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1 The Pauli-Fierz Hamiltonian

In this paper we discuss translation invariant nonrelativistic quantum electrodynamics
by functional integrations. We assume that an electron is in low energy, its density of
charge is smoothly localized. In particular, the ultraviolet divergence does not exist.
Let us see some classical model. Let E(t, x) and B(t, x), (t, x) ∈ R× R3, be an electric
field and a magnetic field respectively, and q(t) the position of an electron at time
t ∈ R. The Maxwell equation with form factor ϕ is given by

Ḃ = −∇× E,

∇ ·B = 0,

Ė = ∇×B − eϕ(· − q(t))q̇(t),

∇ · E = eϕ(· − q(t)).

Let (J, ρ) = (eϕ(x− q(t))q̇(t), eϕ(x− q(t))). Then the Lagrangian density is given by

L(t, x) =
1

2
mq̇2 +

1

2
(E2 −B2) + J · A− ρφ, (1.1)

where A and φ are a vector potential and a scalar potential related to E and B such as
E = −Ȧ−∇φ and B = ∇× A. Let L =

∫
R3 L(t, x)dx. Then the conjugate momenta

are given by

p(t) :=
∂L

∂q̇
= mq̇(t) + e

∫
A(t, x)ϕ(x− q(t))dx, Π(t, x) :=

δL

δȦ
= Ȧ(t, x).
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Then the Hamiltonian is given through the Legendre transformation as

Hcl = p · q̇ +
∫
ȦΠdx− L

=
1

2m

(
p− e

∫
A(t, x)ϕ(x− q(t))dx

)2

+
1

2

∫ {
Ȧ(t, x)2 + (∇× A(t, x))2

}
dx+ Vcl(q),

where V is a smeared external potential given by

Vcl(q) :=
1

2
e2
∫ ϕ(q − y)ϕ(q − y′)

4π|y − y′|
dydy′.

We quantized Hcl to define the Pauli-Fierz Hamiltonian.
Let us assume that the dimension of the state space is d and the photon is polarized

to d − 1 directions. Physically reasonable choice is d = 3. Let Fb be the Boson Fock
space over hb := ⊕d−1L2(Rd), i.e., Fb :=

⊕∞
n=0[⊗n

shb], where ⊗n
shb denotes the n-fold

symmetric tensor product of hb with ⊗0
shb := C. Ω = {1, 0, 0, ...} ∈ Fb is called the

Fock vacuum. The annihilation operator and the creation operator on Fb are denoted
by a(f) and a∗(f), f ∈ W , respectively, and are defined by

(a∗(f)Ψ)(n) :=
√
nSn(f ⊗Ψ(n−1)) (1.2)

and a(f) := (a∗(f̄))∗, where Sn denotes the symmetrizer. Let Fb,fin be the finite
particle subspace of Fb. The annihilation operator and the creation operator leave
Fb,fin invariant and satisfy the canonical commutation relations on it:

[a(f), a∗(g)] = (f̄ , g)1, [a(f), a(g)] = 0, [a∗(f), a∗(g)] = 0.

For f = (f1, ..., fd−1) ∈ ⊕d−1L2(Rd), we informally write a](f), where a] stands for a or

a∗, as a](f) =
d−1∑
j=1

∫
a](k, j)fj(k)dk. The quantized radiation field Aµ(x) with a form

factor ϕ is defined by

Aµ(x) =
1√
2

d−1∑
j=1

∫
eµ(k, j)

 ϕ̂(k)√
ω(k)

a∗(k, j)e−ik·x +
ϕ̂(−k)√
ω(k)

a(k, j)eik·x

 dk.
Here e(k, 1), · · · , e(k, d−1) denote generalized polarization vectors satisfying k·e(k, j) =
0 and e(k, i) · e(k, j) = δij1, i, j = 1, ..., d − 1, and ϕ̂ is the Fourier transform of form
factor ϕ. Note that

d−1∑
j=1

eα(k, j)eβ(k, j) = δαβ −
kαkβ

|k|2
:= δ⊥αβ(k), α, β = 1, ..., d.

