Spin－Boson Model

Fumio Hiroshima（廣島文生）
Faculty of Mathematics，Kyushu University
Fukuoka，819－0395，Japan
hiroshima＠math．kyushu－u．ac．jp

1 Spin－boson model

1．1 Definition

Spin－boson model describes an interaction between an ideal two－level atom and a quantum scalar field．Two eigenvalues of the atom are embedded in the continuous spectrum when no perturbation is added．See Figure 1．We are interested in investigating behaviors of embedded eigenvalues after adding a perturbation．In particular we consider properties of the bottom of the spectrum of spin－boson Hamiltonians by functional integrations．In this article we show an outline of［HHL08］．

Figure 1：Embedded eigenvalues
Let $\mathscr{F}=\bigoplus_{n=0}^{\infty}\left(\otimes_{\text {sym }}^{n} L^{2}\left(\mathbb{R}^{d}\right)\right)$ be the boson Fock space over $L^{2}\left(\mathbb{R}^{d}\right)$ ，where the subscript means symmetrized tensor product．We denote the boson annihilation and creation operators by $a(f)$ and $a^{\dagger}(f), f, g \in L^{2}\left(\mathbb{R}^{d}\right)$ ，respectively，satisfying the canonical commutation relations

$$
\begin{equation*}
\left[a(f), a^{\dagger}(g)\right]=(\bar{f}, g), \quad[a(f), a(g)]=0=\left[a^{\dagger}(f), a^{\dagger}(g)\right] . \tag{1.1}
\end{equation*}
$$

We use the informal expression $a^{\sharp}(f)=\int a^{\sharp}(k) f(k) d k$ for notational convenience．Consider the Hilbert space $\mathscr{H}=\mathbb{C}^{2} \otimes \mathscr{F}$ ．Denote by $d \Gamma(T)$ be the second quantization of a self－adjoint
operator T in $L^{2}\left(\mathbb{R}^{d}\right)$. The operator on Fock space defined by $H_{\mathrm{f}}=d \Gamma(\omega)$ is the free boson Hamiltonian with dispersion relation $\omega(k)=|k|$. The operator

$$
\begin{equation*}
\phi_{\mathrm{b}}(\hat{h})=\frac{1}{\sqrt{2}} \int\left(a^{\dagger}(k) \hat{h}(-k)+a(k) \hat{h}(k)\right) d k \tag{1.2}
\end{equation*}
$$

acting on Fock space is the scalar field operator, where $h \in L^{2}\left(\mathbb{R}^{d}\right)$ is a suitable form factor and \hat{h} is the Fourier transform of h. Denote by σ_{x}, σ_{y} and σ_{z} the 2×2 Pauli matrices given by

$$
\sigma_{x}=\left[\begin{array}{ll}
0 & 1 \tag{1.3}\\
1 & 0
\end{array}\right], \quad \sigma_{y}=\left[\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right], \quad \sigma_{z}=\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]
$$

With these components, the spin-boson Hamiltonian is defined by the linear operator

$$
\begin{equation*}
H_{\mathrm{SB}}=\varepsilon \sigma_{z} \otimes \mathbb{1}+\mathbb{1} \otimes H_{\mathrm{f}}+\alpha \sigma_{x} \otimes \phi_{\mathrm{b}}(\hat{h}) \tag{1.4}
\end{equation*}
$$

on \mathscr{H}, where $\alpha \in \mathbb{R}$ is a coupling constant and $\varepsilon \geq 0$ a parameter.

1.2 A Feynman-Kac-type formula

In this section we give a functional integral representation of $e^{-t H_{\mathrm{SB}}}$ by making use of a Poisson point process and an infinite dimensional Ornstein-Uhlenbeck process. First we transform H_{SB} in a convenient form to study its spectrum in terms of path measures.

Recall that the rotation group in \mathbb{R}^{3} has an adjoint representation on $S U(2)$. In particular, for $n=(0,1,0)$ and $\theta=\pi / 2$, we have $e^{(i / 2) \theta n \cdot \sigma} \sigma_{x} e^{-(i / 2) \theta n \cdot \sigma}=\sigma_{z}$ and $e^{(i / 2) \theta n \cdot \sigma} \sigma_{z} e^{-(i / 2) \theta n \cdot \sigma}=$ $-\sigma_{x}$. Let $U=\exp \left(i \frac{\pi}{4} \sigma_{y}\right) \otimes \mathbb{1}=\frac{1}{\sqrt{2}}\left[\begin{array}{cc}1 & 1 \\ -1 & 1\end{array}\right] \otimes \mathbb{1}$ be a unitary operator on \mathscr{H}. Then H_{SB} transforms as

$$
\begin{equation*}
H=U H_{\mathrm{SB}} U^{*}=-\varepsilon \sigma_{x} \otimes \mathbb{1}+\mathbb{1} \otimes H_{\mathrm{f}}+\alpha \sigma_{z} \otimes \phi_{\mathrm{b}}(\hat{h}) . \tag{1.5}
\end{equation*}
$$

If $\hat{h} / \sqrt{\omega} \in L^{2}\left(\mathbb{R}^{d}\right)$ and h is real-valued, then $\phi_{\mathrm{b}}(\hat{h})$ is symmetric and infinitesimally small with respect to H_{f}, hence by the Kato-Rellich theorem it follows that H is a self-adjoint operator on $D\left(H_{\mathrm{f}}\right)$ and bounded from below.

To construct the functional integral representation of the semigroup $e^{-t H}$, it is useful to introduce a spin variable $\sigma \in \mathbb{Z}_{2}$, where $\mathbb{Z}_{2}=\{-1,+1\}$ is the additive group of order 2 . For $\Psi=\left[\begin{array}{c}\Psi(+) \\ \Psi(-)\end{array}\right] \in \mathscr{H}$, we have $H \Psi=\left[\begin{array}{l}\left(H_{\mathrm{f}}+\alpha \phi_{\mathrm{b}}(\hat{h})\right) \Psi(+)-\varepsilon \Psi(-) \\ \left(H_{\mathrm{f}}-\alpha \phi_{\mathrm{b}}(\hat{h})\right) \Psi(-)-\varepsilon \Psi(+)\end{array}\right]$. Thus we can transform H on \mathscr{H} to the operator \tilde{H} on $L^{2}\left(\mathbb{Z}_{2} ; \mathscr{F}\right)$ by

$$
\begin{equation*}
(\tilde{H} \Psi)(\sigma)=\left(H_{\mathrm{f}}+\alpha \sigma \phi_{\mathrm{b}}(\hat{h})\right) \Psi(\sigma)+\varepsilon \Psi(-\sigma), \quad \sigma \in \mathbb{Z}_{2} \tag{1.6}
\end{equation*}
$$

In what follows, we identify the Hilbert space \mathscr{H} with $L^{2}\left(\mathbb{Z}_{2} ; \mathscr{F}\right)$, and instead of H we consider \tilde{H}, and use the notation H for \tilde{H}.

