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1 Bernstein functions and Lévy subordinators

1.1 Introduction

This is a review article of [Hir09, HIL09, HS09]. It is proven that the Feynman-Kac type
formula is a useful tool to investigate a strongly continuous one parameter semigroup
generated by a self-adjoint elliptic operator. The Schrodinger operator with a vector
potential @ = (ay, as, az) and spin 1/2 is given as a self-adjoint operator on L?(R3; C?)
and it is defined by

h=5(0 (- 0)+V, (1)

where 0 = (01,03,03) denotes 2 x 2 Pauli matrices satisfying o;0; + 00, = 20;;F
and V : R* — R is an external potential. The path integral representation of the
semigroup e~ t > 0, is constructed through a Lévy process on a cddrdg path space in
[ALS83, HIL09]. Instead of this in this article we consider a path integral representation

for the relativistic Schrodinger operator

he =V (0 (p—a)2+m2—m+V. (1.2)
In terms of h, h. is given by
hret = V2h +m? —m + V.

Here the function f(u) = v2u + m? — m satisfies that (1) f € C*°((0,00)) and (2)

arf
(—1)"d— < 0. In general a real-valued function satisfying (1) and (2) is called a
uTL



Bernstein function. So, in this article we will give a functional integral representation

of general self-adjoint operators of the form

v (5o o)) +v. (13)

where W is an arbitrary Bernstein function. Typical examples of Bernstein functions are
U(u) =u* 0<a<1,and ¥(u) = +v2u+ m? —m. The cases we consider include not

only the relativistic Schrodinger operator h. but also fractional Schrodinger operator

1

(5(0 (p— a))2)a +V, 0<a<lL (1.4)

By using a subordinator we will give the Feynman-Kac type formula of the semigroup
EGEE-02)tv) s (1.5)

for an arbitrary Bernstein function W.

The path integral representation (1.5) can be also applied to study the spectral
properties of models in quantum field theory. In particular it can be applied to study
the Nelson model with a relativistic kinematic term and a relativistic Pauli-Fierz model.

The Nelson model: The Nelson model describes a linear interaction between quan-
tum particles and a scalar field. Let .# = @2 L2 (R3Y), and a'(k) and a(k) de-

sym

note the creation operator and the annihilation operator, respectively, which satisfy
la(k),a’ (k)] = 6(k — k'). The Hamiltonian of the Nelson model with kinetic term
U(p?/2) is defined as a self-adjoint operator on

3

R @ 7 g/@ﬁM)

Hy = (¥(p?/2) +V) @1+ 1 ® Ht + ady. (1.6)
Here

m:/mmemm

is the free Hamiltonian on .# and ¢, denotes a scalar field smeared by a cutoff function

¢ given by
®
bp= | ¢g(z)dz,
]R3



where . .
1 e "p(k) e H(—k)
Pp(z) = E/ (d(/f)W + a(k)W> dk.

Relativistic Pauli-Fierz model: Next let us introduce a relativistic Pauli-Fierz model.
Let Fpr = @ g L2, (R* x {—1,1}), and a'(k, j) and a(k, j), j = 1,2, are the creation
operator and the annihilation operator, respectively, which satisfy [a(k,7), a'(K,j")] =
9;70(k — k'). Relativistic Pauli-Fierz model describes a minimal coupling between
quantum particles and a quantized radiation field. The Hamiltonian of the relativistic

Pauli-Fierz model is defined as a self-adjoint operator on

@
L2(R3) ® LQ.PF (%J ﬁdel’)
R3
by
Hop = \/(0® 1~ aA 2 +m? —m+V @1+ 16 HEF, (1.7)
Here

HY = 3 [ Hlal (k. g)alk. )k

j=1,2
is the free Hamiltonian on %pp and A; is a quantized radiation field smeared ¢ given
by

-
14(;7:/]R Ay (z)de,

3

where

As@() ﬁZ/(h])( (kaj) \/m + (k7]) \/’k_l >dk'

7j=1,2

e(k,j) denotes polarization vectors such that k - e(k,j) = 0, e(k,1) - e(k,2) = 0,
e(k,1)xe(k,2) = k/|k| and |e(k, 7)| = 1. The Hamiltonian (1.7) can be mathematically

generalized as

1
m<§(p®1—A¢)2)+V®1+1®H}°F (1.8)

by a Bernstein function V.

