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1 Feynman-Kac type formula

This is a continuation of [Hir97, Hir05]. In this article we are concerned with a

Feynman-Kac type formula in quantum field theory. In particular we investigate the

so called Pauli-Fierz Hamiltonian HPF with spin 1/2 in nonrelativistic QED. Since the

model includes spin, we need the 3 + 1 dimensional Levy process,

(ξt)t≥0 = (Bt, Nt)t≥0,

to construct the Feynman-Kac type formula, where Bt denotes the 3 dimensional Brow-

nian motion and Nt a Poisson process taking dichotomic values. Then the Levy process

ξt takes values in R3 × Z2, where Z2 denotes the additive group with degree two. The

Pauli-Fierz Hamiltonian [Hir04, Spo04] describes a minimal interaction between non-

relativistic electrons and a quantized radiation field in the Coulomb gauge. Specifically

we impose an ultraviolet cutoff on it. The field quanta of the quantized radiation field

are massless bosons referred to as photons. While electrons are assumed to be in low

energy and treated as quantum mechanical particles. Then the number of electrons

are conserved, and for simplicity it is assumed to be one in this paper. The quantized

radiation field is described by an infinite dimensional Gaussian random process

(A1(jtf))f∈L2(R3),t∈R.
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2 The Pauli-Fierz model with spin 1/2

Then combining the Levy process ξt and the Gaussian random process A1µ(jtf), we

construct the Feynman-Kac type formula. In the spinless case the functional integral

representation of the heat semigroup is established by [Hir97] and in the translation

invariant case by [Hir06]. Here we extend them to the Hamiltonian including spin 1/2.

2 Definition of the model

2.1 Fundamental facts

Let us begin with defining the Pauli-Fierz Hamiltonian as a self-adjoint operator on

some Hilbert space. Let hph := L2(R3×{−1, 1}) denote the Hilbert space of one-particle

states of photons, where R3 × {−1, 1} 3 (k, j) is the momentum and the polarization

of photon, respectively. The Boson Fock space, Fb, over hph is defined by

Fb :=
∞⊕

n=0

[
n⊗

sym

hph

]
,

where
⊗n

sym denotes n-fold symmetric tensor product with
⊗0

sym hph := C. Fb is the

Hilbert space with the scalar product (Ψ,Φ)Fb
:=
∑∞
n=0(Ψ(n),Φ(n))⊗nhph

. Let us define

the free Hamiltonian Hrad on Fb, which is given as the infinitesimal generator of a one-

parameter unitary group. This unitary group is provided through second quantization

and the second quantization through the functor Γ. The set of contraction operators

from X to Y is denoted by C(X → Y ). We define the functor Γ,

Γ : C(L2(R3)→ L2(R3))→ C(Fb → Fb),

by Γ(T ) :=
⊕∞
n=0 T ⊗ · · · ⊗ T︸ ︷︷ ︸

n

, where T ⊗ · · · ⊗ T︸ ︷︷ ︸
0

is the identity operator. Particulary

for the self-adjoint operator h on hph, Γ(eith), t ∈ R, is the strongly continuous one-

parameter unitary group on Fb. Then there exists the unique self-adjoint operator

dΓ(h) such that

Γ(eith) = eitdΓ(h), t ∈ R.

dΓ(h) is called the second quantization of h. Now we define Hrad. Let ωb be the

multiplication operator on hph defined by ωb : f 7−→ ωb(k)f(k, j) = |k|f(k, j). Then
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Hrad := dΓ(ωb) and the spectrum of Hrad is [0,∞) with the simple eigenvalue {0}. Of

course the semigroup e−tHrad can be also expressed as e−tHrad = Γ(e−tωb). Next we define

the annihilation operator and the creation operator on Fb. With each f ∈ hph, one

associates the creation operator a†(f) defined by (a†(f)Ψ)(n) =
√
nSn(f⊗Ψ(n−1)) where

Sn is the symmetrizer. The domain of a†(f) is maximally defined. The annihilation

operator a(f) is defined to be the adjoint of a†(f̄): a(f) = (a†(f̄))∗. We symbolically

write as a](f) =
∑
j=±1

∫
f(k, j)a](k, j)dk. The operators a†(f) and a(f) obey the

canonical commutation relations;

[a(f), a†(g)] = (f̄ , g)1, [a(f), a(g)] = 0, [a†(f), a†(g)] = 0.

Let us define a quantized radiation field. Since the radiation field is quantized in the

Coulomb gauge, polarization vectors are introduced. Let e(k,+1) and e(k,−1) be

polarization vectors, i.e., e(k,−1), e(k,+1), k/|k|, k 6= 0, form the right-handed system

in R3 with e(k,−1) × e(k,+1) = k/|k|, e(k, j) · e(k, j′) = δjj′ and e(k, j) · k/|k| = 0.

Thus the quantized radiation field with ultraviolet cutoff ϕ̂ is defined by

Aϕ̂,µ(x) :=
1√
2

∑

j=±1

∫
eµ(k, j)(

ϕ̂(k)√
ωb(k)

a†(k, j)e−ik·x +
ϕ̂(−k)√
ωb(k)

a(k, j)e+ik·x)dk.

