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1 Bernstein functions and Lévy subordinators

1.1 Introduction

This is a review article of [Hir09, HIL09, HS09]. It is proven that the Feynman-Kac type

formula is a useful tool to investigate a strongly continuous one parameter semigroup

generated by a self-adjoint elliptic operator. The Schrödinger operator with a vector

potential a = (a1, a2, a3) and spin 1/2 is given as a self-adjoint operator on L2(R3; C2)

and it is defined by

h =
1

2
(σ · (p− a))2 + V, (1.1)

where σ = (σ1, σ2, σ3) denotes 2 × 2 Pauli matrices satisfying σiσj + σjσi = 2δijE

and V : R3 → R is an external potential. The path integral representation of the

semigroup e−th, t ≥ 0, is constructed through a Lévy process on a cádrág path space in

[ALS83, HIL09]. Instead of this in this article we consider a path integral representation

for the relativistic Schrödinger operator

hrel =
√

(σ · (p− a))2 +m2 −m+ V. (1.2)

In terms of h, hrel is given by

hrel =
√

2h+m2 −m+ V.

Here the function f(u) =
√

2u+m2 − m satisfies that (1) f ∈ C∞((0,∞)) and (2)

(−1)n
dnf

dun
≤ 0. In general a real-valued function satisfying (1) and (2) is called a
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Bernstein function. So, in this article we will give a functional integral representation

of general self-adjoint operators of the form

Ψ

(
1

2
(σ · (p− a))2

)
+ V, (1.3)

where Ψ is an arbitrary Bernstein function. Typical examples of Bernstein functions are

Ψ(u) = uα, 0 ≤ α ≤ 1, and Ψ(u) =
√

2u+m2 −m. The cases we consider include not

only the relativistic Schrödinger operator hrel but also fractional Schrödinger operator(
1

2
(σ · (p− a))2

)α
+ V, 0 ≤ α ≤ 1. (1.4)

By using a subordinator we will give the Feynman-Kac type formula of the semigroup

e−t(Ψ( 1
2

(σ·(p−a))2)+V ), t ≥ 0, (1.5)

for an arbitrary Bernstein function Ψ.

The path integral representation (1.5) can be also applied to study the spectral

properties of models in quantum field theory. In particular it can be applied to study

the Nelson model with a relativistic kinematic term and a relativistic Pauli-Fierz model.

The Nelson model: The Nelson model describes a linear interaction between quan-

tum particles and a scalar field. Let F = ⊕∞n=0L
2
sym(R3N), and a†(k) and a(k) de-

note the creation operator and the annihilation operator, respectively, which satisfy

[a(k), a†(k′)] = δ(k − k′). The Hamiltonian of the Nelson model with kinetic term

Ψ(p2/2) is defined as a self-adjoint operator on

L2(R3)⊗F (∼=
∫ ⊕

R3

Fdx)

by

HN =
(
Ψ(p2/2) + V

)
⊗ 1 + 1⊗Hf + αφϕ̂. (1.6)

Here

Hf =

∫
|k|a†(k)a(k)dk

is the free Hamiltonian on F and φϕ̂ denotes a scalar field smeared by a cutoff function

ϕ̂ given by

φϕ̂ =

∫ ⊕
R3

φϕ̂(x)dx,
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where

φϕ̂(x) =
1√
2

∫ (
a†(k)

e−ikxϕ̂(k)√
|k|

+ a(k)
e+ikxϕ̂(−k)√

|k|

)
dk.

Relativistic Pauli-Fierz model: Next let us introduce a relativistic Pauli-Fierz model.

Let FPF = ⊕∞n=0L
2
sym(R3n×{−1, 1}), and a†(k, j) and a(k, j), j = 1, 2, are the creation

operator and the annihilation operator, respectively, which satisfy [a(k, j), a†(k′, j′)] =

δjj′δ(k − k′). Relativistic Pauli-Fierz model describes a minimal coupling between

quantum particles and a quantized radiation field. The Hamiltonian of the relativistic

Pauli-Fierz model is defined as a self-adjoint operator on

L2(R3)⊗FPF (∼=
∫ ⊕

R3

FPFdx)

by

HPF =
√

(p⊗ 1− αAϕ̂)2 +m2 −m+ V ⊗ 1 + 1⊗HPF
f . (1.7)

Here

HPF
f =

∑
j=1,2

∫
|k|a†(k, j)a(k, j)dk

is the free Hamiltonian on FPF and Aϕ̂ is a quantized radiation field smeared ϕ̂ given

by

Aϕ̂ =

∫ ⊕
R3

Aϕ̂(x)dx,

where

Aϕ̂(x) =
1√
2

∑
j=1,2

∫
e(k, j)

(
a†(k, j)

e−ikxϕ̂(k)√
|k|

+ a(k, j)
e+ikxϕ̂(−k)√

|k|

)
dk.

e(k, j) denotes polarization vectors such that k · e(k, j) = 0, e(k, 1) · e(k, 2) = 0,

e(k, 1)×e(k, 2) = k/|k| and |e(k, j)| = 1. The Hamiltonian (1.7) can be mathematically

generalized as

Ψ

(
1

2
(p⊗ 1− Aϕ̂)2

)
+ V ⊗ 1 + 1⊗HPF

f (1.8)

by a Bernstein function Ψ.