Let (Ω, Σ, P) be a probability space, and $\left(N_{t}\right)_{t \in \mathbb{R}}$ be a two-sided Poisson process with unit intensity on this space. We denote by $D=\left\{t \in \mathbb{R} \mid N_{t+} \neq N_{t-}\right\}$ the set of jump points, and define the integral with respect to this Poisson process by $\int_{(s, t]} f\left(r, N_{r}\right) d N_{r}=\sum_{\substack{r \in D \\ r \in(s, t]}} f\left(r, N_{r}\right)$
for any predictable function f. In particular, we have for any continuous function g, $\int_{(s, t]} g\left(r, N_{r-}\right) d N_{r}=\sum_{\substack{r \in D \in D \\ s<r \leq t}} g\left(r, N_{r-}\right)$. We write $\int_{s}^{t+} \cdots d N_{r}$ for $\int_{(s, t]} \cdots d N_{r}$. Note that $\int_{s}^{t+} g\left(r, N_{-r}\right) d N_{r}$ is right-continuous in t and the integrand $g\left(r, N_{-r}\right)$ is left-continuous in r and thus a predictable process. Define the random process $\sigma_{t}=\sigma(-1)^{N_{t}}, \quad \sigma \in \mathbb{Z}_{2}$. In the Schrödinger representation the boson Fock space \mathscr{F} can be realized as an L^{2}-space over a probability space (Q, μ), and the field operator $\phi_{\mathrm{b}}(\hat{f})$ with real-valued function $f \in L^{2}\left(\mathbb{R}^{d}\right)$ as a multiplication operator, which we will denote by $\phi(f)$. The identity function $\mathbb{1}$ on Q corresponds to the Fock vacuum Ω_{b} in \mathscr{F}.

Let $\left(Q_{\mathrm{E}}, \mu_{\mathrm{E}}\right)$ be a probability space associated with the Euclidean quantum field. The Hilbert spaces $L^{2}\left(Q_{\mathrm{E}}\right)$ and $L^{2}(Q)$ are related through the family of isometries $\left\{j_{s}\right\}_{s \in \mathbb{R}}$ from $L^{2}\left(\mathbb{R}^{d}\right)$ to $L^{2}\left(\mathbb{R}^{d+1}\right)$ defined by $\widehat{j_{s} f}\left(k, k_{0}\right)=\frac{e^{-i t k_{0}}}{\sqrt{\pi}} \sqrt{\frac{\omega(k)}{\left|k_{0}\right|^{2}+\omega(k)^{2}}} \hat{f}(k)$. Let $\Phi_{\mathrm{E}}\left(j_{s} f\right)$ be a Gaussian random variable on $\left(Q_{\mathrm{E}}, \mu_{\mathrm{E}}\right)$ indexed by $j_{s} f \in L^{2}\left(\mathbb{R}^{d+1}\right)$ with mean zero and covariance $\mathbb{E}_{\mu_{\mathrm{E}}}\left[\Phi_{\mathrm{E}}\left(j_{s} f\right) \Phi_{\mathrm{E}}\left(j_{t} g\right)\right]=\frac{1}{2} \int_{\mathbb{R}^{d}} e^{-|s-t| \omega(k)} \hat{f}(k) \hat{g}(k) d k$. Also, let $\left\{J_{s}\right\}_{s \in \mathbb{R}}$ be the family of isometries from $L^{2}(Q)$ to $L^{2}\left(Q_{\mathrm{E}}\right)$ defined by $J_{s}: \phi\left(f_{1}\right) \cdots \phi\left(f_{n}\right):=: \Phi_{\mathrm{E}}\left(j_{s} f_{1}\right) \cdots \Phi_{\mathrm{E}}\left(j_{s} f_{n}\right):$, where : X : denotes Wick product of X. Then we derive that $\left(J_{s} \Phi, J_{t} \Psi\right)_{L^{2}\left(Q_{\mathrm{E}}\right)}=\left(\Phi, e^{-|t-s| H_{\mathrm{f}}} \Psi\right)_{L^{2}(Q)}$. We identify \mathscr{H} as $\mathscr{H} \cong L^{2}\left(\mathbb{Z}_{2} ; L^{2}(Q)\right) \cong L^{2}\left(\mathbb{Z}_{2} \times Q\right)$.

Proposition 1.1 Let $\Phi, \Psi \in \mathscr{H}$ and $h \in L^{2}\left(\mathbb{R}^{d}\right)$ be real-valued. Then

$$
\begin{array}{ll}
(\varepsilon \neq 0) & \left(\Phi, e^{-t H} \Psi\right)_{\mathscr{H}}=e^{t} \sum_{\sigma \in \mathbb{Z}_{2}} \mathbb{E}_{P} \mathbb{E}_{\mu_{\mathrm{E}}}\left[\overline{J_{0} \Phi\left(\sigma_{0}\right)} e^{-\alpha \Phi_{\mathrm{E}}\left(\int_{0}^{t} \sigma_{s} j_{s} h d s\right)} \varepsilon^{N_{t}} J_{t} \Psi\left(\sigma_{t}\right)\right] \\
(\varepsilon=0) & \left(\Phi, e^{-t H} \Psi\right)_{\mathscr{H}}=e^{t} \sum_{\sigma \in \mathbb{Z}_{2}} \mathbb{E}_{\mu_{\mathrm{E}}}\left[\overline{J_{0} \Phi(\sigma)} e^{-\alpha \Phi_{\mathrm{E}}\left(\sigma \int_{0}^{t} j_{s} h d s\right)} J_{t} \Psi(\sigma)\right] \tag{1.8}
\end{array}
$$

Denote $\mathbb{1}_{\mathscr{H}}=\mathbb{1}_{L^{2}\left(\mathbb{Z}_{2}\right)} \otimes \mathbb{1}_{L^{2}(Q)}$. Using the above proposition we can compute the vacuum expectation of the semigroup $e^{-t H}$.