Thus

(Aµ(x)Ω, Aν(x)Ω)Fb
=

1

2

∫
Rd

|ϕ̂(k)|2

ω(k)
δ⊥µν(k)dk



Translation invariant Hamiltonian 3

holds. Throughout this paper we use Assumption (A) below.
(A) Form factor ϕ̂ satisfies

√
ωϕ̂, ϕ̂/ω ∈ L2(Rd) and ϕ̂(k) = ϕ̂(−k) = ϕ̂(k).

Aµ(x) is essentially self-adjoint on Fb,fin, and its unique self-adjoint extension is
denoted by the same symbol. Next we define the second quantization. Let C(K → L)
be the set of contraction operators from K to L. The second quantization Γ is the
functor:

Γ : C(L2(Rd) → L2(Rd)) → C(Fb → Fb)

given by

Γ(T ) :=
∞⊕

n=0

⊗n(⊕d−1T ).

For a self-adjoint operator h on L2(Rd), {Γ(eith)}t∈R is a strongly continuous one-
parameter unitary group on Fb. Then there exists a unique self-adjoint operator dΓ(h)
on Fb such that Γ(eith) = eitdΓ(h). The number operator is defined by N := dΓ(1). Let
ω(k) = |k| be the multiplication operator on L2(Rd). Define the free Hamiltonian Hrad

on Fb by
Hrad := dΓ(ω). (1.3)

The Hilbert space H of state vectors for the total system under consideration is given
by

H := L2(Rd)⊗Fb. (1.4)

Under the identification H ∼=
∫⊕

Rd Fbdx, we define the self-adjoint operator A on H by
Aµ :=

∫⊕
Rd Aµ(x)dx. The total Hamiltonian H, the so-called Pauli-Fierz Hamiltonian,

is described by

H :=
1

2
(−i∇⊗ 1− eA)2 + V ⊗ 1 + 1⊗Hrad, (1.5)

where e ∈ R is a coupling constant. The proposition below is established in [H00b, H02].

Proposition 1.1 Assume that V is relatively bounded with respect to −∆ with a rela-
tive bound strictly smaller than one. Then H is self-adjoint on D(H0) and essentially
self-adjoint on any core of self-adjoint operator −(1/2)∆⊗ 1 + 1⊗Hrad, and bounded
from below,

Define the field momentum by Pfµ := dΓ(kµ) and the total momentum

PT
µ := −i∇µ ⊗ 1 + 1⊗ Pfµ, (1.6)

where X denotes the closure of closable operator X. Now we set V = 0. Then it is
seen that H is translation invariant;

eisPT
µ He−isPT

µ = H, s ∈ R, µ = 1, ..., d.

Then we can decompose H on σ(PT
µ ) = R. Define

H(P ) :=
1

2
(P − Pf − eA(0))2 +Hrad, P ∈ Rd. (1.7)

Note that H(P ) is a well defined symmetric operator on D(Hrad)∩D(Pf
2) by assump-

tion (A). The next proposition is established in [H06, LMS06].
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Proposition 1.2 H(P ) is self-adjoint on D(Hrad) ∩ (∩d
µ=1D(Pf

2
µ)) and it follows that∫ ⊕

Rd
H(P )dP ∼= H. (1.8)

So H(P ) is our main object and P ∈ Rd is called the total momentum. We want to
investigate spectral properties of H(P ) by making use of functional integrations.

2 Functional integral representations

Let (b(t))t≥0 = (b1(t), · · · , bd(t))t≥0 be the d-dimensional Brownian motion starting at
0 on a probability space (W,B, db). Set Xs := x+ b(s), x ∈ Rd, and dX := dx⊗ db.

2.1 Functional integral representations for e−tH

Let A0(f) be a Gaussian random process on a probability space (Q0,Σ0, µ0) indexed

by real f = (f1, ..., fd) ∈
d
⊕ L2(Rd) with mean zero and covariance given by∫

Q0

A0(f)A0(g)dµ0 = q0(f, g), (2.1)

where

q0(f, g) :=
1

2

d∑
α,β=1

∫
Rd
δ⊥αβ(k)f̂α(k)ĝβ(k)dk.