It is a crucial issue to study the spectrum of H∗ = HN , HPF, since all the eigenvalue

of these Hamiltonian with α = 0 are embedded in the continuum. Thus in order to see

the spectral properties of H∗ but α 6= 0 the regular perturbation theory [Kat76] can

not be applied directly. One advantage to use a path integral representation of e−tH∗

is to be non-perturbative. We discuss quantum field models in [HS09] and [Hir09].
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1.2 Bernstein function and subordinators

Definition 1.1 (Bernstein function) Let

B =

{
f ∈ C∞((0,∞))

∣∣∣∣ f(x) ≥ 0 and (−1)n
(
dnf

dxn

)
(x) ≤ 0 for all n = 1, 2, ...,

}
.

An element of B is called a Bernstein function. We also define the subclass

B0 =

{
f ∈ B

∣∣∣∣ lim
u→0+

f(u) = 0

}
.

Bernstein functions are positive, increasing and concave. Examples of functions in B0

include Ψ(u) = cuα, c ≥ 0, α ∈ (0, 1], and Ψ(u) = 1− e−au, a ≥ 0.

Definition 1.2 Let L be the set of Borel measures λ on R \ {0} such that

(1) λ((−∞, 0)) = 0, (2)

∫
R\{0}

(y ∧ 1)λ(dy) <∞.

Note that each λ ∈ L satisfies that
∫

R\{0}(y
2∧1)λ(dy) <∞ so that λ is a Lévy measure.

Denote R+ = [0,∞). We give the integral representation of Bernstein functions with

vanishing right limits at the origin. It is well known that for each Bernstein function

Ψ ∈ B0 there exists (b, λ) ∈ R+ ×L such that

Ψ(u) = bu+

∫ ∞
0

(1− e−uy)λ(dy). (1.9)

Conversely, the right hand side of (1.9) is in B0 for each pair (b, λ) ∈ R+ ×L . Thus

the map B0 → R+ ×L , Ψ 7→ (b, λ) is a one-to-one correspondence.

Next we consider a probability space (Ων ,Fν , ν) given, with Ων ⊂ R, and the

following special class of Lévy processes.

Definition 1.3 (Lévy subordinator) A random process (Tt)t≥0 on (Ων ,Fν , ν) is

called a (Lévy) subordinator whenever

(1) (Tt)t≥0 is a Lévy process starting at 0, i.e., ν(T0 = 0) = 1;

(2) Tt is almost surely non-decreasing in t.
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Subordinators have thus independent and stationary increments, almost surely no neg-

ative jumps, and are of bounded variation. These properties also imply that they are

Markov processes. Let S denote the set of subordinators on (Ων ,Fν , ν). In what fol-

lows we denote expectation by Ex
m[· · · ] =

∫
· · · dmx with respect to the path measure

mx of a process starting at x.

Proposition 1.4 Let Ψ ∈ B0 or, equivalently, a pair (b, λ) ∈ R+×L be given. Then

there exists a unique (Tt)t≥0 ∈ S such that

E0
ν [e
−uTt ] = e−tΨ(u). (1.10)

Conversely, let (Tt)t≥0 ∈ S . Then there exists Ψ ∈ B0, i.e., a pair (b, λ) ∈ R+ ×L

such that (1.10) is satisfied.

In particular, (1.9) coincides with the Lévy-Khintchine formula for Laplace exponents

of subordinators.

By the above there is a one-to-one correspondence between B0 and S , or equiva-

lently, between B0 and R+ ×L . For clarity, we will use the notation TΨ
t for the Lévy

subordinator associated with Ψ ∈ B0.

Example 1.5 (First hitting time) Since Ψ(u) =
√

2u+m2 −m ∈ B0 for m ≥ 0,

there exists TΨ
t ∈ S such that

E0
ν [e
−uTΨ

t ] = exp
(
−t(
√

2u+m2 −m)
)
.

This case is thus related with the one-dimensional 1/2-stable process and it is known

that the corresponding subordinator TΨ
t can be represented as the first hitting time

process TΨ
t = inf{s > 0 |Bs +ms = t} for one-dimensional Brownian motion (Bt)t≥0.

2 Path integrals

2.1 Generalized Schrödinger operators with no spin

Throughout we consider spinless Schrödinger operators for simplicity and we will use

the following conditions on the vector potential.

