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Abstract

The relativistic Pauli-Fierz model is discussed. The Feynman-Kac
type formula with cadldg path is shown and its applications are given.

In Sections 1 and 2 we review the results on the Pauli-Fierz model
and in Section 3 we are concerned with the relativistic Pauli-Fierz model.

1 The Pauli-Fierz model

1.1 Definition

We begin with reviewing results on the Pauli-Fierz model. The Pauli-Fierz
model describes the minimal interaction between electrons and a quantized
radiation field, but electrons are assumed to be low energy and to be governed
by a Schrodinger equation.

Let L?(R?) ® F be the total Hilbert space describing the joint electron-
photon state vectors. Here F = F(H), H = L*(R3x {£}), denotes the Boson
Fock space over the one-photon Hilbert space H. The elements of the set
{£} account for the fact that a photon is a transversal wave perpendicular
to the direction of its propagation, thus it has two components. The Fock
vacuum in F is denoted by . Let a(f) and a*(f), f € H, be the annihilation
operator and the creation operator, respectively. We also use the identification:
H = L2(R?) @ L?(R?) and set a*(f,+) = a*(f © 0) and a*(f,—) = a*(0 @ f)
for f € L?(R3). The annihilation operator and the creation operator satisfy
the canonical commutation relations:

[a(f.4),a*(9,0)) = 6i(f,9),  [a*(f,4),a%(g,)] = 0.



Let T be a contraction operator on . Then

o
NT)=PTre---oT
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is also contraction on F. The second quantization of a self-adjoint operator h
on H is defined by

o,

dr(h):ézn:m---

n=0 j=1
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The quantized radiation field with a given cutoff function ¢ is defined by

Vw(k)

for z € R3, where w(k) = |k|. The vectors et (k) and e~ (k) are polarization
vectors.
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The Hamiltonian of one electron is given by the Schrodinger operators with
external potential V: —%A + V', where we assume that the mass of electron is
one. On the other hand the free Hamiltonian of the field is defined by dI'(w).
Then the decoupled Hamiltonian is

1
(~3A+ V)@ 1+ 10 d0w).

Let D = —iV,;. The Pauli-Fierz Hamiltonian is defined by the minimal cou-
pling of the decoupled Hamiltonian with the quantized radiation field:

H:%(D@]l—eA)Q—i—V@]l-i-]l@dF(w)- (1.2)

Here e denotes the coupling constant. Throughout we use the following
assumptions (1) @(—k) = @(k), (2) Vwp, ¢/w € L*(R3), (3) there exists
0<a<1andO0<bsuch that

1
VAl < all = SAFI + bl £

for f € D(—=3A). We put Dpp = D (—3A® 1) N D(1® dI'(w)). Then H is
self-adjoint on Dppr and essentially self-adjoint on any core of the decoupled
Hamiltonian.

Remark 1.1 We notice that Pauli-Fierz Hamiltonians with different polariza-
tion vectors are isomorphic with each other. Then we fix polarization vectors
throughout.



1.2 Function space

We introduce a function space (2, uu) associated with the quantized radiation
field and reformulate the Pauli-Fierz Hamiltonian on L?(R?) ® L?(2,du) in-
stead of L?(R?) ® F. In order to have a functional integral representation of
(F,e 1 @), F,G € L*(R3) ® F, we construct probability spaces (2g, %3, ug),
f = 0,1, and the Gaussian random variables <73(f) indexed by f = (f1, fo, f3) €
@3 L2 (R3*P) of mean zero and covariance given by

(F,0"8) 12 (r3), B

0,
(fa 1® 5L§)L2(R4)a p=1

N[= N[

qs(f, g) :{

Note that transversal delta function 61 (k) = (8, — kuky/|k|?)1<p<1 depends
only on k € R3. In what follows we denote

(Minkowskian) o = o, 2= 2,

(Buclidean) o = o, 2p=2 (1.3)

using the subscript E for Euclidean objects. Let <7 (z) = </ (®35(-—x)), where
@ is the inverse Fourier transformation of ¢/+/w. The Pauli-Fierz Hamiltonian
in function space is defined by

H= %(D@]l—eszf(x))2+V®Il+]1®dF(w(D)). (1.4)

Let j; : L?(R3) — L?(R*), t € R, be the family of isometries such that j;js =
e~ 1t=519M) and we define J; : L?(2) — L*(Z2g) by J; = I'(j¢), and JiJ, =
e~ 1t=s1d0D) follows.