The existence of probability space (Q0,Σ0, µ0) and Gaussian random variable A0(f)
are known by the Minlos theorem. In a similar way, we can construct two other

Gaussian random variables. Let A1(f) indexed by real f ∈
d
⊕ L2(Rd+1) and A2(f) by

real f ∈
d
⊕ L2(Rd+2) be Gaussian random processes on probability spaces (Q1,Σ1, µ1)

and (Q2,Σ2, µ2), respectively, with mean zero and covariances given by∫
Q1

A1(f)A1(g)dµ1 = q1(f, g),
∫

Q2

A2(f)A2(g)dµ2 = q2(f, g), (2.2)

where

q1(f, g) :=
1

2

d∑
α,β=1

∫
Rd+1

δ⊥αβ(k)f̂α(k, k0)ĝβ(k, k0)dkdk0,

q2(f, g) :=
1

2

d∑
α,β=1

∫
Rd+1+1

δ⊥αβ(k)f̂α(k, k0, k1)ĝβ(k, k0, k1)dkdk0dk1.

From now on q = 0, 1, 2. We extend it for f = fR + ifI with fR = (f + f̄)/2 and
fI = (f − f̄)/(2i) as Aq(f) = Aq(fR) + iAq(fI). The n-particle subspace L2

n(Qq) of
L2(Qq) is defined by

L2
n(Qq) = L.H.{: Aq(f1) · · · Aq(fn) : |fj ∈ L2(Rd+q), j = 1, ..., n}.
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Here : X : denotes the Wick product of X. The identity L2(Qq) = ⊕∞n=0L
2
n(Qq) is

known as the Wiener-Itô decomposition. We also define the second quantization on
L2(Qq). Let Γqq′ : C(L2(Rd+q) → L2(Rd+q′)) → C(L2(Qq) → L2(Qq′)) be defined by

Γqq′T1 = 1, Γq(T ) : Aq(f1) · · · Aq(fn) :=: Aq′([T ]df1) · · · Aq′([T ]dfn) : .

Set Γqq = Γq for simplicity. In particular since {Γq(e
ith)}t∈R with a self-adjoint oper-

ator h on L2(Rd) is a strongly continuous one-parameter unitary group, there exists
a self-adjoint operator dΓq(h) on L2(Qq) such that Γq(e

ith) = eitdΓq(h), t ∈ R. We set
Nq := dΓq(1). Let h be a multiplication operator in L2(Rd). We define the families of
isometries,

L2(Rd)
js−→ L2(Rd+1)

ξt=ξt(h)−→ L2(Rd+2), s, t ∈ R, (2.3)

by

ˆjsf(k, k0) :=
e−isk0

√
π

(
ω(k)

ω(k)2 + |k0|2

)1/2

f̂(k), (k, k0) ∈ Rd × R, (2.4)

ˆξtf(k, k0, k1) :=
e−itk1

√
π

(
h(k)

h(k)2 + |k1|2

)1/2

f̂(k, k0), (k, k0, k1) ∈ Rd × R× R.

Next, define the families of operators Js and Ξt = Ξt(h), s, t ∈ R;

L2(Q0)
Js−→ L2(Q1)

Ξt−→ L2(Q2)

by
Js = Γ01(js), Ξt = Γ12(ξt). (2.5)

Define Aq,µ(f) = Aq(⊕d
`=1δ`µf). We see that dΓ0(−i∇) ∼= Pf and dΓ0(ω(−i∇)) ∼= Hrad.

We can see that H ∼=
∫ ⊕

Rd
L2(Q0)dx i.e., F ∈ H can be regarded as an L2(Q0)-valued

L2-function on Rd. Note that in the Fock representation the test function f̂ of Aµ(f̂)
is taken in the momentum representation, but in the Schrödinger representation, f of
A0,µ(f) in the position representation. We can see that

H ∼=
1

2
(−i∇⊗ 1− eAϕ̃

0 )2 + V ⊗ 1 + 1⊗Hrad,

where ϕ̃ := (ϕ̂/
√
ω)∨. By the Feynman-Kac formula and the fact J∗0Jt = e−tHrad we

can see that

(F, e−t(−(1/2)∆+V +Hrad)G)H =
∫

Rd×W
e−
∫ t

0
V (Xs)ds(J0F (X0), JtG(Xt))L2(Q1)dX.

Adding the minimal perturbation: −i∇µ⊗1 → −i∇µ⊗1−eAϕ̂
0 , we have the functional

integral representation below [H97].