Corollary 1.2 Let $h \in L^{2}\left(\mathbb{R}^{d}\right)$ be a real-valued function. Then for every $t>0$ it follows that

$$
\begin{equation*}
\left(\mathbb{1}_{\mathscr{H}}, e^{-t H} \mathbb{1}_{\mathscr{H}}\right)=e^{t} \sum_{\sigma \in \mathbb{Z}_{2}} \mathbb{E}_{P}\left[\varepsilon^{N_{t}} e^{\frac{\alpha^{2}}{2}} \int_{0}^{t} d r \int_{0}^{t} W\left(N_{r}-N_{s}, r-s\right) d s\right] \tag{1.9}
\end{equation*}
$$

where the pair interaction potential W is given by

$$
\begin{equation*}
W(x, s)=\frac{(-1)^{x}}{2} \int_{\mathbb{R}^{d}} e^{-|s| \omega(k)}|\hat{h}(k)|^{2} d k \tag{1.10}
\end{equation*}
$$

2 Ground state of the spin-boson

In the remainder of this paper we assume that $h \in L^{2}\left(\mathbb{R}^{d}\right)$ is real-valued. Let $E=$ $\inf \operatorname{Spec}(H)$. Assume that $\varepsilon \neq 0$. Then $e^{-t H}, t>0$, is a positivity improving semigroup on $L^{2}\left(\mathbb{Z}_{2} \times Q\right)$, i.e., $\left(\Psi, e^{-t H} \Phi\right)>0$ for $\Psi, \Phi \geq 0$ such that $\Psi \not \equiv 0 \not \equiv \Phi$. By this we can see that $\operatorname{Ker}(H-E)=1$ for $\varepsilon \neq 0$. We consider the case of $\varepsilon \neq 0$. Write $\Phi_{T}=e^{-T(H-E)} \mathbb{1}$ and

$$
\begin{equation*}
\gamma(T)=\frac{\left(\mathbb{1}_{\mathscr{H}}, \Phi_{T}\right)^{2}}{\left\|\Phi_{T}\right\|^{2}}=\frac{\left(\mathbb{1}_{\mathscr{H}}, e^{T H} \mathbb{1}_{\mathscr{C}}\right)^{2}}{\left(\mathbb{1}_{\mathscr{H}}, e^{-2 T H} \mathbb{1}_{\mathscr{H}}\right)} \tag{2.1}
\end{equation*}
$$

A known criterion of existence of a ground state is [LHB11, Proposition 6.8].
Proposition 2.1 A ground state of H exists if and only if $\lim _{T \rightarrow \infty} \gamma(T)>0$.
By Corollary 1.2 we have

$$
\begin{align*}
\left\|\Phi_{T}\right\|^{2} & =e^{2 T E} \sum_{\sigma \in \mathbb{Z}_{2}} \mathbb{E}_{P}\left[\varepsilon^{N_{T}} e^{\frac{\alpha^{2}}{2}} \int_{-T}^{T} d t \int_{-T}^{T} W\left(N_{t}-N_{s}, t-s\right) d s\right. \tag{2.2}
\end{align*},
$$

Note that $\left|\int_{-T}^{0} d t \int_{0}^{T} W\left(N_{t}-N_{s}, t-s\right) d s\right| \leq \frac{1}{2}\|\hat{h} / \omega\|^{2}$ uniformly in T and in the paths.
Theorem 2.2 If $\hat{h} / \omega \in L^{2}\left(\mathbb{R}^{d}\right)$, then H has a ground state and it is unique.
Proof: We can show that $\lim _{T \rightarrow \infty} \gamma(T)>0$ by using (2.2) and (2.3). Then the theorem follows from Proposition 2.1.

It is a known fact that H_{SB} has a parity symmetry. Let $P=\sigma_{z} \otimes(-1)^{N}$, where $N=d \Gamma(\mathbb{1})$ denotes the number operator in \mathscr{F}. From $\operatorname{Spec}\left(\sigma_{z}\right)=\{-1,1\}$ and $\operatorname{Spec}(N)=\{0,1,2, \ldots\}$ it follows that $\operatorname{Spec}(P)=\{-1,1\}$. Then \mathscr{H} can be decomposed as $\mathscr{H}=\mathscr{H}_{+} \oplus \mathscr{H}_{-}$and H can be reduced by $\mathscr{H}_{ \pm}$.

Corollary 2.3 Let φ_{SB} be the ground state of H_{SB}. Then $\varphi_{\mathrm{SB}} \in \mathscr{H}_{-}$.

3 Path measure associated with the ground state

In this section we set $\varepsilon=1$ for simplicity. Let $\mathscr{X}=D\left(\mathbb{R} ; \mathbb{Z}_{2}\right)$ be the space of càdlàg paths with values in \mathbb{Z}_{2}, and \mathscr{G} the σ-field generated by cylinder sets. Thus $\sigma .:(\Omega, \Sigma, P) \rightarrow(\mathscr{X}, \mathscr{G})$ is an \mathscr{X}-valued random variable. We denote its image measure by \mathcal{W}^{σ}, i.e., $\mathcal{W}^{\sigma}(A)=\sigma^{-1}(A)$ for $A \in \mathscr{G}$, and the coordinate process by $\left(X_{t}\right)_{t \in \mathbb{R}}$, i.e., $X_{t}(\omega)=\omega(t)$ for $\omega \in \mathscr{X}$. Hence Proposition 1.1 can be reformulated in terms of $\left(X_{t}\right)_{t \in \mathbb{R}}$ as

$$
\begin{equation*}
\left(\Phi, e^{-t H} \Psi\right)_{\mathscr{H}}=e^{t} \sum_{\sigma \in \mathbb{Z}_{2}} \mathbb{E}_{\mathcal{W}}^{\sigma} \mathbb{E}_{\mu_{\mathrm{E}}}\left[\overline{J_{0} \Phi\left(X_{0}\right)} e^{-\alpha \Phi_{\mathrm{E}}\left(\int_{0}^{t} X_{s} j_{s} h d s\right)} J_{t} \Psi\left(X_{t}\right)\right] . \tag{3.1}
\end{equation*}
$$

Here $\mathbb{E}_{\mathcal{W}^{\sigma}}=\mathbb{E}_{\mathcal{W}}^{\sigma}$ so that $\mathbb{E}_{\mathcal{W}}^{\sigma}\left[X_{0}=\sigma\right]=1$. Let $\left(\mathbb{Z}_{2}, \mathscr{B}\right)$ be a measurable space with σ field $\mathscr{B}=\left\{\emptyset,\{-1\},\{+1\}, \mathbb{Z}_{2}\right\}$. We see that the operator $Q_{[S, T]}=J_{S}^{*} e^{\Phi_{\mathrm{E}}\left(-\alpha \int_{S}^{T} X_{s} j_{s} h d s\right)} J_{T}$: $L^{2}(Q) \rightarrow L^{2}(Q)$ is bounded.