Assumption 2.1 The vector potential a = (a1, ..., ad) is a vector-valued functions

whose components aµ, µ = 1, ..., d, are real-valued functions. Furthermore, we consider

the following regularity conditions:
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(A1) a ∈ (L2
loc(R3))3.

(A2) a ∈ (L2
loc(R3))3 and ∇ · a ∈ L1

loc(R3).

(A3) a ∈ (L4
loc(R3))3 and ∇ · a ∈ L2

loc(R3).

Let ∂xµ : D ′(R3)→ D ′(R3), µ = 1, ..., d, denote the µth derivative on the Schwartz

distribution space D ′(R3). Let p = −i∇ and Dµ = pµ − aµ, µ = 1, ..., d. Define the

quadratic form

q(f, g) =
3∑

µ=1

(Dµf,Dµg) (2.1)

with domain Q(q) = {f ∈ L2(R3) |Dµf ∈ L2(R3), µ = 1, ..., d}. It can be seen that

Q(q) is complete with respect to the norm ‖f‖q =
√
q(f, f) + ‖f‖2 under Assumption

(A1). By this q is a non-negative closed form and thus there exists a unique self-

adjoint operator h satisfying (hf, g) = q(f, g) for f ∈ D(h) and g ∈ Q(q) with domain

D(h) =
{
f ∈ Q(q) | q(f, ·) ∈ L2(R3)

′}
. The self-adjoint operator h is our main object

in this section. We summarize some facts about the form core and operator core of h

[Sim79, LS81].

Proposition 2.2 (1) Let Assumption (A1) hold. Then C∞0 (R3) is a form core of h.

(2) Let Assumption (A3) hold. Then C∞0 (R3) is an operator core for h.

Note that in case (2) of Proposition 2.2,

hf =
1

2
p2f − a · pf +

(
−1

2
a · a− (p · a)

)
f.

Let Ψ ∈ B0 and take Assumption (A1). Whenever V is bounded we call

HΨ = Ψ(h) + V (2.2)

generalized Schrödinger operator with vector potential a. Note that Ψ ≥ 0 and Ψ(h) is

defined through the spectral projection of the self-adjoint operator h.

Theorem 2.3 Take Ψ ∈ B0.

(1) Let Assumption (A3) hold. Then C∞0 (R3) is an operator core of Ψ(h).

(2) Let Assumption (A1) hold. Then C∞0 (R3) is a form core of Ψ(h).
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2.2 Singular magnetic fields

Before constructing a functional integral representation of e−th, we extend stochastic

integration to a class including L2
loc(R3) functions since the vector potentials we consider

may be more singular.

Let (Bt)t≥0 denote d-dimensional Brownian motion starting at x ∈ R3 on standard

Wiener space (ΩP ,FP , dP
x). Let f be a C3-valued Borel measurable function on R3

such that

Ex
P

[∫ t

0

|f(Bs)|2ds
]
<∞. (2.3)

Then the stochastic integral
∫ t

0
f(Bs) · dBs is defined as a martingale and the Itô

isometry

Ex
P

[∣∣∣∣∫ t

0

f(Bs) · dBs

∣∣∣∣2
]

= Ex
P

[∫ t

0

|f(Bs)|2ds
]

holds. However, vector potentials a under Assumption 2.1 do not necessarily satisfy

(2.3). As we show next, a stochastic integral can indeed be defined for a wider class

of functions than (2.3), and then
∫ t

0
f(Bs) · dBs will be defined as a local martingale

instead of a martingale. This extension will allow us to derive a functional integral

representation of e−th with a ∈ (L2
loc(R3))

3
.

Consider the following class of vector valued functions on R3.

Definition 2.4 We say that f = (f1, ..., fd) ∈ Eloc if and only if for all t ≥ 0

P x

(∫ t

0

|f(Bs)|2ds <∞
)

= 1. (2.4)

Let Rn(ω) = n ∧ inf
{
t ≥ 0

∣∣∣∫ t0 |f(Bs(ω))|2ds ≥ n
}

be a sequence of stopping times

with respect to the natural filtration F P
t = σ(Bs, 0 ≤ s ≤ t). Define

fn(s, ω) = f(Bs(ω))1{Rn(ω)>s}. (2.5)

Each of these functions satisfies
∫∞

0
|fn(s, ω)|2ds =

∫ Rn
0
|fn(s, ω)|2ds ≤ n. In particular,

we have Ex
P

[∫ t
0
|fn|2ds

]
<∞ and thus

∫ t
0
fn · dBs is well defined. Moreover, it can be

seen that ∫ t∧Rm

0

fn(s, ω) · dBs =

∫ t

0

fm(s, ω) · dBs (2.6)

for m < n.