(F, e−tHG)H =
∫

Rd×W
e−
∫ t

0
V (Xs)ds(J0F (X0), e

−ieA1(K[0,t]
1 (x))JtG(Xt))L2(Q1)dX, (2.6)

where K[0,t]
1 (x) := ⊕d

µ=1

∫ t

0
jsϕ̃(· −Xs)dbµ(s) ∈ ⊕dL2(Rd+1).
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2.2 Functional integral representations for e−tH(P )

We now construct the functional integral representation of (Ψ, e−tH(P )Φ)Fb
. We use the

identification Fb
∼= L2(Q0) without notices. For Ψ ∈ L2(Q0), we set Ψt := Jte

−iPf ·b(t)Ψ,
t ≥ 0.

Theorem 2.1 Let Ψ,Φ ∈ Fb. Then

(Ψ, e−tH(P )Φ)Fb
=
∫

W
(Ψ0, e

−ieA1(K[0,t]
1 (0))Φt)L2(Q1)e

iP ·b(t)db, (2.7)

where K[0,t]
1 (0) := ⊕d

µ=1

∫ t

0
jsϕ̃(· − b(s))dbµ(s).

Proof: We show an outline of the proof. See [H06] for detail. Set Fs = ρs ⊗ Ψ ∈
L2(Rd)⊗Fb,fin and Gr = ρr ⊗ Φ ∈ L2(Rd)⊗Fb,fin, where ρs is the heat kernel:

ρs(x) = (2πs)−d/2e−|x|
2/(2s), s > 0. (2.8)

By the fact that H = U−1
(∫⊕

Rd H(P )dP
)
U and Ue−iξ·PT

U−1 =
∫⊕

Rd e−iξ·PdP , we have

(Fs, e
−tHe−iξ·PT

Gr)H =
∫

Rd
dP ((UFs)(P ), e−tH(P )e−iξ·P (UGr)(P ))Fb

, ξ ∈ Rd.

Here (UFs)(P ) = (2π)−d/2
∫

Rd
e−ix·P eix·Pfρs(x)Ψdx. Note that

lim
s→0

(UFs)(P ) =
1√

(2π)d
Ψ (2.9)

strongly in Fb for each P ∈ Rd. Hence we have by the Lebesgue dominated convergence
theorem,

lim
s→0

(Fs, e
−tHe−iξ·PT

Gr)Fb
=

1√
(2π)d

∫
Rd
dP (Ψ, e−tH(P )e−iξ·P (UGr)(P ))Fb

. (2.10)

On the other hand we see that by (2.6)

lim
s→0

(Fs, e
−tHe−iξ·PT

Gr)H =
∫

W
ρr(b(t)− ξ)(J0Ψ, e

−ieA1(K[0,t]
1 (0))Jte

−iξ·PfΦ)L2(Q1)db.

(2.11)

Here we used that
∫

W
dbρr(bt + x − ξ)(J0Ψ, e

−ieA1(K[0,t]
1 (x))Jte

−iξPfΦ) is continuous at

x = 0 and e−iξ·P̃T (ρ(Xt)⊗ Φ) = ρ(Xt − ξ)⊗ e−iξ·PfΦ. Then we obtained by (2.10) and
(2.11) that

1√
(2π)d

∫
Rd
e−iξ·P (Ψ, e−tH(P )(UGr)(P ))Fb

dP

=
∫

W
ρr(b(t)− ξ)(J0Ψ, e

−ieA1(K[0,t]
1 (0))Jte

−iξ·PfΦ)L2(Q1)db. (2.12)
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Since ∫
Rd
‖e−tH(P )UGr(P )‖2