Corollary 3.1 Let $-\infty<t_{0} \leq \ldots \leq t_{n}<\infty$ and $A_{0}, \ldots, A_{n} \in \mathscr{B}$. Then
(1) $\left(\Phi, \mathbb{1}_{A_{0}} e^{-\left(t_{1}-t_{0}\right) H} \mathbb{1}_{A_{1}} e^{-\left(t_{2}-t_{1}\right) H} \cdots e^{-\left(t_{n}-t_{n-1}\right) H} \mathbb{1}_{A_{n}} \Psi\right)$
$=e^{t_{n}-t_{0}} \sum_{\sigma \in \mathbb{Z}_{2}} \mathbb{E}_{\mathcal{W}}^{\sigma} \mathbb{E}_{\mu_{\mathrm{E}}}\left[\left(\prod_{j=0}^{n} \mathbb{1}_{A_{j}}\left(X_{t_{j}}\right)\right) \overline{\Phi\left(X_{t_{0}}\right)} Q_{\left[t_{0}, t_{n}\right]} \Psi\left(X_{t_{n}}\right)\right]$,
(2) $\left(\mathbb{1}_{A_{0}}, e^{-\left(t_{1}-t_{0}\right) H} \mathbb{1}_{A_{1}} e^{-\left(t_{2}-t_{1}\right) H} \cdots e^{-\left(t_{n}-t_{n-1}\right) H} \mathbb{1}_{A_{n}}\right)$
$=e^{t_{n}-t_{0}} \sum_{\sigma \in \mathbb{Z}_{2}} \mathbb{E}_{\mathcal{W}}^{\sigma}\left[e^{\frac{\alpha^{2}}{2} \int_{t_{0}}^{t_{n}} d t \int_{t_{0}}^{t_{n}} d s W\left(X_{s}, X_{t}, t-s\right)} \prod_{j=0}^{n} \mathbb{1}_{A_{j}}\left(X_{t_{j}}\right)\right]$,
where $W(x, y, t)=\frac{x y}{2} \int_{\mathbb{R}^{d}} e^{-|t| \omega(k)} \hat{h}(k)^{2} d k$.
Now we make the assumption that $\hat{h} / \omega \in L^{2}\left(\mathbb{R}^{d}\right)$, so that there is a unique ground state $\varphi_{\mathrm{g}} \in \mathscr{H}$. Let $\mathscr{G}_{[-T, T]}=\sigma\left(X_{t}, t \in[-T, T]\right)$ be the family of sub- σ-fields of \mathscr{G} and $\mathcal{G}=\bigcup_{T \geq 0} \mathscr{G}_{[-T, T]}$. Let $\overline{\mathcal{G}}=\sigma(\mathcal{G})$. Define the probability measure μ_{T} on $(\mathscr{X}, \overline{\mathcal{G}})$ by

$$
\begin{equation*}
\mu_{T}(A)=\frac{e^{2 T}}{Z_{T}} \sum_{\sigma \in \mathbb{Z}_{2}} \mathbb{E}_{\mathcal{W}}^{\sigma}\left[\mathbb{1}_{A} e^{\frac{\alpha^{2}}{2} \int_{-T}^{T} d t \int_{-T}^{T} d s W\left(X_{t}, X_{s}, t-s\right)}\right], \quad A \in \overline{\mathcal{G}}, \tag{3.2}
\end{equation*}
$$

where Z_{T} is the normalizing constant such that $\mu_{T}(\mathscr{X})=1$. This probability measure is a Gibbs measure for the pair interaction potential W, indexed by the bounded intervals $[-T, T]$. Let μ_{∞} be a probability measure on $(\mathscr{X}, \overline{\mathcal{G}})$. The sequence of probability measures $\left(\mu_{n}\right)_{n}$ is said to converge to the probability measure μ_{∞} in local weak topology whenever $\lim _{n \rightarrow \infty}\left|\mu_{n}(A)-\mu_{\infty}(A)\right|=0$ for all $A \in \mathscr{G}_{[-t, t]}$ and $t \geq 0$. By the definition it is seen that whenever $\mu_{T} \rightarrow \mu_{\infty}$ in local weak sense, we have that $\lim _{T \rightarrow \infty} \mathbb{E}_{\mu_{T}}[f]=\mathbb{E}_{\mu_{\infty}}[f]$ for any bounded $\mathscr{G}_{[-t, t]}$-measurable function f.

We define below a probability measure ρ_{T} on $\left(\mathscr{X}, \mathscr{G}_{[-T, T]}\right)$ and an additive set function μ on $(\mathscr{X}, \mathcal{G})$. The unique extension of μ to a probability measure on $(\mathscr{X}, \overline{\mathcal{G}})$ is denoted by μ_{∞}. We shall prove that $\mu_{T}(A)=\rho_{T}(A)$ for all $A \in \mathscr{G}_{[-t, t]}$ with $t \leq T$, and show that $\rho_{T}(A) \rightarrow \mu(A)$ as $T \rightarrow \infty$, which implies that μ_{T} converges to μ_{∞} in the sense of local weak.

We define the finite dimensional distributions indexed by $\Lambda=\left\{t_{0}, \ldots, t_{n}\right\} \subset[-T, T]$ with $t_{0} \leq \ldots \leq t_{n}$. Let

$$
\begin{equation*}
\mu_{T}^{\Lambda}\left(A_{0} \times \cdots \times A_{n}\right)=\frac{e^{2 T}}{Z_{T}} \sum_{\sigma \in \mathbb{Z}_{2}} \mathbb{E}_{\mathcal{W}}^{\sigma}\left[\left(\prod_{j=0}^{n} \mathbb{1}_{A_{j}}\left(X_{t_{j}}\right)\right) e^{\frac{\alpha^{2}}{2} \int_{-T}^{T} d t \int_{-T}^{T} d s W\left(X_{t}, X_{s}, t-s\right)}\right] \tag{3.3}
\end{equation*}
$$

be a probability measure on $\left(\mathbb{Z}_{2}^{\Lambda}, \mathscr{B}^{\Lambda}\right)$, where $\mathbb{Z}_{2}^{\Lambda}=\times_{j=1}^{n} \mathbb{Z}_{2}^{t_{j}}$ and $\mathscr{B}^{\Lambda}=\times_{j=1}^{n} \mathscr{B}^{t_{j}}$ for $\Lambda=$ $\left\{t_{1}, \ldots, t_{n}\right\}$, and $\mathbb{Z}_{2}^{t_{j}}$ and $\mathscr{B}^{t_{j}}$ are copies of \mathbb{Z}_{2} and \mathscr{B}, respectively. Clearly, \mathcal{G} is a finitely additive family of sets. Define an additive set function on $(\mathscr{X}, \mathcal{G})$ by

$$
\begin{equation*}
\mu(A)=e^{2 E t} e^{2 t} \sum_{\sigma \in \mathbb{Z}_{2}} \mathbb{E}_{\mathcal{W}}^{\sigma}\left[\mathbb{1}_{A}\left(\varphi_{\mathrm{g}}\left(X_{-t}\right), Q_{[-t, t]} \varphi_{\mathrm{g}}\left(X_{t}\right)\right)_{\mathscr{H}}\right], \quad A \in \mathscr{G}_{[-t, t]} \tag{3.4}
\end{equation*}
$$