8

Definition 2.5 Let f ∈ Eloc. We define the integral∫ t

0

f(Bs) · dBs :=

∫ t

0

fn(s, ω) · dBs, 0 ≤ t ≤ Rn. (2.7)

This definition is consistent with (2.6).

Eloc has properties below:

(1) Let f ∈ Eloc. Suppose that a sequence of step functions fn, n = 1, 2, ..., satisfies∫ t
0
|fn(Bs)− f(Bs)|2ds→ 0 in probability as n→∞. Then

lim
n→∞

∫ t

0

fn(Bs) · dBs =

∫ t

0

f(Bs) · dBs in probability.

(2) (L2
loc(R3))3 ⊂ Eloc.

(3) Let a ∈ (L2
loc(R3))

3
and ∇ · a ∈ L1

loc(R3). Then∣∣∣∣∫ t

0

a(Bs) · dBs +
1

2

∫ t

0

∇ · a(Bs)ds

∣∣∣∣ <∞ almost surely.

For a ∈ (L2
loc(R3))3 such that ∇ · a ∈ L1

loc(R3), we denote∫ t

0

a(Bs) ◦ dBs =

∫ t

0

a(Bs) · dBs +
1

2

∫ t

0

∇ · a(Bs)ds.

Proposition 2.6 Under Assumption (A2) we have

(f, e−thg) =

∫
R3

dxEx
P

[
f(B0)g(Bt)e

−i
∫ t
0 a(Bs)◦dBs

]
. (2.8)

Proof. See [Sim04, Theorem 15.5] and [HIL09]. qed

2.3 Path integral representation

Now we turn to constructing a functional integral representation for generalized Schrö-

dinger operators including a vector potential term defined by (2.2).

A key element in our construction of a Feynman-Kac-type formula for e−tH
Ψ

is to

make use of a Lévy subordinator.

Theorem 2.7 Let Ψ ∈ B0 and V ∈ L∞(R3). Under Assumption (A2) we have

(f, e−tH
Ψ

g) =

∫
R3

dxEx,0
P×ν

[
f(B0)g(BTΨ

t
)e−i

∫ TΨ
t

0 a(Bs)◦dBse
−
∫ t
0 V (B

TΨ
s

)ds

]
. (2.9)
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Proof. We divide the proof into four steps. To simplify the notation, in this proof

we drop the superscript Ψ of the subordinator.

(Step 1) Suppose V = 0. Then we claim that

(f, e−tΨ(h)g) =

∫
R3

dxEx,0
P×ν

[
f(B0)g(BTt)e

−i
∫ Tt
0 a(Bs)◦dBs

]
. (2.10)

To prove (2.10) let Eh denote the spectral projection of the self-adjoint operator h.

Then

(f, e−tΨ(h)g) =

∫
Spec(h)

e−tΨ(u)d(f, Eh
ug). (2.11)

By inserting identity (1.10) in (2.11) we obtain

(f, e−tΨ(h)g) =

∫
Spec(h)

E0
ν [e
−Ttu]d(f, Eh

ug) = E0
ν

[
(f, e−Tthg)

]
.

Then by the Feynman-Kac-Itô formula for e−th we have

(f, e−tΨ(h)g) = E0
ν

[∫
R3

dxEx
P

[
f(B0)g(BTt)e

−i
∫ Tt
0 a(Bs)◦dBs

]]
,

thus (2.10) follows.

(Step 2) Let 0 = t0 < t1 < · · · < tn, f0, fn ∈ L2(R3) and assume that fj ∈ L∞(R3) for

j = 1, ..., n− 1. We claim that(
f0,

n∏
j=1

e−(tj−tj−1)Ψ(h)fj

)
=

∫
R3

dxEx,0
P×ν

[
f(B0)

(
n∏
j=1

fj(BTtj
)

)
e−i

∫ Tt
0 a(Bs)◦dBs

]
.

(2.12)

For easing the notation write Gj = fj
∏n

i=j+1 e
−(ti−ti−1)Ψ(h)fi(BTti

). By (Step 1) the

left hand side of (2.12) can be represented as∫
R3

dxEx,0
P×ν

[
f(B0)e−i

∫ Tt1−t0
0 a(Bs)◦dBsG1(BTt1−t0

)

]
.