Fb
dP ≤

∫
Rd
‖UGr(P )‖2

Fb
dP = ‖Gr‖2

H <∞,

we have (Ψ, e−tH(·)(UGr)(·))Fb
∈ L2(Rd) for r 6= 0. Then taking the inverse Fourier

transform of both sides of (2.12) with respect to P , we have

(Ψ, e−tH(P )(UGr)(P ))Fb

=
1√

(2π)d

∫
W
db
∫

Rd
dξeiP ·ξρr(b(t)− ξ)(J0Ψ, e

−ieA1(K[0,t]
1 (0))Jte

−iξ·PfΦ)L2(Q1) (2.13)

for almost every P ∈ Rd. Both sides (2.13) are continuous in P , then (2.13) is true for
all P ∈ Rd. Taking r → 0 on both sides of (2.13), we have by the Lebesgue dominated
convergence theorem and (2.9) that

(Ψ, e−tH(P )Φ)Fb
=
∫

W
(J0Ψ, e

−ieA1(K[0,t]
1 (0))Jte

−iPf ·b(t)Φ)L2(Q1)e
iP ·b(t)db = (2.7).

Thus the theorem follows for Ψ,Φ ∈ Fb,fin. Let Ψ,Φ ∈ Fb, and Ψn,Φn ∈ Fb,fin such
that Ψn → Ψ and Φn → Φ strongly as n→∞. Since

|(J0Ψn, e
−ieA1(K[0,t]

1 (0))Jte
−iPf ·b(t)Φn)L2(Q1)| ≤ ‖Ψn‖Fb

‖Φn‖Fb
≤ c

with some constant c independent of n, we have by the Lebesgue dominated convergence
theorem

lim
n→∞

∫
W

(J0Ψn, e
−ieA1(K[0,t]

1 (0))Jte
−iPf ·b(t)Φn)L2(Q1)e

iP ·b(t)db

=
∫

W
(J0Ψ, e

−ieA1(K[0,t]
1 (0))Jte

−iPf ·b(t)Φ)L2(Q1)e
iP ·b(t)db,

and it is immediate that limn→∞(Ψn, e
−tH(P )Φn)Fb

= (Ψ, e−tH(P )Φ)Fb
. Hence (2.7) is

proven. qed

2.3 Applications

Let L2
fin(Qq) :=

∞⋃
N=0

[⊕N
n=0L

2
n(Qq)] and T a self-adjoint operator on L2(Rd+q). Let us

define the operator Πq,µ(Tf) on L2
fin(Qq) by

Πq,µ(Tf) := i[dΓq(T ),Aq,µ(f)]

for f ∈ D(T ). In the case f is real-valued, Πq,µ(Tf) is a symmetric operator. The
self-adjoint extension of Πq,µ(f) with real f is denoted by the same symbol.

Let K+ := {Ψ ∈ L2(Q0)|Ψ ≥ 0} and K0
+ := {Ψ ∈ K+|Ψ > 0}. It is well known that

eiPf ·vK+ ⊂ K+ for v ∈ Rd. Fundamental fact is that for real f ∈ L2(Rd+1),

J∗0e
iΠ1,µ(f)Jt[K+ \ {0}] ⊂ K0

+, (2.14)

i.e., J∗0e
iΠ1,µ(f)Jt is positivity improving. See [H00a]. We define ϑ := exp

(
iπ

2
N
)
.



8 Translation invariant Hamiltonian

Theorem 2.2 ϑe−tH(0)ϑ−1 is positivity improving.