Note that $\mu(\mathscr{X})=\left(\varphi_{\mathrm{g}}, e^{-2 t(H-E)} \varphi_{\mathrm{g}}\right)=1$. There exists a unique probability measure μ_{∞} on $(\mathscr{X}, \overline{\mathcal{G}})$ such that $\mu_{\infty}\left\lceil\mathcal{G}=\mu\right.$. In particular, $\mu_{\infty}(A)=\mu(A)$, for every $A \in \mathscr{G}_{[-t, t]}$ and $t \in \mathbb{R}$. In order to show that $\mu_{T}(A) \rightarrow \mu_{\infty}(A)$ for every $A \in \mathscr{G}_{[-t, t]}$, we define the probability measure ρ_{T} on $\left(\mathscr{X}, \mathscr{G}_{[-T, T]}\right)$ for $A \in \mathscr{G}_{[-t, t]}$ with $t \leq T$ by

$$
\begin{equation*}
\rho_{T}(A)=e^{2 E t} e^{2 t} \sum_{\sigma \in \mathbb{Z}_{2}} \mathbb{E}_{\mathcal{W}}^{\sigma}\left[\mathbb{1}_{A}\left(\frac{\Phi_{T-t}\left(X_{-t}\right)}{\left\|\Phi_{T}\right\|}, Q_{[-t, t]} \frac{\Phi_{T-t}\left(X_{t}\right)}{\left\|\Phi_{T}\right\|}\right)\right] \tag{3.5}
\end{equation*}
$$

Remark 3.2 Both μ and ρ_{T} are well defined. I.e., for $A \in \mathscr{G}_{[-s, s]} \subset \mathscr{G}_{[-t, t]}$ with $s \leq t \leq T$

$$
\begin{aligned}
\mu(A) & =e^{2 E s} e^{2 s} \sum_{\sigma \in \mathbb{Z}_{2}} \mathbb{E}_{\mathcal{W}}^{\sigma}\left[\mathbb{1}_{A}\left(\varphi_{\mathrm{g}}\left(X_{-s}\right), Q_{[-s, s]} \varphi_{\mathrm{g}}\left(X_{s}\right)\right)\right] \\
& =e^{2 E t} e^{2 t} \sum_{\sigma \in \mathbb{Z}_{2}} \mathbb{E}_{\mathcal{W}}^{\sigma}\left[\mathbb{1}_{A}\left(\varphi_{\mathrm{g}}\left(X_{-t}\right), Q_{[-t, t]} \varphi_{\mathrm{g}}\left(X_{t}\right)\right)\right], \\
\rho_{T}(A) & =e^{2 E s} e^{2 s} \sum_{\sigma \in \mathbb{Z}_{2}} \mathbb{E}_{\mathcal{W}}^{\sigma}\left[\mathbb{1}_{A}\left(\frac{\Phi_{T-s}\left(X_{-s}\right)}{\left\|\Phi_{T}\right\|}, Q_{[-s, s]} \frac{\Phi_{T-s}\left(X_{s}\right)}{\left\|\Phi_{T}\right\|}\right)\right] \\
& =e^{2 E t} e^{2 t} \sum_{\sigma \in \mathbb{Z}_{2}} \mathbb{E}_{\mathcal{W}}^{\sigma}\left[\mathbb{1}_{A}\left(\frac{\Phi_{T-t}\left(X_{-t}\right)}{\left\|\Phi_{T}\right\|}, Q_{[-t, t]} \frac{\Phi_{T-t}\left(X_{t}\right)}{\left\|\Phi_{T}\right\|}\right)\right] .
\end{aligned}
$$

The family of probability measures ρ_{T}^{Λ} on $\left(\mathbb{Z}_{2}^{\Lambda}, \mathscr{B}^{\Lambda}\right)$ indexed by $\Lambda=\left\{t_{0}, \ldots, t_{n}\right\} \subset[-T, T]$ is defined by

$$
\begin{equation*}
\rho_{T}^{\Lambda}\left(A_{0} \times \cdots \times A_{n}\right)=e^{2 E t} e^{2 t} \sum_{\sigma \in \mathbb{Z}_{2}} \mathbb{E}_{\mathcal{W}}^{\sigma}\left[\left(\prod_{j=0}^{n} \mathbb{1}_{A_{j}}\left(X_{t_{j}}\right)\right)\left(\frac{\Phi_{T-t}\left(X_{-t}\right)}{\left\|\Phi_{T}\right\|}, Q_{[-t, t]} \frac{\Phi_{T-t}\left(X_{t}\right)}{\left\|\Phi_{T}\right\|}\right)\right] \tag{3.6}
\end{equation*}
$$

for arbitrary t such that $-T \leq-t \leq \ldots \leq t_{0} \leq \ldots \leq t_{n} \leq t \leq T$. To show that $\mu_{T}=\rho_{T}$, we prove that their finite dimensional distributions coincide.
Lemma 3.3 Let $\Lambda=\left\{t_{0}, t_{1}, \ldots, t_{n}\right\}$ and $A_{0} \times \cdots \times A_{n} \in \mathscr{B}^{\Lambda}$. Then $\mu_{T}^{\Lambda}\left(A_{0} \times \cdots \times A_{n}\right)=$ $\rho_{T}^{\Lambda}\left(A_{0} \times \cdots \times A_{n}\right)$, and $\mu_{T}(A)=\rho_{T}(A)$ follows for $A \in \mathscr{G}_{[-t, t]}$ and $t \leq T$.
Proof: The former statement follows from Corollary 3.1 and the later from Kolmogorov consistency theorm.

Theorem 3.4 Suppose $\hat{h} / \omega \in L^{2}\left(\mathbb{R}^{d}\right)$. Then the probability measure μ_{T} on $(\mathscr{X}, \overline{\mathcal{G}})$ converges in local weak sense to μ_{∞} as $T \rightarrow \infty$.

Proof: Let $A \in \mathscr{G}_{[-T, T]}$. Then $\mu_{T}(A)=\rho_{T}(A)$. Since $\frac{\Phi_{T}}{\left\|\Phi_{T}\right\|} \rightarrow \varphi_{\mathrm{g}}$ as $T \rightarrow \infty$, we can see that $\rho_{T}(A) \rightarrow \mu(A)$ as $T \rightarrow \infty$. Since $\mu(A)=\mu_{\infty}(A)$, the theorem follows.

In the case when $\varepsilon \neq 1$ a parallel discussion to the previous section can be made. We summarize this in the theorem below.
Theorem 3.5 Suppose $\hat{h} / \omega \in L^{2}\left(\mathbb{R}^{d}\right)$. Then the probability measure μ_{T}^{ε} on $(\mathscr{X}, \overline{\mathcal{G}})$ converges in local weak sense to $\mu_{\infty}^{\varepsilon}$ as $T \rightarrow \infty$.
We also write μ_{g} for $\mu_{\infty}^{\varepsilon}$ for notational convenience.