It is a crucial issue to study the spectrum of H, = Hy, Hpp, since all the eigenvalue
of these Hamiltonian with ae = 0 are embedded in the continuum. Thus in order to see
the spectral properties of H, but a # 0 the regular perturbation theory [Kat76] can
not be applied directly. One advantage to use a path integral representation of e~

is to be non-perturbative. We discuss quantum field models in [HS09] and [Hir09].



1.2 Bernstein function and subordinators

Definition 1.1 (Bernstein function) Let

o0 (A"
B=<feC>®(0,00)) | f(x) >0 and (—1) Zon () <0 forall n=1,2,..., ».
xn

An element of £ is called a Bernstein function. We also define the subclass

%:{fe@

Bernstein functions are positive, increasing and concave. Examples of functions in %,
include ¥(u) = cu®, ¢ >0, a € (0,1], and ¥(u) =1 - a > 0.

Definition 1.2 Let .Z be the set of Borel measures A on R\ {0} such that

(1) M(—00,0)) =0, (2) / RZERUEES

Note that each A € & satisfies that fR\{O}(y2/\1))\(dy) < 00 so that A is a Lévy measure.
Denote R, = [0,00). We give the integral representation of Bernstein functions with

vanishing right limits at the origin. It is well known that for each Bernstein function
U € %, there exists (b,\) € Ry x £ such that

U(u) = bu + /Ooou — =)\ (dy). (1.9)

Conversely, the right hand side of (1.9) is in %, for each pair (b, \) € R, x Z. Thus
the map %y — R, x Z, U (b, \) is a one-to-one correspondence.
Next we consider a probability space (€,,.%#,,v) given, with €, C R, and the

following special class of Lévy processes.

Definition 1.3 (Lévy subordinator) A random process (1;)i>0 on (€,,.%,,v) is

called a (Lévy) subordinator whenever
(1) (T})¢>0 is a Lévy process starting at 0, i.e., v(To = 0) = 1;

(2) T is almost surely non-decreasing in ¢.



Subordinators have thus independent and stationary increments, almost surely no neg-
ative jumps, and are of bounded variation. These properties also imply that they are
Markov processes. Let . denote the set of subordinators on (Q2,,.%,,v). In what fol-
lows we denote expectation by EZ[---] = [---dm® with respect to the path measure

m” of a process starting at x.

Proposition 1.4 Let ¥ € A, or, equivalently, a pair (b,\) € Ry x £ be given. Then
there exists a unique (T})i>o € . such that

Eo[e~vT] = et (W), (1.10)

Conversely, let (T})i>0 € 7. Then there exists U € By, i.e., a pair (b,\) € Ry x £
such that (1.10) is satisfied.

In particular, (1.9) coincides with the Lévy-Khintchine formula for Laplace exponents
of subordinators.

By the above there is a one-to-one correspondence between %, and ., or equiva-
lently, between %, and R, x .£. For clarity, we will use the notation T,¥ for the Lévy

subordinator associated with ¥ € %,.

Example 1.5 (First hitting time) Since ¥(u) = V2u+ m? —m € %, for m > 0,
there exists 7)Y € .% such that

E°[e 7] = exp (—t(m — m)> :

This case is thus related with the one-dimensional 1/2-stable process and it is known
that the corresponding subordinator 7Y can be represented as the first hitting time

process T,Y = inf{s > 0| B, + ms = t} for one-dimensional Brownian motion (B;);>o.

2 Path integrals

2.1 Generalized Schrodinger operators with no spin

Throughout we consider spinless Schrodinger operators for simplicity and we will use

the following conditions on the vector potential.

Assumption 2.1 The vector potential a = (ay,...,aq) is a vector-valued functions
whose components a,, ;= 1,...,d, are real-valued functions. Furthermore, we consider

the following reqularity conditions:



(A1) a € (Li, (R%)).