Let (Bi)t>0 denote the three dimensional Brownian motion on the prob-
ability space (27, B(Z), #*), where 2 = C([0,0); R?) endowed with the
locally uniform topology, B(Z") is the Borel o-field on 2", and #* the Wiener
measure. Write E*[---] = [,.---d#™.

Theorem 1.2 Let F,G € L*(R?) ® L?(2g). Then

—tH vy _ z | — [YV(Bs)ds —iedn (Kt)
(F,e @) / dzE [e 0 (JOF(BO),e JtG(Bt)>L2(QE)] .
(1.5)
Here Ky = @izl f(fjsgé(- — B,)dBY denotes the @® L*(R*)-valued stochastic

integral.

From this functional integral representation a lot of properties of ground state
of H can be derived in the non-perturbative way.



1.3 Translation invariant Pauli-Fierz model

We consider the translation invariant Pauli-Fierz Hamiltonian. This is ob-
tained by setting the external potential V" identically zero. Put Pt,, = dI'(k,),
which describes the field momentum. The total momentum operator P on
L?(R3) ® F is defined by

P,=D,®@1+1®P¢,, p=1,23. (1.6)

We can see that [H,P,] = 0. This leads us to decompose H on the spectrum
of the total momentum operator P. The Pauli-Fierz Hamiltonian with a fixed
total momentum H(p) is defined by

Hip) = %(p _Pr—eA(0))? +dT(w), peR?, (1.7)

with domain D(H (p)) = D(dl'(w)) N D(P?). Here p € R? is called the total
momentum. Define the unitary operator .7 : L*(R3) ® F — L*(R3) ® F by

1
V@) Jes

Then H(p) is a nonnegative self-adjoint operator and

e~ TP Py (1) d.

(Z70)(p) =

T < @H(p)dp) T l=H (1.8)

R?)

holds. As in the previous section, we move to Schrodinger representation from
Fock representation to construct a functional integral representation. In that
picture H(p) becomes

H(p) = 5(p— dT(D) — et (0))* + dP(w(D)), pe®  (L9)

on L?(2). The functional integral representation of e */() can be also con-
structed as an application of that of e~ .

Theorem 1.3 Let ¥, ® € L?(2). Then

(0, e tH P §) = R [eip'Bt (JO\II, e~ iec(Ke) 3, o=idl (W(D”'Bt@) . (1.10)

LQ(QE)]



1.4 Effective mass

Let E(p) = inf Spec(H (p)). Introducing a cutoff function with infrared cutoff
k> 0:

0, k| < K,
p(k) =9 (2m) 77w < |k <A,
0, |k| > A,

we can see that E(p) is analytic in p, for sufficiently small e. The effective
mass Meg is defined by
1 1
— B0 (1.11)
p=0

Meff

and we have expansion with respect to o = €2 /4

8 ([ 1 )
meﬁ:1+37 ) 7q+2dr ot aa” + -

Then a; ~ log A. The conventional claim is a,, ~ (log A)"™ but our model does
not satisfies this. In particular as ~ v A as A — oo is shown in [HS05].
When the Hamiltonian includes spin 1/2, then

H(p) = 5(p— Pe — eA(0))” +d0w) — 1o - B(0),

where 0 = (01, 02,03) is the 2 x 2 Pauli matrices:

(01 (0 —i (10
1= 10) 27 i 0o ) P70 -1

and B(0) = V x A(0) denotes the quantized magnetic field. In this case the

effective mass is also computed: meg = 1 + a1 + aga® + - - -, where
8 A 1 A T‘2
= — d —d 1.12
“ 377(/N r+2 T+L (r +2)3 T) (1.12)

and the behavior of ay is [HI05, HIO7]

—Cq < lim CLQ/A2 < Cs.
A—o0



2 The dipole approximation

2.1 Symplectic structure

We first of all consider the perturbation of the annihilation operator and the
creation operator by c-number. Then CCR leaves invariant.