4 Ground state properties

In this section without proofs we show to be able to express ground state expectations of some observables in terms of the limit measure μ_{g} discussed in the previous section.

4.1 Expectations of functions of the form $\xi(\sigma) F(\phi(f))$

Theorem 4.1 Let f be a $\mathscr{G}_{[-\varepsilon t, \varepsilon t]}$-measurable function on \mathscr{X}. Then

$$
\begin{equation*}
\mathbb{E}_{\mu_{\mathrm{g}}}[f]=e^{2 E \varepsilon t} e^{2 \varepsilon t} \sum_{\sigma \in \mathbb{Z}_{2}} \mathbb{E}_{\mathcal{W}}^{\sigma}\left[\left(\varphi_{\mathrm{g}}\left(X_{-\varepsilon t}\right), Q_{[-\varepsilon t, \varepsilon]]}^{(\varepsilon)} \varphi_{\mathrm{g}}\left(X_{\varepsilon t}\right)\right) f\right] . \tag{4.1}
\end{equation*}
$$

An immediate consequence of Theorem 4.1 is the following.
Corollary 4.2 Let $f_{j}: \mathbb{Z}_{2} \rightarrow \mathbb{C}, j=0, \ldots, n$, be bounded functions. Then

$$
\begin{equation*}
\mathbb{E}_{\mu_{\mathrm{g}}}\left[\prod_{j=0}^{n} f_{j}\left(X_{\varepsilon t_{j}}\right)\right]=\left(\varphi_{\mathrm{g}}, f_{0} e^{-\left(t_{1}-t_{0}\right)(H-E)} f_{1} \cdots e^{-\left(t_{n}-t_{n-1}\right)(H-E)} f_{n} \varphi_{\mathrm{g}}\right) \tag{4.2}
\end{equation*}
$$

In particular, we have for all bounded functions ξ, f and g that

$$
\begin{align*}
\mathbb{E}_{\mu_{\mathrm{g}}}\left[\xi\left(X_{0}\right)\right] & =\left(\varphi_{\mathrm{g}}, \xi(\sigma) \varphi_{\mathrm{g}}\right), \tag{4.3}\\
\mathbb{E}_{\mu_{\mathrm{g}}}\left[f\left(X_{t}\right) g\left(X_{s}\right)\right] & =\left(f(\sigma) \varphi_{\mathrm{g}}, e^{-|t-s|(H-E)} g(\sigma) \varphi_{\mathrm{g}}\right) . \tag{4.4}
\end{align*}
$$

Theorem 4.3 Let $\hat{h} / \omega \in L^{2}\left(\mathbb{R}^{d}\right), f \in L^{2}\left(\mathbb{R}^{d}\right)$ be real-valued, $\xi: \mathbb{Z}_{2} \rightarrow \mathbb{C}$ be a bounded function, and $\beta \in \mathbb{R}$. Then

$$
\begin{equation*}
\left(\varphi_{\mathrm{g}}, \xi(\sigma) e^{i \beta \phi(f)} \varphi_{\mathrm{g}}\right)=e^{-\frac{\beta^{2}}{4}\|f\|^{2}} \mathbb{E}_{\mu_{\mathrm{g}}}\left[\xi\left(X_{0}\right) e^{i \beta K(f)}\right], \tag{4.5}
\end{equation*}
$$

where $K(f)$ is a random variable on $(\mathscr{X}, \overline{\mathcal{G}})$ given by $K(f)=\frac{\alpha}{2} \int_{-\infty}^{\infty}\left(e^{-|r| \omega} \hat{h}, \hat{f}\right) X_{\varepsilon r} d r$.
By using Theorem 4.3 the functionals $\left(\varphi_{\mathrm{g}}, \xi(\sigma) F(\phi(f)) \varphi_{\mathrm{g}}\right)$ can be represented in terms of averages with respect to the path measure μ_{g}. Consider the case when F is a polynomial or a Schwartz test function. We will show in Corollary 2.2 below that $\varphi_{\mathrm{g}} \in D\left(e^{+\beta N}\right)$ for all $\beta>0$, thus $\varphi_{\mathrm{g}} \in D\left(\phi(f)^{n}\right)$ for every $n \in \mathbb{N}$.
Corollary 4.4 Let $\hat{h} / \omega \in L^{2}\left(\mathbb{R}^{d}\right), f \in L^{2}\left(\mathbb{R}^{d}\right)$ be real-valued, and $\xi: \mathbb{Z}_{2} \rightarrow \mathbb{C}$ a bounded function. Also, let $h_{n}(x)=(-1)^{n} e^{x^{2} / 2} \frac{d^{n}}{d x^{n}} e^{-x^{2} / 2}$ be the Hermite polynomial of order n. Then

$$
\begin{equation*}
\left(\varphi_{\mathrm{g}}, \xi(\sigma) \phi(f)^{n} \varphi_{\mathrm{g}}\right)=i^{n} \mathbb{E}_{\mu_{\mathrm{g}}}\left[\xi\left(X_{0}\right) h_{n}\left(\frac{-i K(f)}{\|f\| 2^{-1 / 2}}\right)\right]\left(\|f\| 2^{-1 / 2}\right)^{n}, \quad n \in \mathbb{N} . \tag{4.6}
\end{equation*}
$$

In the next corollary we give the path integral representation of $\left(\varphi_{\mathrm{g}}, \xi(\sigma) F(\phi(f)) \varphi_{\mathrm{g}}\right)$ for $F \in \mathscr{S}(\mathbb{R})$, where $\mathscr{S}(\mathbb{R})$ denotes the space of rapidly decreasing, infinitely many times differentiable functions on \mathbb{R}.

Corollary 4.5 Let $\hat{h} / \omega \in L^{2}\left(\mathbb{R}^{d}\right), f \in L^{2}\left(\mathbb{R}^{d}\right)$ be real-valued, $F \in \mathscr{S}(\mathbb{R})$, and $\xi: \mathbb{Z}_{2} \rightarrow \mathbb{C} a$ bounded function. Then $\left(\varphi_{\mathrm{g}}, \xi(\sigma) F(\phi(f)) \varphi_{\mathrm{g}}\right)=\mathbb{E}_{\mu_{\mathrm{g}}}\left[\xi\left(X_{0}\right) G(K(f))\right]$, where $G=\check{F} * \check{g}$ and $g(\beta)=e^{-\beta^{2}\|f\|^{2} / 4}$.