(A2) a € (L. (R?)? and V -a € L (R?).

loc loc

(A3) a € (LL (R*)? and V- a € L2 (RY).

loc

Let 9, : 2'(R*) — 2'(R?), =1, ..., d, denote the uth derivative on the Schwartz
distribution space 2'(R*). Let p = —iV and D, = p, — a,, p = 1,...,d. Define the

quadratic form
3

p=1
with domain Q(¢) = {f € L*(R*) |D,f € L*(R*),p =1, ...,d}. It can be seen that
Q(q) is complete with respect to the norm || f|, = /q(f, f) + || f||> under Assumption
(A1). By this ¢ is a non-negative closed form and thus there exists a unique self-
adjoint operator h satisfying (hf,g) = q(f, g) for f € D(h) and g € Q(q) with domain
D(h) = {f € Q(q) |q(f,) € L*R?)'}. The self-adjoint operator h is our main object
in this section. We summarize some facts about the form core and operator core of h
[Sim79, LSS1].

Proposition 2.2 (1) Let Assumption (A1) hold. Then C$(R?) is a form core of h.
(2) Let Assumption (A3) hold. Then C$°(R3) is an operator core for h.

Note that in case (2) of Proposition 2.2,

hfz%pr—a-prr(—%a'a—(pﬂ))f-

Let ¥ € %, and take Assumption (Al). Whenever V is bounded we call
HY =W (h)+V (2.2)

generalized Schridinger operator with vector potential a. Note that ¥ > 0 and W(h) is
defined through the spectral projection of the self-adjoint operator h.

Theorem 2.3 Take ¥ € %,.
(1) Let Assumption (A3) hold. Then C§°(R3) is an operator core of ¥(h).

(2) Let Assumption (A1) hold. Then C$(R?) is a form core of ¥(h).



2.2 Singular magnetic fields

th

Before constructing a functional integral representation of ™", we extend stochastic

2

R3) functions since the vector potentials we consider
loc

integration to a class including L
may be more singular.

Let (B;)i>o denote d-dimensional Brownian motion starting at = € R® on standard
Wiener space (Qp, Zp,dP?). Let f be a C3-valued Borel measurable function on R3

such that

5[ [ 17Bopas] < e (23)

Then the stochastic integral fg f(Bs) - dBy is defined as a martingale and the It6

isometry
t
— 55| [ 18R]
0

holds. However, vector potentials a under Assumption 2.1 do not necessarily satisfy

2

B /0 7(B.) - dB,

(2.3). As we show next, a stochastic integral can indeed be defined for a wider class
of functions than (2.3), and then fot f(Bs) - dBs will be defined as a local martingale
instead of a martingale. This extension will allow us to derive a functional integral
(B?))".

Consider the following class of vector valued functions on R3.

. —th . 2
representation of e with a € (Li,,

Definition 2.4 We say that f = (fi, ..., f4) € &loc if and only if for all t > 0
t
p* (/ |f(Bs)ds < oo) =1 (2.4)
0

Let R,(w) = n A inf {t >0 ‘f(f |f(Bs(w))|*ds > n} be a sequence of stopping times
with respect to the natural filtration # = o(B,,0 < s < t). Define

fuls,w) = f(Bs(w) i, (w)>s}- (2.5)

Each of these functions satisfies [° | fn(s,w)[*ds = [;™" | fu(s,w)|*ds < n. In particular,
we have E%, [f(f ]fn|2ds} < oo and thus f; fn - dBs is well defined. Moreover, it can be

seen that
tARm t
/ fn(s,w)-dBs = / fm(s,w) - dBs (2.6)
0 0

for m < n.



Definition 2.5 Let f € &,.. We define the integral

/Otf(B . dB, /fnsw 0<t<R,

This definition is consistent with (2.6).

&loc has properties below:

(1) Let f € &loe. Suppose that a sequence of step functions f,, n = 1,2, ..

o | fu(Bs) — f(Bs)Pds — 0 in probability as n — oco. Then
lim fn s) - dBs = / f(B in probability.

(2) (L

loc

(R%)* C &loe-

(3) Let a € (L}

loc

t t
/ a(Bs) - dBs + 1/ V - a(Bs)ds
0 2 Jo

(R3))3 such that V-a € L]

(R3))* and V -a € Li (R?). Then

< oo almost surely.

For a € (L3

loc

(R3), we denote

loc

t t 1 t
/ a(Bs) o dBs = / a(Bs) - dBs + 3 / V - a(Bs)ds.
0 0 0

Proposition 2.6 Under Assumption (A2) we have

(eg) = [ doBs [TBg(Be o).

