)e_O‘2 O de T Wp,ﬁ(xst,xgs,t—s)ds] 7 (4.10)
T
where WoP(z,y, T) =2 [, |h(k)[2e~ITlo(k) (1 — ¢=Be(R))dJ:. Denote
0 oo
W&B = / dt/ Wpﬁ(Xsta X537t - S)dS. (411>
—00 0

Notice that [W2F| < ||h/w||?/2 < oo, uniformly in the paths in 2.

Theorem 4.8 Suppose that h/w € L2(R?) and € : Zy — C is a bounded function. Then
_ — —a .8

(e, E(0)e PIU o) — g, e(Xo)e ] B> 0. (4.12)

Corollary 4.9 Suppose that fL/w € L*(RY) and & : Zy — C is a bounded function. Then
_ C0?(1—e B W
(5, E(0)e ™ 0g) = By, [€(Xo)e 77 ] (4.13)
where Wo, = f?oo dt [ W (Xey, X, t — s)ds. Furthermore oz € D(e”N) for all 8 € C and
C0?(1—eF\ Wy
(g, €™ ipg) = By o7 07| (4.14)

follows.



5 Van Hove representation

The van Hove Hamiltonian is defined by the self-adjoint operator

Hu(9) = He + ¢u(9) (5.1)
in Fock space .%. Suppose that §/w € L?(R?) and define the conjugate momentum by

o(d) = % / (a*(k:)fm _ a(k)%) dk.

Then e™@Hy(g)e~™@ = H; — 1||g/w|/* and the ground state of H.u(g) is given by
ou(9) = e™@Q,. On the other hand, clearly the spin-boson Hamiltonian H with & = 0

is the direct sum of van Hove Hamiltonians since H = [Hf +ady(h) 0 N
O Hf — Oé(bb(h)

H; + agzﬁb(A) are equivalent. Therefore the ground state of H with ¢ = 0 can be realized as

0p = [ SDVH(ah) } Thus in this case
SOVH( Oéh)

and

) 1 A ) 2 A
ez’Bd)(f)SOg)%’ — 3 Z (pvu(oah), ezﬁ(ﬁb(f)@vﬂ(gah))ﬁ (5.2)

o=%+1

(g

and the right hand side above equals (2, ¢#@o(Ntath/oN)Q) )y o — =AIfI?/4+ibah/w.f) When
e # 0 we can derive similar but non-trivial representations. Define the random boson field
operator U(f) = ¢u(f) + K(f) on .F. Let xy = %w(k’)ﬁ(k’) e e sk X_ ds. Note that
x € L2(RY), K(f) = (x, f), moreover, x/w € L*(R?), whenever h/w € L2(R%), and x = oah
for e = 0. We define the random van Hove Hamiltonian by H,u(x).

Theorem 5.1 If h/w € L2(RY), then
(e €% ig) = By (s D) | = By | (o (), @ Duu(x))| . (5:3)
Corollary 5.2 Suppose hjw € L2(R%) and F € .#(R). Then we have
(g F(0(f))pg) = Eug[(va F(\If(f))ﬂb)} = ]Eug[(SOVH(X>= F(cb(f))sovH(x))] : (5.4)

9 £\2
5002 |12 = ]Eug[neﬂ‘l’(f) /29b||2] = Eug[Hewb( (0] ] >
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