4.2 Exponential moments of the field operator

In this section we show that $\left(\varphi_{\mathrm{g}}, e^{\beta \phi(f)^{2}} \varphi_{\mathrm{g}}\right)<\infty$ for some $\beta>0$.
Theorem 4.6 Let $\hat{h} / \omega \in L^{2}\left(\mathbb{R}^{d}\right)$ and $f \in L^{2}\left(\mathbb{R}^{d}\right)$ be a real-valued function. If $-\infty<\beta<$ $1 /\|f\|^{2}$, then $\varphi_{\mathrm{g}} \in D\left(e^{(\beta / 2) \phi(f)^{2}}\right)$,

$$
\begin{equation*}
\left\|e^{(\beta / 2) \phi(f)^{2}} \varphi_{\mathrm{g}}\right\|^{2}=\frac{1}{\sqrt{1-\beta\|f\|^{2}}} \mathbb{E}_{\mu_{\mathrm{g}}}\left[e^{\frac{\beta K^{2}(f)}{1-\beta\|f\|^{2}}}\right], \tag{4.7}
\end{equation*}
$$

and $\lim _{\beta \uparrow 1 /\|f\|^{2}}\left\|e^{(\beta / 2) \phi(f)^{2}} \varphi_{\mathrm{g}}\right\|=\infty$.
Theorem 4.6 says that $\left\|e^{(\beta / 2) \phi(f)^{2}} \varphi_{\mathrm{g}}\right\|<\infty$. Using this fact we can obtain explicit formulae of the exponential moments $\left(\varphi_{\mathrm{g}}, e^{\beta \phi(f)} \varphi_{\mathrm{g}}\right)$ of the field.
Corollary 4.7 If $\hat{h} / \omega \in L^{2}\left(\mathbb{R}^{d}\right)$ and $f \in L^{2}\left(\mathbb{R}^{d}\right)$ is a real-valued function, then $\varphi_{\mathrm{g}} \in$ $D\left(e^{\beta \phi(f)}\right)$ and

$$
\begin{align*}
& \left(\varphi_{\mathrm{g}}, e^{\beta \phi(f)} \varphi_{\mathrm{g}}\right)=\left(\varphi_{\mathrm{g}}, \cosh (\beta \phi(f)) \varphi_{\mathrm{g}}\right)=e^{\frac{\beta^{2}}{4}\|f\|^{2}} \mathbb{E}_{\mu_{\mathrm{g}}}\left[e^{\beta K(f)}\right] \tag{4.8}\\
& \left(\varphi_{\mathrm{g}}, \sigma e^{\beta \phi(f)} \varphi_{\mathrm{g}}\right)=\left(\varphi_{\mathrm{g}}, \sigma \sinh (\beta \phi(f)) \varphi_{\mathrm{g}}\right)=e^{\frac{\beta^{2}}{4}\|f\|^{2}} \mathbb{E}_{\mu_{\mathrm{g}}}\left[X_{0} e^{\beta K(f)}\right] \tag{4.9}
\end{align*}
$$

4.3 Expectations of second quantized operators

We consider expectations of the form $\left(\varphi_{\mathrm{g}}, e^{-\beta d \Gamma(\rho(-i \nabla))} \varphi_{\mathrm{g}}\right)$, where ρ is a real-valued multiplication operator given by the function ρ. An important example is $\rho=\mathbb{1}$ giving the boson number operator $N=d \Gamma(\mathbb{1})$. We obtain the expression

$$
\begin{equation*}
\frac{\left(\Phi_{T}, \xi(\sigma) e^{-\beta d \Gamma(\rho(-i \nabla))} \Phi_{T}\right)}{\left\|\Phi_{T}\right\|^{2}}=\mathbb{E}_{\mu_{T}^{\varepsilon}}\left[\xi\left(X_{0}\right) e^{-\alpha^{2} \int_{-T}^{0} d t \int_{0}^{T} W^{\rho, \beta}\left(X_{\varepsilon t}, X_{\varepsilon s}, t-s\right) d s}\right] \tag{4.10}
\end{equation*}
$$

where $W^{\rho, \beta}(x, y, T)=\frac{x y}{2} \int_{\mathbb{R}^{d}}|\hat{h}(k)|^{2} e^{-|T| \omega(k)}\left(1-e^{-\beta \rho(k)}\right) d k$. Denote

$$
\begin{equation*}
W_{\infty}^{\rho, \beta}=\int_{-\infty}^{0} d t \int_{0}^{\infty} W^{\rho, \beta}\left(X_{\varepsilon t}, X_{\varepsilon s}, t-s\right) d s \tag{4.11}
\end{equation*}
$$

Notice that $\left|W_{\infty}^{\rho, \beta}\right| \leq\|\hat{h} / \omega\|^{2} / 2<\infty$, uniformly in the paths in \mathscr{X}.
Theorem 4.8 Suppose that $\hat{h} / \omega \in L^{2}\left(\mathbb{R}^{d}\right)$ and $\xi: \mathbb{Z}_{2} \rightarrow \mathbb{C}$ is a bounded function. Then

$$
\begin{equation*}
\left(\varphi_{\mathrm{g}}, \xi(\sigma) e^{-\beta d \Gamma(\rho(-i \nabla))} \varphi_{\mathrm{g}}\right)=\mathbb{E}_{\mu_{\mathrm{g}}}\left[\xi\left(X_{0}\right) e^{-\alpha^{2} W_{\infty}^{\rho, \beta}}\right], \quad \beta>0 \tag{4.12}
\end{equation*}
$$

Corollary 4.9 Suppose that $\hat{h} / \omega \in L^{2}\left(\mathbb{R}^{d}\right)$ and $\xi: \mathbb{Z}_{2} \rightarrow \mathbb{C}$ is a bounded function. Then

$$
\begin{equation*}
\left(\varphi_{\mathrm{g}}, \xi(\sigma) e^{-\beta N} \varphi_{\mathrm{g}}\right)=\mathbb{E}_{\mu_{\mathrm{g}}}\left[\xi\left(X_{0}\right) e^{-\alpha^{2}\left(1-e^{-\beta}\right) W_{\infty}}\right] \tag{4.13}
\end{equation*}
$$

where $W_{\infty}=\int_{-\infty}^{0} d t \int_{0}^{\infty} W\left(X_{\varepsilon t}, X_{\varepsilon s}, t-s\right) d s$. Furthermore $\varphi_{\mathrm{g}} \in D\left(e^{\beta N}\right)$ for all $\beta \in \mathbb{C}$ and

$$
\begin{equation*}
\left(\varphi_{\mathrm{g}}, e^{\beta N} \varphi_{\mathrm{g}}\right)=\mathbb{E}_{\mu_{\mathrm{g}}}\left[e^{-\alpha^{2}\left(1-e^{\beta}\right) W_{\infty}}\right] \tag{4.14}
\end{equation*}
$$

follows.