PROOF. See [Sim04, Theorem 15.5] and [HILO09].

2.3 Path integral representation

., satisfies

(2.8)

qed

Now we turn to constructing a functional integral representation for generalized Schro-

dinger operators including a vector potential term defined by (2.2).

A key element in our construction of a Feynman-Kac-type formula for e~

make use of a Lévy subordinator.

v,
tH™ g to

Theorem 2.7 Let ¥ € By and V € L>®(R3). Under Assumption (A2) we have

=~ . Tt\I’ ot o
(o) = [ domyt, [TBTa(gy et oo O
R

(2.9)



Proor. We divide the proof into four steps. To simplify the notation, in this proof

we drop the superscript W of the subordinator.

(Step 1) Suppose V = 0. Then we claim that
(e *0g) = [ By, [TBalg(By e 5o m]. (2.10)

To prove (2.10) let E" denote the spectral projection of the self-adjoint operator h.
Then

(f.e ¥ g) = / s L) (2.11)

By inserting identity (1.10) in (2.11) we obtain

ey = [ B, Elg) =B (11, )]

th

Then by the Feynman-Kac-1t6 formula for e™*" we have

(1oe90g) = B2 | [ aoms [FBula( e o] |
R3
thus (2.10) follows.

(Step 2) Let 0 =tg < t1 < -+ < tn, fo, fn € L*(R?) and assume that f; € L>(R?) for
7=1,...n—1. We claim that

—(ti—ti_1 o z,0
(1m0 - et

J=1

) (ﬁ fj(Bth)> o Jo ta(Bs)odBs
j=1

(2.12)

For easing the notation write G; = f; [T\, e~ H-0¥M £;(By, ). By (Step 1) the

i=j+1
left hand side of (2.12) can be represented as

— Ty o
\/dﬂfE?gV |:f(BO)€—’Lf() Ua(Bs) stGl (BTtl—to ):| .
R3

Let #F = 0(B,,0 < s <t) and #} = 0(T,,0 < s < t) be the natural filtrations. An
application of the Markov property of B; yields

<f0, H e—(tj—tj—l)‘l’(h)fj>

j=1

_ /dIE?g [f(BO) —zfo a(Bs ongEO |:f1(BO) —lfofz t1a(B ostG (BTt2 ):|:|
R3

- LTy
= /d:pEfggy {f(Bo)e_”O La(Bs)odBs
R

3
Tty —tq tTtq

EY {ECI)D |:f1<BTt1)€ Tty @(Bs)odB:

Gao(Br, +1., 4,)
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Hence we obtain

(fo, H e(tjtjl)‘lf(h)fj)
j=1
Tty —t1 tTtq

= [, T Y | (5 e
R3

a(Bs)odBs

Go(Br, 11, 1, )H :

The right hand side above can be rewritten as

,0 —i [ a(Ba)odB Ty | —if) 27" a(B,)odB
deP’xy f( ) 0 ° sf (BTt )E tletto ° SG2<BTt27t1) :
R

3

Using now the Markov property of T; we see that

(fo, H e—(tj—tjl)‘lf(h)fj>
j=1

~ [aveg, [T
R

3

sz a(Bs)odBs

G2(Br,)

]

—1 ]T a(Bs)odBs

= [t [T g ) Ga(Br, )|

By the above procedure we obtain (2.12).

(Step 3) Suppose now that 0 # V € L* and it is continuous; we prove (2.9) for such
V. Since HY is self-adjoint on D(¥(h)) N D(V') the Trotter product formula holds:

(f.e " g) = lim (f, (e /WP Pe/mV)ng).
(Step 2) yields

(f, eitH\Pg) — lim d:c]Eji,’(X)V |:f(BO)g<BTt> —i fo (Bs )oste Z;:l(t/n)V(Bth/n)]

n—0oo [p3

= r.hs. (2.12)

Here we used that since s — By, (-)(w) has cadlag paths, V (B, (w)) is continuous in
s € [0, 1] for each (w, 7) except for at most finite points. Therefore 377 | tV(Br,, ) —
fot V(Br,)ds as n — oo for each path and exists as a Riemann integral.