Proof: Let Ψ,Φ ∈ K+ \ {0}. It is seen that

(Ψ, ϑe−tH(0)ϑ−1Φ)Fb
=
∫

W
(Ψ, J∗0e

−ieΠ1(K[0,t]
1 (0))Jte

−iPf ·b(t)Φ)L2(Q0)db. (2.15)

Here we used the facts that Jte
−iPf ·b(t)e−i(π/2)N = e−i(π/2)ÑJte

−iPf ·b(t) and

ei(π/2)Ñe−ieA1(f)e−i(π/2)Ñ = e−ieΠ1(f),

where Ñ = dΓ1(1). Since J∗0e
−ieΠ1(K[0,t]

1 (0))Jte
−iPf ·b(t) is positivity improving for each

b ∈ W , specifically the integrand in (2.15) is strictly positive for each b ∈ W . Hence the
right-hand side of (2.15) is strictly positive, which implies that ϑe−tH(0)ϑ−1K+ \ {0} ⊂
K0

+. Thus the theorem follows. qed

Immediate corollaries are as follows.

Corollary 2.3 The ground state ϕg(0) of H(0) is unique up to multiple constants, if
it exists, and it can be taken as ϑϕg(0) > 0 in the Schrödinger representation.

Corollary 2.4 It follows that

|(Ψ, e−tH(P )Φ)Fb
| ≤ (|Ψ|, e−t( 1

2
Pf

2+Hrad)|Φ|)L2(Q0), (2.16)

|(Ψ, ϑe−tH(P )ϑ−1Φ)Fb
| ≤ (|Ψ|, ϑe−tH(0)ϑ−1|Φ|)L2(Q0). (2.17)

Proof: When L is positivity preserving, we have |LΨ| ≤ L|Ψ|. Furthermore,

|(Ψ, e−tH(P )Φ)Fb
| ≤

∫
W

(J0|Ψ|, Jte
−iPf ·b(t)|Φ|)L2(Q1)db = (|Ψ|, e−t( 1

2
Pf

2+Hrad)|Φ|)L2(Q0)

where we used that b(t) is Gaussian with
∫
|bµ(t)|2db = 1/2. Thus (2.16) follows. We

have

(Ψ, ϑe−tH(P )ϑ−1Φ)Fb
=
∫

W
(Ψ0, e

−ieΠ1(K[0,t]
1 (0))Φt)L2(Q1)e

iP ·b(t)db. (2.18)

Then

|(Ψ, ϑe−tH(P )ϑ−1Φ)Fb
| ≤ (|Ψ|, ϑe−tH(0)ϑ−1|Φ|)L2(Q0).

Hence (2.17) follows. qed

Let E(P, e2) = inf σ(H(P )).

Corollary 2.5 (1) 0 = E(0, 0) ≤ E(0, e2) ≤ E(P, e2), (2) Assume that the ground
state ϕg(0) of H(0) exists for e ∈ [0, e0) with some e0 > 0. Then E(0, e2) is concave,
continuous and monotonously increasing function on e2, (3) E(0, e2) ≤ inf σ(H).
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Proof: (2.17) implies |(Ψ, ϑe−tH(P )ϑ−1Ψ)Fb
| ≤ e−tE(0,e2)‖Ψ‖2

Fb
. Since ϑ is unitary, (1)

follows. Let ϕg(0) be the ground state ofH(0). Thus by Corollary 2.3, (1, ϕg(0))L2(Q0) 6=
0. Hence

E(0, e2) = lim
t→∞

−1

t
log(Ω, e−tH(0)Ω)Fb

= lim
t→∞

−1

t
log

∫
W
e−

e2

2
q0(K[0,t]

1 (0),K[0,t]
1 (0))db.

Since e−
e2

2
q0(K[0,t]

1 (0),K[0,t]
1 (0)) is log convex on e2, E(0, e2) is concave. Then E(0, e2) is

continuous on (0, e0). Since E(0, e2) is also continuous at e2 = 0 by the fact that H(0)
converges as e2 → 0 in the uniform resolvent sense, E(0, e2) is continuous on [0, e0).

Then E(0, e2) can be expressed as E(0, e2) =
∫ e2

0 φ(t)dt with some positive function φ.
Thus E(0, e2) is monotonously increasing on e2. Then (2) is obtained. We have

(F, (1⊗ ϑ)e−tH(1⊗ ϑ−1)G)H =
∫

Rd
dP (F (P ), ϑe−tH(P )ϑ−1G(P )))Fb

.