Let ¢(f) = a(f) + (9, f) and ¢*(f) = a*(f) + (g, f). Then ¢(f) and ¢*(f)

satisfy CCR and adjoint relation: ¢(f)* = ¢*(f). Thus ¢(f) and c¢*(f) satisty
the same CCR and adjoint relation as those of a(f) and a*(f). Moreover the
unitary operator U = e~% (9)+(9) induces the unitary equivalence:

Ud (U™ = é(f)
and also transforms the free Hamiltonian dI'(w) to
Udl(w)U™" = dl(w) + a*(wg) + a(wg) + (wg, 9)-

This can be extended to more complicated transformation a(f) — b(f) and
a*(f) — b*(f) such that b(f) and b*(f) satisfy the same CCR and adjoint
relation as those of a(f) and a*(f).

Let B(#) denote the set of bounded operators on H. Let

1 0
=0 5)
where 1 denotes the identity operator on H. For S € B(H) we define Sf = St.
Define

Spy, = {A = (5 g) € B(H) @B(H)‘ AJA* = A*JA = J}.

SP is called the infinite dimensional symplectic group. Let A = (; g) €

Sp, and we set

b(f) = a(Sf) +a(Tf),
b*(f) = a*(Sf) +a(Tf).

Since A € Sp.,, {b(f),b*(g)} satisfies CCR and b(f)* = b*(f). We furthermore
define the subgroup of Sp_, by

Yo = {A = (&S: g) € Spoo} T is a Hilbert Schmidt class} .
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It is known ([Ber66, HI03]) that there exists a projective unitary representa-
tion! U : X9 — {unitary on F} such that?

U(A)d*(f)U(A)! = b (f) (2.1)

for all f € H. Conversely if a unitary operator U satisfies (2.1), then A € ¥,.
Using this fact, one can diagonalize quadratic Hamiltonians as

U (d(w) + (a*(f) + a(£)>) U =dl(w) + C

with some constant C' under some conditions. Furthermore we can see that
there exists a unitary operator %, such that

Uy (A0 () + (p+ a*(f) + a(£)?) %, " = dT(w) + Gy,
where p € R is a parameter. See [Ara90].

2.2 Dipole approximation

Let us now consider the Pauli-Fierz Hamiltonian. We replace A(z) in H with
1® A(0), and the mass of electron is assumed to be m. Then H turns to be

1
Hgip = %(D®Il—ell®A(0))2+V®Il+Il®d1“(w). (2.2)
This is called the dipole approximation. Let V' = 0. In the dipole approxima-

tion the Hamiltonian without external potential is not translation invariant
but it commutes with the momentum operator of particle. Define Hgip(p) by

Huiplp) = 5 (p — eA(0)> + dT(w), pe R,

acting on F. Note that

/Hdlp ip =5 (D®]1—e]1®A(0))2+]1®d1“(w).

'U(A)U(B) = w(A, B)U(AB) with some phase w(A, B).
2U(A) is of the form

U(A) = det(1 — Kle)l/Ale_%<a*‘K1|a*> . e~ 2 {e"IK2la) . e_%wK:““),

where K1 = TS7, Ko =2(1— (S™H7T) and K3 = —S~'T. See [HIO7].



Taking the dipole approximation makes the model drastically simpler. It is a
quadratic operator as mentioned in the previous section. For each p € R? it
can be indeed constructed the family of operators

{o*(f.p),0(f.p), f € H}
such that [Ara83]
(1) b*(f,p) and b(g, p) satisfy CCR;
(2) blg,p)" =b"(g,p);
(3) [Haip(p), b(f,p)] = =b(wf,p) and [Haip(p), b*(f, p)] = b"(w [, p)-

We can also see that there exists a bounded operator S, a Hilbert-Schmidt
operator 1" and a function L, such that

o(f;p) = a(Sf)+a*(Tf)+ (Lp, ),

b*(f.p) = a(Tf)+a*(Sf)+ (Lp. f)-

Then A = (&S: g) € Xa. There exists a unitary operator S, = eP? such

that

(1) ¢ is of the form

with some function F},

(2) U, = SpU(A) satisfies that

_ _ 1
Upd® (f)U, ' =V (f), UpHaip(p)U, ' = dl(w) + P +9,

2Meft
(3) constants meg and g are given by
ma =+ 2plul? 9=+ [~ mj”j( U e
Let U = e"P®?(1 @ U(A)). Then
UHgpU™' = —2£OHA®]1+11®dF(w) +g+ V(- —eg), (2.4)



In particular inf Spec(Hgip) = g follows when V' = 0. Let us take a special

o[ 2n)7T32 k| < A,
(k) = { 0, k| > A.