(Step 4) Suppose that V € L and V,, = ¢(z/n)(V * j,), where j, = n3¢(zn) with
¢ € C3°(R?) such that 0 < ¢ <1, [¢(x)dr =1 and ¢(0) = 1. Then V,,(z) — V(z)

almost everywhere. V,, is bounded and continuous, moreover V,,(z) — V(z) as n — oo
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for x ¢ A4, where the Lebesgue measure of .4 is zero. Thus for almost every (w,7) €
Qp x Qp, the measure of {t € [0,00) | Br,(r)(w) € A} is zero. Hence

/d:c]Ef;’gy [WQ(BE)efifOTta(Bs)Oste’f(f V"(BTs)dS}
R3

~ [, [FBYa(Ba e o i v
R3

as n — 00. On the other hand, e MY (W+Va) _ o=t (MW+V) gtrongly as n — oo, since
U(h) +V,, converges to U(h) +V on the common domain D(W¥(h)). Thus the theorem
follows. qed

Corollary 2.8 (Diamagnetic inequality) Let ¥ € %y, V € L=(R?), and Assump-
tion (A2) hold. Then

[(Fr e g) < (|f], e PP g)) (2.13)

and
E, [U(p®/2) + V] < E, [HY] (2.14)

PRroOF. By Theorem 2.7 we have

(Foe gl < [ dal, [1£(Bollo(Brp)le™ Y or
R

The right hand side above coincides with that of (2.13), and (2.14) follows directly
from (2.13). qed

2.4 Singular external potentials

By making use of the functional integral representation obtained in the previous sub-

section we can now also consider more singular external potentials.
Theorem 2.9 Let Assumption (A2) hold.

(1) Suppose |V| is relatively form bounded with respect to W(p?/2) with relative bound
b. Then |V| is also relatively form bounded with respect to W(h) with a relative

bound not larger than b.
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(2) Suppose |V| is relatively bounded with respect to W(p?/2) with relative bound b.
Then |V| is also relatively bounded with respect to W(h) with a relative bound not
larger than b.

o tn
ProoF. Note that (U(h) + E)-"FD) = / —‘e_t(‘l’(h)J’E)dt, E > 0. By virtue of
o M

Corollary 2.8 we have

IVI72(W(h) + B)"2fI _ IIVIT2(W(0/2) + B)"2 ]|
1/l B il

(2.15)

and
IVICU(R) + E)fI VI (*/2) + E) I

1/l N L/l
On taking the limit F — oo, the right hand sides of (2.15) and (2.16) converge to b;
compare [HS95, Lemma 13.6], [Sim04, AHS78]. Hence (1) follows by (2.15) and (2) by
(2.16). qged

(2.16)

Corollary 2.10 (1) Take Assumption (A2) and let V' be relatively bounded with respect
to W(p?/2) with relative bound strictly smaller than one. Then W(h)+V is self-adjoint
on D(V(h)) and bounded from below. Moreover, it is essentially self-adjoint on any
core of W(h). (2) Suppose furthermore (A3). Then C$°(R®) is an operator core of
U(h)+V.

ProOF. (1) By (2) of Theorem 2.9, V is relatively bounded with respect to W(h)
with a relative bound strictly smaller than one. Then the corollary follows by the
Kato-Rellich theorem. (2) follows from Theorem 2.3. qed

Theorem 2.9 also allows W(h) + V to be defined in form sense. Let V =V, — V_
where V, = max{V,0} and V_ = min{—V,0}. Theorem 2.9 implies that whenever
V_ is form bounded to ¥(p?/2) with a relative bound strictly smaller than one, it is
also form bounded with respect to W(h) with a relative bound strictly smaller than
one. Moreover assume that V, € L] _(R®). We see that given Assumption (A1),

Q(T(h)) NQ(Vy) D C°(R?) by Corollary 2.10. In particular, Q(¥(h)) N Q(V,) is

dense. Define the quadratic form

a(f, f) = (W)Y, 2 1) + (VPR VR — (VPR v (2.17)

on Q(¥(h))NQ(V;). By the KLMN Theorem [RS78] q is a semibounded closed form.
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Definition 2.11 (Generalized Schrédinger operator with singular V') Let As-
sumption (A1) hold and V = V, — V_ be such that V, € L{ _(R3) and V_ is form
bounded with respect to \IJ(%pQ) with a relative bound strictly smaller than one. We
denote the self-adjoint operator associated with (2.17) by W(h) + V, — V_ (this is

called the quadratic form sum).