Then by (2.17) it is seen that

|(F, (1⊗ ϑ)e−tH(1⊗ ϑ−1)F )H| ≤ e−tE(0,e2)
∫

Rd
dP‖F (P )‖2

Fb
= e−tE(0,e2)‖F‖2

H.

Thus (3) follows. qed

3 The n point Euclidean Green functions

The functional integral representations derived in the previous section can be extended
to the n point Euclidean Green functions.

Theorem 3.1 Let K = dΓ(h) with a multiplication operator h in L2(Rd). We assume
that Φ0,Φm ∈ Fb and Φj ∈ F∞

b for j = 1, ...,m − 1 with Φj = Φj(A(f j
1 ), · · · , A(f j

nj
)).

Then for P0, · · · , Pm−1 ∈ Rd,

(Φ0,
m∏

j=1

e−(sj−sj−1)Ke−(tj−tj−1)H(Pj−1)Φj)Fb

=
∫

W
(Φ̂0, e

−ieA2(K2(0))
m∏

j=1

Φ̂j)L2(Q2)e
+i
∑m

j=1
(b(tj)−b(tj−1))Pj−1db, (3.1)

where K2(0) := ⊕d
µ=1

m∑
j=1

∫ tj

tj−1

ξsj
js ˜̂ϕ(· − b(s))dbµ(s) and

Φ̂j := Ξsj
Jtje

−iPf ·b(tj)Φj = Φj

(
A2

(
ξsj
jtjf

j
1 (· − b(tj))

)
, · · · ,A2

(
ξsj
jtjf

j
nj

(· − b(tj))
))
.
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Proof: See [H06] for detail.
We shall show some applications of Theorem 3.1, by which we can construct a se-

quence of measures on W converging to (ϕg(P ), Tϕg(P ))Fb
for some bounded operator

T . In particular T = e−βN and T = e−iA(f) are taken as examples. It is known that
H(P ) has a unique ground state ϕg(P ) and (ϕg(P ),Ω)Fb

6= 0 for sufficiently small e.

Corollary 3.2 We suppose that H(P ) has the unique ground state ϕg(P ) and it sat-
isfies (ϕg(P ),Ω)Fb

6= 0. Then for β > 0,

(ϕg(P ), e−βNϕg(P )) = lim
t→∞

∫
W
e(e

2/2)(1−e−β)D(t)eiP ·b(2t)dµ2t,

where D(t) := q1(K[0,t]
1 (0),K[t,2t]

1 (0)) and µ2t is a measure on W given by

dµ2t :=
1

Z
e−(e2/2)q1(K[0,2t]

1 (0),K[0,2t]
1 (0))db

with normalizing constant Z such that
∫
W eiP ·b(2t)dµ2t = 1.

Proof: We define the family of isometries ξs = ξs(1), s ∈ R, by (2.3). By Theorem 3.1
we have

(e−tH(P )Ω, e−βNe−tH(P )Ω)Fb
=

∫
W
dbeiP ·b(2t)(1, e−ieA2(ξ0K[0,t]

1 (0)+ξβK
[t,2t]
1 (0))1)L2(Q2)

=
∫

W
dbeiP ·b(2t)e−(e2/2)q2(ξ0K[0,t]

1 (0)+ξβK
[t,2t]
1 (0)).

Noticing that q2(ξsf, ξtg) = e−|s−t|q1(f, g), we have

q2(ξ0K[0,t]
1 (0) + ξβK[t,2t]

1 (0)) = q1(K[0,2t]
1 (0),K[0,2t]

1 (0))− (1− e−β)q1(K[0,t]
1 (0),K[t,2t]

1 (0)).