5 Van Hove representation

The van Hove Hamiltonian is defined by the self-adjoint operator

$$
\begin{equation*}
H_{\mathrm{vH}}(\hat{g})=H_{\mathrm{f}}+\phi_{\mathrm{b}}(\hat{g}) \tag{5.1}
\end{equation*}
$$

in Fock space \mathscr{F}. Suppose that $\hat{g} / \omega \in L^{2}\left(\mathbb{R}^{d}\right)$ and define the conjugate momentum by

$$
\pi_{\mathrm{b}}(\hat{g})=\frac{i}{\sqrt{2}} \int\left(a^{\dagger}(k) \frac{\hat{g}(k)}{\omega(k)}-a(k) \frac{\hat{g}(-k)}{\omega(k)}\right) d k
$$

Then $e^{i \pi_{\mathrm{b}}(\hat{g})} H_{\mathrm{vH}}(\hat{g}) e^{-i \pi_{\mathrm{b}}(\hat{g})}=H_{\mathrm{f}}-\frac{1}{2}\|\hat{g} / \omega\|^{2}$ and the ground state of $H_{\mathrm{vH}}(\hat{g})$ is given by $\varphi_{\mathrm{vH}}(\hat{g})=e^{-i \pi_{\mathrm{b}}(\hat{g})} \Omega_{\mathrm{b}}$. On the other hand, clearly the spin-boson Hamiltonian H with $\varepsilon=0$ is the direct sum of van Hove Hamiltonians since $H=\left[\begin{array}{cc}H_{\mathrm{f}}+\alpha \phi_{\mathrm{b}}(\hat{h}) & 0 \\ 0 & H_{\mathrm{f}}-\alpha \phi_{\mathrm{b}}(\hat{h})\end{array}\right]$ and $H_{\mathrm{f}} \pm \alpha \phi_{\mathrm{b}}(\hat{h})$ are equivalent. Therefore the ground state of H with $\varepsilon=0$ can be realized as $\varphi_{\mathrm{g}}=\left[\begin{array}{c}\varphi_{\mathrm{vH}}(\alpha \hat{h}) \\ \varphi_{\mathrm{vH}}(-\alpha \hat{h})\end{array}\right]$. Thus in this case

$$
\begin{equation*}
\left(\varphi_{\mathrm{g}}, e^{i \beta \phi(f)} \varphi_{\mathrm{g}}\right)_{\mathscr{H}}=\frac{1}{2} \sum_{\sigma= \pm 1}\left(\varphi_{\mathrm{vH}}(\sigma \alpha \hat{h}), e^{i \beta \phi_{\mathrm{b}}(\hat{f})} \varphi_{\mathrm{vH}}(\sigma \alpha \hat{h})\right)_{\mathscr{F}} \tag{5.2}
\end{equation*}
$$

and the right hand side above equals $\left(\Omega_{\mathrm{b}}, e^{i \beta\left(\phi_{\mathrm{b}}(\hat{f})+\alpha(\hat{h} / \omega, \hat{f})\right)} \Omega_{\mathrm{b}}\right)_{\mathscr{F}}=e^{-\beta^{2}\|\hat{f}\|^{2} / 4+i \beta \alpha(\hat{h} / \omega, \hat{f})}$. When $\varepsilon \neq 0$ we can derive similar but non-trivial representations. Define the random boson field operator $\Psi(\hat{f})=\phi_{\mathbf{b}}(\hat{f})+K(f)$ on \mathscr{F}. Let $\chi=\frac{\alpha}{2} \omega(k) \hat{h}(k) \int_{-\infty}^{\infty} e^{-|s| \omega(k)} X_{\varepsilon s} d s$. Note that $\chi \in L^{2}\left(\mathbb{R}^{d}\right), K(f)=(\chi, \hat{f})$, moreover, $\chi / \omega \in L^{2}\left(\mathbb{R}^{d}\right)$, whenever $\hat{h} / \omega \in L^{2}\left(\mathbb{R}^{d}\right)$, and $\chi=\sigma \alpha \hat{h}$ for $\varepsilon=0$. We define the random van Hove Hamiltonian by $H_{\mathrm{vH}}(\chi)$.
Theorem 5.1 If $\hat{h} / \omega \in L^{2}\left(\mathbb{R}^{d}\right)$, then

$$
\begin{equation*}
\left(\varphi_{\mathrm{g}}, e^{i \beta \phi(f)} \varphi_{\mathrm{g}}\right)=\mathbb{E}_{\mu_{\mathrm{g}}}\left[\left(\Omega_{\mathrm{b}}, e^{i \beta \Psi(\hat{f})} \Omega_{\mathrm{b}}\right)\right]=\mathbb{E}_{\mu_{\mathrm{g}}}\left[\left(\varphi_{\mathrm{vH}}(\chi), e^{i \beta \phi_{\mathrm{b}}(\hat{f})} \varphi_{\mathrm{vH}}(\chi)\right)\right] . \tag{5.3}
\end{equation*}
$$

Corollary 5.2 Suppose $\hat{h} / \omega \in L^{2}\left(\mathbb{R}^{d}\right)$ and $F \in \mathscr{S}(\mathbb{R})$. Then we have

$$
\begin{align*}
& \left(\varphi_{\mathrm{g}}, F(\phi(f)) \varphi_{\mathrm{g}}\right)=\mathbb{E}_{\mu_{\mathrm{g}}}\left[\left(\Omega_{\mathrm{b}}, F(\Psi(\hat{f})) \Omega_{\mathrm{b}}\right)\right]=\mathbb{E}_{\mu_{\mathrm{g}}}\left[\left(\varphi_{\mathrm{vH}}(\chi), F(\phi(\hat{f})) \varphi_{\mathrm{vH}}(\chi)\right)\right], \tag{5.4}\\
& \left\|e^{\beta \phi(f)^{2} / 2} \varphi_{\mathrm{g}}\right\|^{2}=\mathbb{E}_{\mu_{\mathrm{g}}}\left[\left\|e^{\beta \Psi(\hat{f})^{2} / 2} \Omega_{\mathrm{b}}\right\|^{2}\right]=\mathbb{E}_{\mu_{\mathrm{g}}}\left[\left\|e^{\beta \phi_{\mathrm{b}}(\hat{f})^{2} / 2} \varphi_{\mathrm{vH}}(\chi)\right\|^{2}\right] . \tag{5.5}
\end{align*}
$$

Acknowledgments: This work was financially supported by Grant-in-Aid for Science Research (B) 20340032 from JSPS.

References

[HHL08] M. Hirokawa, F. Hiroshima and J. Lőrinczi, Spin-boson model through a Poisson-driven stochastic process, preprint 2012.
[LHB11] J. Lőrinczi, F. Hiroshima and V. Betz, Feynman-Kac-Type Theorems and Gibbs Measures on Path Space, de Gruyter Studies in Mathematics 34, 2011.