Let F P
t = σ(Bs, 0 ≤ s ≤ t) and F ν

t = σ(Ts, 0 ≤ s ≤ t) be the natural filtrations. An

application of the Markov property of Bt yields(
f0,

n∏
j=1

e−(tj−tj−1)Ψ(h)fj

)

=

∫
R3

dxEx,0
P×ν

[
f(B0)e−i

∫ Tt1
0 a(Bs)◦dBsE0

νE
BTt1
P

[
f1(B0)e−i

∫ Tt2−t1
0 a(Bs)◦dBsG2(BTt2−t1

)

]]
=

∫
R3

dxEx,0
P×ν

[
f(B0)e−i

∫ Tt1
0 a(Bs)◦dBs

E0
ν

[
E0
P

[
f1(BTt1

)e
−i
∫ Tt2−t1+Tt1
Tt1

a(Bs)◦dBs
G2(BTt1+Tt2−t1

)

∣∣∣∣F P
Tt1

]]]
.
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Hence we obtain(
f0,

n∏
j=1

e−(tj−tj−1)Ψ(h)fj

)

=

∫
R3

dxEx,0
P×ν

[
f(B0)e−i

∫ Tt1
0 a(Bs)◦dBsE0

ν

[
f1(BTt1

)e
−i
∫ Tt2−t1+Tt1
Tt1

a(Bs)◦dBs
G2(BTt1+Tt2−t1

)

]]
.

The right hand side above can be rewritten as∫
R3

dxEx,0
P×ν

[
f(B0)e−i

∫ Tt1
0 a(Bs)◦dBsf1(BTt1

)ETt1
ν

[
e−i

∫ Tt2−t1
0 a(Bs)◦dBsG2(BTt2−t1

)

]]
.

Using now the Markov property of Tt we see that(
f0,

n∏
j=1

e−(tj−tj−1)Ψ(h)fj

)

=

∫
R3

dxEx,0
P×ν

[
f(B0)e−i

∫ Tt1
0 a(Bs)◦dBsf1(BTt1

)E0
ν

[
e
−i
∫ Tt2
Tt1

a(Bs)◦dBs
G2(BTt2

)

∣∣∣∣F ν
t1

]]
=

∫
R3

dxEx,0
P×ν

[
f(B0)e−i

∫ Tt1
0 a(Bs)◦dBsf1(BTt1

)e
−i
∫ Tt2
Tt1

a(Bs)◦dBs
G2(BTt2

)

]
.

By the above procedure we obtain (2.12).

(Step 3) Suppose now that 0 6= V ∈ L∞ and it is continuous; we prove (2.9) for such

V . Since HΨ is self-adjoint on D(Ψ(h)) ∩D(V ) the Trotter product formula holds:

(f, e−tH
Ψ

g) = lim
n→∞

(f, (e−(t/n)Ψ(h)e−(t/n)V )ng).

(Step 2) yields

(f, e−tH
Ψ

g) = lim
n→∞

∫
R3

dxEx,0
P×ν

[
f(B0)g(BTt)e

−i
∫ Tt
0 a(Bs)◦dBse

−
∑n
j=1(t/n)V (BTtj/n )

]
= r.h.s. (2.12)

Here we used that since s 7→ BTs(τ)(ω) has càdlàg paths, V (BTs(τ)(ω)) is continuous in

s ∈ [0, t] for each (ω, τ) except for at most finite points. Therefore
∑n

j=1
t
n
V (BTtj/n)→∫ t

0
V (BTs)ds as n→∞ for each path and exists as a Riemann integral.

(Step 4) Suppose that V ∈ L∞ and Vn = φ(x/n)(V ∗ jn), where jn = n3φ(xn) with

φ ∈ C∞0 (R3) such that 0 ≤ φ ≤ 1,
∫
φ(x)dx = 1 and φ(0) = 1. Then Vn(x) → V (x)

almost everywhere. Vn is bounded and continuous, moreover Vn(x)→ V (x) as n→∞
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for x 6∈ N , where the Lebesgue measure of N is zero. Thus for almost every (ω, τ) ∈
ΩP × ΩN , the measure of {t ∈ [0,∞) |BTt(τ)(ω) ∈ N } is zero. Hence∫

R3

dxEx,0
P×ν

[
f(B0)g(BTt)e

−i
∫ Tt
0 a(Bs)◦dBse−

∫ t
0 Vn(BTs )ds

]
→
∫

R3

dxEx,0
P×ν

[
f(B0)g(BTt)e

−i
∫ Tt
0 a(Bs)◦dBse−

∫ t
0 V (BTs )ds

]
as n → ∞. On the other hand, e−t(Ψ(h)+Vn) → e−t(Ψ(h)+V ) strongly as n → ∞, since

Ψ(h) + Vn converges to Ψ(h) + V on the common domain D(Ψ(h)). Thus the theorem

follows. qed

Corollary 2.8 (Diamagnetic inequality) Let Ψ ∈ B0, V ∈ L∞(R3), and Assump-

tion (A2) hold. Then

|(f, e−tHΨ

g)| ≤ (|f |, e−t(Ψ(p2/2)+V )|g|) (2.13)

and

Eb

[
Ψ(p2/2) + V

]
≤ Eb

[
HΨ
]

(2.14)

Proof. By Theorem 2.7 we have

|(f, e−tHΨ

g)| ≤
∫

R3

dxEx,0
P×ν

[
|f(B0)||g(BTΨ

t
)|e−

∫ t
0 V (B

TΨ
s

)ds
]
.