Then g — oo as A — co. Indeed we can directly see that ¢ has the bound:

,8 (3 1I\2x . g ,8 (9 1\?n
e | —— —< lim —% <e“z | —— —.
3\8rm 2 = A—oco A3/2 3\8mm 2

From (2.4) it follows that Hyg;, is unitary equivalent to

cutoff function

(- ! A+V)®]I+Il®d1“(w)+g~|—e(V(-—e¢)—V). (2.5)
2Mefr

It is seen that meg ~ €2 and e(V (- —e¢) — V) ~ e¢-VV ~ e when V-V € L.

Hence heuristically enhanced binding may occur under some conditions, i.e.,

the existence of ground state of Hgi, can be shown for sufficiently large |e]

even when we do not assume the existence of ground state of —ﬁA + V. The

enhanced binding arising in Hg;, is shown in [HS01].

2.3 Lorentz covariant Pauli-Fierz model

Quantization of the electromagnetic field does not cohere with normal pos-
tulates such as Lorentz covariance and existence of a positive definite metric.
Then we chose to quantize in a manner sacrificing manifest Lorentz covariance;
conversely if the electromagnetic field is quantized in a manifestly covariant
fashion, the notion of a positive definite metric must be sacrificed and the
existence of negative probability arising from the indefinite metric renders in-
valid a probabilistic interpretation of quantum field theory. One prescription
for quantization of the electromagnetic field in a Lorentz covariant manner is
the Gupta-Bleuler procedure ([Ble50, Gup50] and [KO79]).

Let us construct A,(f,z), x € R3, p = 0,1,2,3, with test function f €
L*(R3) such that [A,(f), Au(9)] = —igu(f,g), where

1 pw=v=20,
gNV = _17 H=V= 172737
0, np#v

Let F = F(©*L?*(R3)). The annihilation operator and the creation oper-
ator are denoted by a(f, ) and a*(f, 1), respectively. Define

_ _a*(fao)v pu =0,
“T(f”“)‘{a*u,u), n=1,2,3.



Then it follows that

[a(f, 1), al (g,0)] = ~iguu (F. 9)-

Let e/(k) € R?, k € R3, j = 1,2,3, be unit vectors such that e3(k) = k/|k|,
and three vectors e!(k), e?(k) and e?(k) form a right-hand system for each
k € R3. We fix them. The quantized radiation field, smeared by the test
function f € L?(IR?) at the time zero is defined by

v b [
et

and their conjugate momenta by

(" e, ) F(R)e™ + alk. j) F(=R)e™)

(k. 0)f(k)e™™ + a(k, 0) f(—k)e™*)

0:0) = 5 Z / el () /oo () ( (k. D)ak)e — alk, (k)
Aolg, @ f/d/-eﬁ *(k,0)§(k)e~ e — a(k,O)Q(—k)e““) :

Set A,(f) = Au(f,0). Note that A,(f), p = 1,2,3, are symmetric but Ay(f)
skew symmetric. We then have commutation relations between A, and A,:

[Au(f), Au(9)] = —iguw(f.9), n,v=0,1,2,3,

and [A,(f), Au(9)] = 0, [A,(f), Au(g)] = 0. Then the Lorentz covariant Pauli-
Fierz Hamiltonian with the dipole approximation is defined by

1
H= Dol-cle A(0)? + 1@ dl(w) + el @ Ag(0).
Take the fiber p. Then we define
1
H(p) = 5(]3 — eA(0))? 4 dT'(w) + eAg(0).

This Hamiltonian is not self-adjoint on F, since Ay is skew symmetric. We
introduce the indefinite scalar product on F by (F|G) = (F,I'[g]G), where
(9] = [gw] : BILA(R3) — ©1L?(R3). Then H(p) is symmetric with respect to
().

In [HS09] we prove the asymptotic completeness of H(p) based on the LSZ
method, and characterize the physical subspace of H(p).

10



3 Relativistic Pauli-Fierz model

In quantum mechanics the relativistic Schrédinger operator is defined by

Hg(a) =+ (p—a)>+m2—m+V.

In this section the analogue version of the Pauli-Fierz model is defined and its
functional integral representation is given. We would like to study the spectral
property, effective mass and enhanced binding of the relativistic Pauli-Fierz
Hamiltonian as well as the standard Pauli-Fierz Hamiltonian mentioned in the
previous section. Some spectral property of the relativistic Pauli-Fierz model
is studied in e.g., [HS10, KMS09, MS09].