Then
(e−tH(P )Ω, e−βNe−tH(P )Ω)

(e−tH(P )Ω, e−tH(P )Ω)
=
∫

W
e(e

2/2)(1−e−β)D(t)eiP ·b(2t)dµ2t. (3.2)

The corollary follows from (3.2) and

s− lim
t→∞

e−tH(P )Ω

‖e−tH(P )Ω‖Fb

=
(ϕg(P ),Ω)Fb

|(ϕg(P ),Ω)Fb
|
.ϕg(P )

qed

Corollary 3.3 Assume the same assumptions as in Corollary 3.2. Then

(ϕg(P ), e−iA(f)ϕg(P ))Fb
= lim

t→∞

∫
W
e−eq1(K[0,2t]

1 (0),f t)− 1
2
q0(f,f)eiP ·b(2t)dµ2t, (3.3)

where f t := ⊕d
µ=1jtfα(· − b(t)).
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Proof: We have by Theorem 3.1

(ϕg(P ), e−iA(f)ϕg(P ))Fb
= lim

t→∞

(e−tH(P )Ω, e−iA(f)e−tH(P )Ω)Fb

(e−tH(P )Ω, e−tH(P )Ω)Fb

= lim
t→∞

1

Z

∫
W
dbeiP ·b(2t)(1, e−i(eA1(K[0,2t]

1 (0))+A1(jtf))1)L2(Q1)

= lim
t→∞

1

Z

∫
W
dbeiP ·b(2t)e−

1
2
q1(eK[0,2t]

1 (0)+f t).

Note that q1(f
t, f t) = q0(f, f). Then the corollary follows. qed

Remark 3.4 It is informally written as

q1(K[S,T ]
1 (0),K[S′,T ′]

1 (0))

=
1

2

d∑
α,β=1

∫ T

S
dbα(s)

∫ T ′

S′
dbβ(r)

∫
Rd
δ⊥αβ(k)

|ϕ̂(k)|2

ω(k)
e−|s−r|ω(k)e−ik(b(s)−b(r))dk.

and

q1(K[0,2t]
1 (0), f t) =

1

2

d∑
α,β=1

∫ 2t

0
dbα(s)

∫
Rd
δ⊥αβ(k)

ϕ̂(k)√
ω(k)

f̂β(k)eik·(b(s)−b(t))e−|s−t|ω(k)dk.

4 The Pauli-Fierz Hamiltonian with spin 1/2

Let us include the spin of the electron. Let d = 3 and σ1, σ2, σ3 be the 2 × 2 Pauli
matrices given by

σ1 :=

(
0 1
1 0

)
, σ2 :=

(
0 −i
i 0

)
, σ3 :=

(
1 0
0 −1

)
.

The Pauli-Fierz Hamiltonian with spin 1/2 is defined by

Hσ(P ) =
1

2
(P − Pf − eA(0))2 +Hrad −

e

2

3∑
µ=1

σµBµ(0),

where B(0) = rotA(x). Although Hσ(P ) acts on C2⊗Fb, it can be reduced to the self-
adjoint operator on L2(Z/2Z;Q0). The functional integral representation of e−tHσ(P )

can be also constructed by making use of 3 + 1 dimensional Lévy process (b(t), Nt)
with values in R3× (N∪{0}), where Nt denotes the Poisson process on a measure space
(S,Σ, PP) with EPP

[Nt = N ] = e−ttN/N !. For σ ∈ Z/2Z we define σt = σ(−1)Nt . Let
Bq(x) = rotAq(x). The net result is
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Theorem 4.1 Let Φ,Ψ ∈ L2(Z/2Z;Q0). Then

(Φ, e−tHσ(P )Ψ) = lim
ε→0

et
∑

σ∈Z/2Z

∫
W×S

db⊗dPP

[
eiP ·b(t)

∫
Q1

dµ1J0Φ(σ)eXε
tJte

−iPf ·b(t)Ψ(σt)
]
,

(4.1)
where

Xt = −ie
3∑

µ=1

∫ t

0
A1,µ(λ(· − b(s)))dbµs −

∫ t

0
(−e

2
)σsB1,3(jsλ(· − b(s)))ds

+
∫ t+

0
log (−Hod(b(s),−σs−, s)− εψε(Hod(b(s),−σs−, s))) dNs

and
Hod(x,−σ, s) =

e

2
(B1,1(jsλ(· − b(s))− iσB1,2(jsλ(· − b(s)))

with the indicator function ψε(x) =

{
1, |x| < ε/2,
0, |x| ≥ ε/2.

Proof: See [HL07] for detail. qed
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