The right hand side above coincides with that of (2.13), and (2.14) follows directly

from (2.13). qed

2.4 Singular external potentials

By making use of the functional integral representation obtained in the previous sub-

section we can now also consider more singular external potentials.

Theorem 2.9 Let Assumption (A2) hold.

(1) Suppose |V | is relatively form bounded with respect to Ψ(p2/2) with relative bound

b. Then |V | is also relatively form bounded with respect to Ψ(h) with a relative

bound not larger than b.
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(2) Suppose |V | is relatively bounded with respect to Ψ(p2/2) with relative bound b.

Then |V | is also relatively bounded with respect to Ψ(h) with a relative bound not

larger than b.

Proof. Note that (Ψ(h) + E)−(n+1) =

∫ ∞
0

tn

n!
e−t(Ψ(h)+E)dt, E > 0. By virtue of

Corollary 2.8 we have

‖|V |1/2(Ψ(h) + E)−1/2f‖
‖f‖

≤ ‖|V |
1/2(Ψ(p2/2) + E)−1/2f‖

‖f‖
(2.15)

and
‖|V |(Ψ(h) + E)−1f‖

‖f‖
≤ ‖|V |(Ψ(p2/2) + E)−1f‖

‖f‖
. (2.16)

On taking the limit E → ∞, the right hand sides of (2.15) and (2.16) converge to b;

compare [HS95, Lemma 13.6], [Sim04, AHS78]. Hence (1) follows by (2.15) and (2) by

(2.16). qed

Corollary 2.10 (1) Take Assumption (A2) and let V be relatively bounded with respect

to Ψ(p2/2) with relative bound strictly smaller than one. Then Ψ(h) +V is self-adjoint

on D(Ψ(h)) and bounded from below. Moreover, it is essentially self-adjoint on any

core of Ψ(h). (2) Suppose furthermore (A3). Then C∞0 (R3) is an operator core of

Ψ(h) + V .

Proof. (1) By (2) of Theorem 2.9, V is relatively bounded with respect to Ψ(h)

with a relative bound strictly smaller than one. Then the corollary follows by the

Kato-Rellich theorem. (2) follows from Theorem 2.3. qed

Theorem 2.9 also allows Ψ(h) + V to be defined in form sense. Let V = V+ − V−
where V+ = max{V, 0} and V− = min{−V, 0}. Theorem 2.9 implies that whenever

V− is form bounded to Ψ(p2/2) with a relative bound strictly smaller than one, it is

also form bounded with respect to Ψ(h) with a relative bound strictly smaller than

one. Moreover assume that V+ ∈ L1
loc(R3). We see that given Assumption (A1),

Q(Ψ(h)) ∩ Q(V+) ⊃ C∞0 (R3) by Corollary 2.10. In particular, Q(Ψ(h)) ∩ Q(V+) is

dense. Define the quadratic form

q(f, f) := (Ψ(h)1/2f,Ψ(h)1/2f) + (V
1/2

+ f, V
1/2

+ f)− (V
1/2
− f, V

1/2
− f) (2.17)

on Q(Ψ(h))∩Q(V+). By the KLMN Theorem [RS78] q is a semibounded closed form.
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Definition 2.11 (Generalized Schrödinger operator with singular V ) Let As-

sumption (A1) hold and V = V+ − V− be such that V+ ∈ L1
loc(R3) and V− is form

bounded with respect to Ψ(1
2
p2) with a relative bound strictly smaller than one. We

denote the self-adjoint operator associated with (2.17) by Ψ(h) +̇ V+ −̇ V− (this is

called the quadratic form sum).

Now we are in a position to extend Theorem 2.7 to potentials expressed as form

sums.

Theorem 2.12 Take Assumption (A2). Let V = V+ − V− be such that V+ ∈ L1
loc(R3)

and V− is infinitesimally small with respect to Ψ(1
2
p2) in form sense. Then the func-

tional integral representation given by Theorem 2.7 also holds for Ψ(h) +̇ V+ −̇ V−.

Proof. See [HIL09].

3 Ψ-Kato class potentials and hypercontarctivity

In this section we give a meaning to Kato class for potentials V relative to Ψ and

extend generalized Schrödinger operators with vector potential to such V . Recall that

for given Ψ ∈ B0, the random process

Xt : ΩP × Ων 3 (ω, τ) 7→ BTΨ
t (τ)(ω) (3.1)

is called subordinated Brownian motion with respect to the subordinator (TΨ
t )t≥0. It

is a Lévy process whose properties are determined by the pair (b, λ) in (1.9). Its

characteristic function is E0,0
P×ν [e

iuXt ] = e−tΨ(u2/2).