In this section we overview the relativistic Pauli-Fierz Hamiltonian and
the detail [Hir10] will be published somewhere.

3.1 Definition

The so-called relativistic Pauli-Fierz Hamiltonian is defined by

Hr=vV(D@l-eA2+m2 —m+Val+led(w) (3.1)

on L?(R3) ® F as a self-adjoint operator.

First of all we have to define Hg. It is however not trivial to do it, since Hg
has non-local operator /(D ® 1 — eA)2 + m2. Although one standard way to
define (D ® 1 — eA)? + m? as a self-adjoint operator is to take the self-adjoint
operator associated with the quadratic form:

3
F.G o % S (D@ 1—eA),F,(D® 1 - eA),G) +m*(F,G),
pn=1

we do not take it. Instead of this we will find a core of (D ® 1 —eA)? +m? by
using a functional integration. Let

t
L, = @f;l/o @(- — Bs)dB".

Then we can see that [daE* [(F(By), el (Lo)@g (Bt))] defines the semigroup
generated by a self-adjoint operator K such that

(Fe K@) = / daE* [(F(Bo),e—iwf <Lt>G(Bt))} , (3.2)

11



and see that 1
K> §(D®]1—e%)2[DPF. (3.3)

Let N = 1® dI'(1) be the number operator and Z = D(A) NN, D(N™).

Lemma 3.1 Suppose that w3/2p € L2(R3). Then 3(D® 1 — es?)?[y is es-
sentially self-adjoint.

Proof: By using (3.2) we will show that e ‘¥ leaves & invariant. First of
all it can be proven that e A2 C D(A). Next let us see that e 59
NP D(N™). Let z € Nand F,G € D(N®). We have

(NOF, e tEG) = / dzE® [(N"‘F(Bo), e~ I (B . (3.4)
Let 11(f) = i[N, A(f)]. Note that
el L) Nemted (he) = N — eTI(Ly) + 622||Lt|]2 (3.5)
and then
(N“F,e Q)
_ / doE [(F(Bo), ¢—ieel (L) <N eTI(Ly) + 622]\Lt||2)a G(Bt))] (3.6)

By the Burkholder-Davis-Gundy type inequality,

’ <N — eIl(L¢) + 622\|Lt||2>a F(By)

2z
22)! R
S ( ) taH(PHQZ'

Ex
204

t
/ (- — B,)dBY
0

we can see that

/ dzE*

with some constant C,. Combining (3.6) and (3.7) we have

2
< CAIN +1)F|* (3.7)

(NF,e " @) < Col | FI| (N + 1) F|. (3.8)

This implies e 75 N>, D(N™) € N%_; D(N™) and e ¥ 9 C 2 follows. Hence
K is essential self-adjoint on 2. O

12



We denote the self-adjoint extension of K |4 by the same symbol K for
simplicity, and V2K + m? by the spectral resolution of K. Let (7;);>0 be the
subordinator on a probability space (7, By, v) such that

E%[e%Tt] = exp (—t(\/ 2u +m? — m)) , u>0.

Since
(F, e V2RHm=m @) = B(F, e TG,

we immediately have
(F, e tV2EFmI=m) oy / dsE0 {(F(Bo),e*ie“‘{(LTt)G(BTt)) . (3.9)

From (3.9) we directly see the diamagnetic inequality:

|(F, e VRS @) < (|F|, e VA mEm ), (3.10)

From the diamagnetic inequality we have:

(1) Suppose that V is vV—A 4+ m? —m -form bounded with a relative bound
a. Then |V] is also K-form bounded with a relative bound smaller than
a.

(2) Suppose that V is relatively bounded with respect to v—A +m?2 —m
with a relative bound a, then V is also relatively bounded with respect
to K with a relative bound a.

Let w%2p € L?*(R3). Suppose that V = V| — V_ satisfies that V_ is
relatively form bounded with respect to vV—A +m? —m and D(V,) D D(A).
Then Hgy is defined by

Hr=V2K+m2-m+V,o1-V_@1+ 1odl'(w). (3.11)

3.2 Functional integration

Now we will construct the functional integral representation of e *®& through
the Trotter product formula. We fix ¢ > 0. Let t; = tj/2", j = 0,...,2".
Define L?(R*)-valued stochastic process S on 2" x T by

on

Tt'
si=%" / " i f(-— BL)dBE, (3.12)
j=1"Tt;

T
where f € L?(R3) and thtjf_l ---dBY = f:}g ---dBY evaluated at T =T;, , and
S = th.