Now we are in a position to extend Theorem 2.7 to potentials expressed as form

sums.

Theorem 2.12 Take Assumption (A2). Let V =V, —V_ be such that V, € Li (R?)
and V_ is infinitesimally small with respect to W(3p?) in form sense. Then the func-

tional integral representation given by Theorem 2.7 also holds for W(h) + V. — V_.

PROOF. See [HIL09.

3 V-Kato class potentials and hypercontarctivity

In this section we give a meaning to Kato class for potentials V' relative to ¥ and
extend generalized Schrodinger operators with vector potential to such V. Recall that

for given ¥ € #,, the random process
Xt : QP X QV > (u),T) = BTt\IJ(T)((.U) (31)

is called subordinated Brownian motion with respect to the subordinator (7} );>o. It

is a Lévy process whose properties are determined by the pair (b,\) in (1.9). Its

—tU(u2/2)

characteristic function is E%" [e
Assumption 3.1 Let U € %, be such that [;° e YW/ dy < oo, for all t > 0.

Under Assumption 3.1 we define

pe(z) = /R3 etV /2) gy, (3.2)

and -
II\(z) = / e~ Mpy(x)dt.
0

Let || fllinze)y = Dowezs SUPzec, |f(2)], where C, denotes the unit cube centred at
a €73
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Assumption 3.2 Let p; be such that sup,sg ||1{jz)>630¢ /|11 (1) < 00.

Note that Assumption 3.2 is satisfied if p; is spherically symmetric and radially non-

increasing. The next proposition allows an extension of ¥(p?/2) to Kato class .
Proposition 3.3 Let V' > 0. Under Assumptions 3.1 and 3.2 the following three
properties are equivalent:

t
(1) lim sup/ E%0 [V(X,)]ds = 0,
0

t10 yeRrs

(2) lim sup ((¥(p°/2) +\)"'V) (z) =0,

T zeR3

(3) lim sup / > I (x — y)V(y)dy = 0.

610 ;cRrs3

PROOF. Similar to Theorem III.1 in [CMS90]. qed

Definition 3.4 (¥-Kato class) Take Assumptions 3.1 and 3.2. Write V =V, — V_
in terms of its positive and negative parts. The V-Kato class is defined as the set of
potentials V' for which V_ and 15V, with every compact subset C' C R? satisfy any
of the three equivalent conditions in Proposition 3.3. Here 1o denotes the indicator

function on C.

By (3) of Proposition 3.3 we can derive explicit conditions defining W-Kato class
using the relation of the Lévy measure of the subordinator with the associated Bernstein

function. Since W(u?/2) is spherical symmetric, we compute

e ] oo (d-1)/2
M(a) = (2) " s | gy Vo a-aa(rlahr

with the Bessel function

Jolw) = (9; n!F(fl_—i—l):—i— D (5)"

Furthermore, it holds that sup,sq v/u.J,(u) < co.

Example 3.5 In the case d = 3, since Jyjo(x) = (2/m)227 2 sinz, we have

rsinr

o) = 27T2|x|/ o (h+ v (5 ))d”
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Lemma 3.6 Let V >0 and V € %By. Suppose that V' satisfies (1) of Proposition 3.3.
Then sup,cps Ene, [efot V(Xs)ds} < oo fort>0.

The next result says that we can define a Feynman-Kac semigroup for U-Kato class

potentials.

Theorem 3.7 Let ¥ € %y, V belong to V-Kato class and let Assumption (A2) hold.

Consider

Ty . ot o
Unf(0) = B2 et 0¥ atbgean. = 1V 00

Then Uy is a strongly continuous symmetric semigroup. In particular, there exists a

self-adjoint operator K'Y bounded from below such that U, = e tKY

PRrROOF. Let V =V, — V_. Hence by Lemma 3.6 we have
IUfII? < Cille™™ @2 £ < G I,

where C; = sup,ps E5% [¢2/o V=-(X2)4s] Thys U, is a bounded operator from L2(R3) to
L*(R?). In the same fashion as in Step 2 of the proof of Theorem 2.7 we conclude that
the semigroup property U;Us = U,y holds for £, s > 0. We check strong continuity of
U, in ¢; it suffices to show weak continuity. Let f, g € C5°(R?). Then we have

TID ) i [Tt o — [t s
(1 Uig) = [ doBgt, [FBjg(Br)e i etomin- e Jivioee].
R3

Since Ty(7) — 0 as t — 0 for each 7 € Q,, the dominated convergence theorem gives
(f,Ug) — (f. 9).