Assumption 3.1 Let Ψ ∈ B0 be such that
∫∞

0
e−tΨ(u2/2)du <∞, for all t > 0.

Under Assumption 3.1 we define

pt(x) =
1

(2π)3

∫
R3

e−ixue−tΨ(u2/2)du (3.2)

and

Πλ(x) =

∫ ∞
0

e−λtpt(x)dt.

Let ‖f‖l1(L∞) =
∑

α∈Z3 supx∈Cα |f(x)|, where Cα denotes the unit cube centred at

α ∈ Z3.
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Assumption 3.2 Let pt be such that supt>0 ‖1{|x|>δ}pt‖l1(L∞) <∞.

Note that Assumption 3.2 is satisfied if pt is spherically symmetric and radially non-

increasing. The next proposition allows an extension of Ψ(p2/2) to Kato class .

Proposition 3.3 Let V ≥ 0. Under Assumptions 3.1 and 3.2 the following three

properties are equivalent:

(1) lim
t↓0

sup
x∈R3

∫ t

0

Ex,0
P×ν [V (Xs)]ds = 0,

(2) lim
λ→∞

sup
x∈R3

(
(Ψ(p2/2) + λ)−1V

)
(x) = 0,

(3) lim
δ↓0

sup
x∈R3

∫
|x−y|<δ

Π1(x− y)V (y)dy = 0.

Proof. Similar to Theorem III.1 in [CMS90]. qed

Definition 3.4 (Ψ-Kato class) Take Assumptions 3.1 and 3.2. Write V = V+ − V−
in terms of its positive and negative parts. The Ψ-Kato class is defined as the set of

potentials V for which V− and 1CV+ with every compact subset C ⊂ R3 satisfy any

of the three equivalent conditions in Proposition 3.3. Here 1C denotes the indicator

function on C.

By (3) of Proposition 3.3 we can derive explicit conditions defining Ψ-Kato class

using the relation of the Lévy measure of the subordinator with the associated Bernstein

function. Since Ψ(u2/2) is spherical symmetric, we compute

Πλ(x) = (2π)−d/2
1

|x|(d−1)/2

∫ ∞
0

r(d−1)/2

λ+ Ψ(r2/2)

√
r|x|J(d−2)/2(r|x|)dr,

with the Bessel function

Jν(x) =
(x

2

)ν ∞∑
n=0

(−1)n

n!Γ(n+ ν + 1)

(x
2

)2n

.

Furthermore, it holds that supu≥0

√
uJν(u) <∞.

Example 3.5 In the case d = 3, since J1/2(x) = (2/π)1/2x−1/2 sinx, we have

Πλ(x) =
1

2π2|x|

∫ ∞
0

r sin r

|x|2
(
λ+ Ψ

(
r2

2|x|2

))dr.
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Lemma 3.6 Let V ≥ 0 and Ψ ∈ B0. Suppose that V satisfies (1) of Proposition 3.3.

Then supx∈R3 Ex,0
P×ν

[
e
∫ t
0 V (Xs)ds

]
<∞ for t ≥ 0.

The next result says that we can define a Feynman-Kac semigroup for Ψ-Kato class

potentials.

Theorem 3.7 Let Ψ ∈ B0, V belong to Ψ-Kato class and let Assumption (A2) hold.

Consider

Utf(x) = Ex,0
P×ν

[
e−i

∫ TΨ
t

0 a(Bs)◦dBse
−
∫ t
0 V (B

TΨ
s

)ds
f(BTt)

]
.

Then Ut is a strongly continuous symmetric semigroup. In particular, there exists a

self-adjoint operator KΨ bounded from below such that Ut = e−tK
Ψ

.

Proof. Let V = V+ − V−. Hence by Lemma 3.6 we have

‖Utf‖2 ≤ Ct‖e−tΨ(p2/2)f‖2 ≤ Ct‖f‖2,

where Ct = supx∈R3 Ex,0
P×ν [e

2
∫ t
0 V−(Xs)ds]. Thus Ut is a bounded operator from L2(R3) to

L2(R3). In the same fashion as in Step 2 of the proof of Theorem 2.7 we conclude that

the semigroup property UtUs = Ut+s holds for t, s ≥ 0. We check strong continuity of

Ut in t; it suffices to show weak continuity. Let f, g ∈ C∞0 (R3). Then we have

(f,Utg) =

∫
R3

dxEx,0
P×ν

[
f(B0)g(BTt)e

−i
∫ Tt
0 a(Bs)◦dBse−

∫ t
0 V (BTs )ds

]
.

Since Tt(τ) → 0 as t → 0 for each τ ∈ Ων , the dominated convergence theorem gives

(f,Utg)→ (f, g).

Finally we check the symmetry property U∗t = Ut. By a limiting argument it is

enough to show this for a ∈ (C2
b(R3))3. Let B̃s = B̃s(ω, τ) = BTt(τ)−s(ω) − BTt(τ)(ω).