13



Lemma 3.2 {S£}%2, is a Cauchy sequence in L*(2 < T; #* @v)® L2(R*).
Proof: Set S,, for Sk for simplicity. We can directly see that
24t/2™

[ B84 = 50l <Z / 2B (- ~ )2 -

(2j-1)t/2n

Hence we have

(/de%O[usm—SnPHQ <1 Z j+1

Jj= n+1
and it follows that .S, is a Cauchy sequence. O

We define the L?(R*)-valued stochastic process fOTt -1y, f(- = Bs)dB§ on
the probability space (2" x T, B(2") x By, #* @v) by the strong limit of S}:

T
/ jao-1),f(- — Bs)dBY = s— lim S (3.13)
0

n—oo

Remark 3.3 We give a remark with respect to (3.13). The subordinator
[0,00) 2 t +— T; € [0,00) is monotonously increasing, but not injective. So

the inverse T~ can not be defined. (3.13) is a formal description of the limit
of Si.

Theorem 3.4 Let w3/?p € L*(R3). Suppose that V =V, — V_ satisfies that
V_ is relatively form bounded with respect to v/—A +m? —m and D(V}) D
D(A). Then
(F,e tIRG) = / da "0 [ b VB (3o F(By), e KN 1,G(By,)) | |
(3.14)
re T . 5
where K{*t = @3_, [ jir-1),@(- — Bs)dBE.

Proof: We set V' = 0 for simplicity. By the Trotter product formula we have

(F, e—tHRG) — lim (F, (e_t/27LKe_t/2ndF(w)>2n G) ‘

n—oo

By the Markov property of E; = J;J; the right hand side above is equal to

lim ( JoF, He*tﬂ" VST (e an )2 Fm?—m) | 3,

n—oo
7=0

14



Thus we have

(F,e™G) = Tim | daB"® |(JoF(By), e ) y,G(By))| |

n—oo

where
Tt]/gn
Z/ Jt(j—1)/2 (- — Bs)dB{'.
Tyj—1)/2m

By Lemma 3.2 and a limiting argument we can show the theorem for V"= 0. In
the case of Hg with a bounded continuous V', we can also prove the theorem
by the Trotter product formula. It can be also extended to V = V. — V_
such that V_ is relatively form bounded with respect to v—A + m?2 — m and
D(V4) D D(A) by a limiting argument. O

By using this functional integral representation we can see similar results
to those of H.

Corollary 3.5 Suppose the same assumptions as Theorem 3.4.
(1) Let E(e) = inf Spec(Hg). Then

|(F,e™tn@)| < (|F|,e (V- atmimtdl|g)), (3.15)

In particular E(0) < E(e).

(2) Let & = e "7/AN  Then Ge tHrRG—1 is positivity improving. In partic-
ular the ground state of HR is unique.

3.3 Translation invariant relativistic Pauli-Fierz Hamiltonian

In the case of the relativistic Pauli-Fierz Hamiltonian with V' = 0, we can
also show similar results to those of H by using the functional integral rep-
resentation of e *#® but we omit the detail. We give only the results. The
relativistic Pauli-Fierz Hamiltonian with a fixed total momentum p, Hg(p), is
defined by

Hg(p) =/(p—P; —eA(0))24+m2 —m +dl(w), peRS, (3.16)
with domain D(Hg(p)) = D(dI'(w)) N D(|P¢)).
Theorem 3.6 Suppose w?%¢ € L*(R?).

(1) Hgr(p) is essentially self-adjoint and Hg = fﬂg Hg(p)dp.

15



(2) Let U, ® € 2. Then

(U, e tHR(P) §) = EO0 [eip'BTt (JO\IJ,e—WE(Kiel)Jte—in'BTt @)} . (3.17)
From this functional integral representation we immediately have corollaries.
Let E(p) = inf Spec(Hgr(p)).
Corollary 3.7 (1) It follows that

(W, e HP)p)| < (j@], e (VP-POTmEmmbdl@) 1)), (3.18)

(2) Sl tHR(O)G 5 positivity improving. In particular

(a) E(0) < E(p),
(b) the ground state of Hg(0) is unique if it exists.
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