Finally we check the symmetry property U; = U,. By a limiting argument it is
enough to show this for a € (C2(R?))?. Let B, = B(w,T) = Br(r)_s(w) — Brym ().
Then for each 7 € Q,, ES 4 B; with respect to dP*. (Here Z 4 Y denotes that Z and
Y are identically distributed.) Thus we have

(f, Utg) _ E%gy |:/ d$f(l‘)€_Z foTz a(z-l—és)odése— fot V(Z‘-i-éTs)g(x + éTt):|
R3

e { / 0 f(z — Big)e—tJo" e+ Bo=Bir,JodBh o [ Vot Br, i s g(m)] ‘
R3
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In the second equality we changed the variable z to 2 — By,. Recall that a € (CE(R3))3.
Then in L?(Qp,dP°) we have that

T B
/ a(Bs — Br,) o dBy
0

R . N
= lim > 5 (a(Bth/n — Br,) + a(Bry(j-1)/n — BTt)) (Bth/n - BTt(jfl)/n>

Jj=1

N~ L
= lim » = (a(Br,n—ym) + A(Brisjeny/n)) (B m = Briin—j1)/n)
j=1

Ty
= —/ a(Bs) o dB;.
0

. ~ d = ~ d
Since By, = —Br, and By, — By, = Br,_1,, we have

— T o ot o
(1. Vig) = [ de, [FTBert 6 ootV ornivg ()]
R

Moreover, as Ty — T 4 T, s for 0 < s < t, we obtain

(FUig) = [ daBgs, [F(Bre i o0 1V B g(2) = (U1, ).
R

The existence of a self-adjoint operator K¥ bounded from below such that U, = e7*& !

is a consequence of the Hille-Yoshida theorem. This completes the proof. qed

Definition 3.8 (¥-Kato class Schrédinger operator) Let V' be in W-Kato class
and take Assumption (A2). We call KY given in Theorem 3.7 generalized Schrédinger
operator for V-Kato class potentials. We refer to the one-parameter operator semigroup

e Y >0, as the U-Kato class generalized Schrodinger semigroup.

Put K} for the operator defined by K'Y with a replaced by 0.

Theorem 3.9 (Hypercontractivity) Let V be a V-Kato class potential and assume
(A2) to hold. Then e 5" is a bounded operator from LP(R3) to LY(R3), for all 1 <
p < q < o0o. Moreover, ||e™ 5" ||, < |||, holds for all t > 0.
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4 Relativistic Schrodinger operators
Finally we consider the relativistic Schrodinger operator. We write

hea =/ (p — a)? + m? —m, (4.1)

hie1(0) = v/p? + m? — m. (4.2)

Theorem 4.1 Suppose Assumption (A3) and let V' be relatively bounded with respect
to \/p? + m? with relative bound strictly smaller than one. Then hy is essentially
self-adjoint on C§°(R?) and

(f,e7Mg) = / daEf, | F(Bolg(Bry )51 (4.3)
R

PROOF. The essential self-adjointness follows from (2) of Corollary 2.10, and (4.3)
from Theorem 2.12. qed

By Theorem 4.1 we also have the following energy comparison inequality.

Corollary 4.2 (Diamagnetic inequality) Suppose the assumptions of Theorem 4.1.
Then

|(f, e )] < (| fl, e g]) (4.4)
and By, [ha(0)] < By, [Aral]-

Furthermore, by Theorem 3.9 we have the result below.

Corollary 4.3 (Hypercontractivity) Let the assumptions of Theorem 4.1 and one
of the three equivalent conditions in Proposition 3.3 with V(u) = v/2u + m? — m hold.
Then e~"e) s a bounded operator from LP(R?) to LY(R?) for all 1 < p < q < oo.
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