Then for each τ ∈ Ων , B̃s
d
= Bs with respect to dP x. (Here Z

d
= Y denotes that Z and

Y are identically distributed.) Thus we have

(f,Utg) = E0,0
P×ν

[∫
R3

dxf(x)e−i
∫ Tt
0 a(x+B̃s)◦dB̃se−

∫ t
0 V (x+B̃Ts )g(x+ B̃Tt)

]
= E0,0

P×ν

[∫
R3

dxf(x− B̃Tt)e
−i
∫ Tt
0 a(x+B̃s−B̃Tt )◦dB̃se−

∫ t
0 V (x+B̃Ts−B̃Tt )dsg(x)

]
.
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In the second equality we changed the variable x to x−B̃Tt . Recall that a ∈ (C2
b(R3))3.

Then in L2(ΩP , dP
0) we have that∫ Tt

0

a(B̃s − B̃Tt) ◦ dB̃s

= lim
n→∞

n∑
j=1

1

2

(
a(B̃Ttj/n − B̃Tt) + a(B̃Tt(j−1)/n − B̃Tt)

)(
B̃Ttj/n − B̃Tt(j−1)/n

)
= lim

n→∞

n∑
j=1

1

2

(
a(BTt(n−j)/n) + a(BTt(n−j+1)/n)

) (
BTt(n−j)/n −BTt(n−j+1)/n

)
= −

∫ Tt

0

a(Bs) ◦ dBs.

Since B̃Tt
d
= −BTt and B̃Ts − B̃Tt

d
= BTt−Ts , we have

(f,Utg) =

∫
R3

dxEx,0
P×ν

[
f(BTt)e

+i
∫ Tt
0 a(Bs)◦dBse−

∫ t
0 V (BTt−Ts )dsg(x)

]
.

Moreover, as Tt − Ts
d
= Tt−s for 0 ≤ s ≤ t, we obtain

(f,Utg) =

∫
R3

dxEx,0
P×ν

[
f(BTt)e

−i
∫ Tt
0 a(Bs)◦dBse−

∫ t
0 V (BTs )ds

]
g(x) = (Utf, g).

The existence of a self-adjoint operator KΨ bounded from below such that Ut = e−tK
Ψ

is a consequence of the Hille-Yoshida theorem. This completes the proof. qed

Definition 3.8 (Ψ-Kato class Schrödinger operator) Let V be in Ψ-Kato class

and take Assumption (A2). We call KΨ given in Theorem 3.7 generalized Schrödinger

operator for Ψ-Kato class potentials. We refer to the one-parameter operator semigroup

e−tK
Ψ

, t ≥ 0, as the Ψ-Kato class generalized Schrödinger semigroup.

Put KΨ
0 for the operator defined by KΨ with a replaced by 0.

Theorem 3.9 (Hypercontractivity) Let V be a Ψ-Kato class potential and assume

(A2) to hold. Then e−tK
Ψ

is a bounded operator from Lp(R3) to Lq(R3), for all 1 ≤
p ≤ q ≤ ∞. Moreover, ‖e−tKΨ‖p,q ≤ ‖e−tK

Ψ
0 ‖p,q holds for all t ≥ 0.



17

4 Relativistic Schrödinger operators

Finally we consider the relativistic Schrödinger operator. We write

hrel =
√

(p− a)2 +m2 −m, (4.1)

hrel(0) =
√

p2 +m2 −m. (4.2)

Theorem 4.1 Suppose Assumption (A3) and let V be relatively bounded with respect

to
√

p2 +m2 with relative bound strictly smaller than one. Then hrel is essentially

self-adjoint on C∞0 (R3) and

(f, e−t(hrel)g) =

∫
R3

dxEx,0
P×ν

[
f(B0)g(BTΨ

t
)eSΨ

V +SΨ
A

]
. (4.3)

Proof. The essential self-adjointness follows from (2) of Corollary 2.10, and (4.3)

from Theorem 2.12. qed

By Theorem 4.1 we also have the following energy comparison inequality.

Corollary 4.2 (Diamagnetic inequality) Suppose the assumptions of Theorem 4.1.

Then

|(f, e−t(hrel)g)| ≤ (|f |, e−t(hrel(0))|g|) (4.4)

and Eb [hrel(0)] ≤ Eb [hrel].

Furthermore, by Theorem 3.9 we have the result below.

Corollary 4.3 (Hypercontractivity) Let the assumptions of Theorem 4.1 and one

of the three equivalent conditions in Proposition 3.3 with Ψ(u) =
√

2u+m2 −m hold.

Then e−t(hrel) is a bounded operator from Lp(R3) to Lq(R3) for all 1 ≤ p ≤ q ≤ ∞.
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