Here ϕ̂ denotes the Fourier transform of ϕ, and ϕ̂/
√
ωb ∈ L2(R3) is assumed. By

k · e(k, j) = 0, the Coulomb gauge condition,
∑3
µ=1[∂xµ , Aϕ̂µ(x)] = 0, is obeyed. We

assume that ϕ̂(k) = ϕ̂(−k) = ϕ̂(k). Then Aϕ̂,µ(x) is symmetric. The states of one

electron coupled to the quantized radiation field are vectors of the composition of

L2(R3
x;C

2) and Fb:

H := L2(R3
x;C

2)⊗Fb.

To define the quantized radiation field on H, we identify H with the set of C2 ⊗ Fb-

valued L2 function on R3
x. Then Aϕ̂µ is given by (Aϕ̂,µF )(x) = Aϕ̂,µ(x)F (x). Now we

are in the position to define the Pauli-Fierz Hamiltonian, which is given by

HPF :=
1

2




3∑

j=1

σj(−i∇j ⊗ 1− eAϕ̂,j)



2

+ V ⊗ 1 + 1⊗Hrad, (2.1)
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where e ∈ R is a coupling constant, V denotes an external potential and σj, j = 1, 2, 3,

are the usual 2× 2 Pauli matrices given by

σ1 :=

[
0 1
1 0

]
, σ2 :=

[
0 −i
i 0

]
, σ3 :=

[
1 0
0 −1

]
.

Using the formula 1 σµσν = δµν + i
∑3
γ=1 ε

µνγσγ, we can rewite (2.1) as

HPF =
1

2
(−i∇− eAϕ̂)2 + V +Hrad − e

2

3∑

j=1

σjBϕ̂j,

where we omit ⊗ for notational convenience and Bϕ̂(x) = rotxAϕ̂(x). Explicitly

Bϕ̂µ(x) =
−i√

2

∑

j=±1

∫
(k × e(k, j))µ(

ϕ̂(k)√
ωb(k)

a†(k, j)e−ik·x − ϕ̂(−k)√
ωb(k)

a(k, j)eik·x)dk.

The fundamental assumption to guarantee the self-adjointness of HPF is as follows.

Assumption 2.1 (1)
√
ωbϕ̂, ϕ̂/ωb ∈ L2(R3) and ϕ̂(k) = ϕ̂(−k) = ϕ̂(k). (2) V is

relatively bounded with respect to (−1/2)∆ with a relative bound strictly smaller than

one.

Under Assumption 2.1, it is established in [Hir00b, Hir02] that HPF is self-adjoint on

D(−∆) ∩D(Hrad) and bounded from below. Moreover it is essentially self-adjoint on

any core of −(1/2)∆ + V +Hrad.

2.2 Symmetry and polarization

In this subsection we discuss the symmetry of HPF. See [Hir06] for detail. When the

form factor ϕ̂ and the external potential V are translation invariant, i.e., ϕ̂(Rk) = ϕ̂(k)

and V (Rx) = V (x) for arbitrary R ∈ O(3), then HPF has the symmetry:

SU(2)⊗Oparticle(3)⊗Ofield(3)⊗ helicity,

where SU(2) and Oparticle(3) come from spin and the angular momentum of the par-

ticle, respectively, Ofield(3) and helicity from the angular momentum and the helic-

ity of photons, respectively. Let R ∈ SO(3) and k̂ = k/|k|. Two orthogonal bases

1εµνγ is the antisymmetric tensor with ε123 = 1.
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e(Rk, 1), e(Rk,−1), R̂k and Re(k, 1), Re(k,−1), Rk̂ in R3 at k satisfy



e(Rk, 1)
e(Rk,−1)

R̂k


 =



cos θ13 − sin θ13 0
sin θ13 cos θ13 0

0 0 13






Re(k, 1)
Re(k,−1)

Rk̂


 , (2.2)

where 13 denotes the 3× 3 unit matrix and θ := θ(R, k) := arccos(Re(k, 1) · e(Rk, 1))

Let R = R(φ, n) ∈ SO(3) be the rotation around n ∈ S2 := {k ∈ R3||k| = 1} by angle

φ ∈ R and detR = 1. Also, let `k := k × (−i∇k) = (`k1, `k2, `k3) be the triplet of

angular momentum operators in L2(R3
k). Then (2.2) is rewritten as

eiθ(R,k)Xeiφn·`k
[
e(k, 1)
e(k,−1)

]
=

[
R 0
0 R

] [
e(k, 1)
e(k,−1)

]
, (2.3)

where X = −i
[

0 −13

13 0

]
. To discuss the symmetry of HPF, we introduce coherent

polarization vectors in some direction. We have Assumption (P) as follows.

(P) There exists (n,w) ∈ S2 × Z such that polarization vectors e(·, 1) and e(·,−1)

satisfy for arbitrary R = R(n, φ) ∈ SO(3) and k̂ 6= n,

[
e(Rk, 1)
e(Rk,−1)

]
=

[
cos(φw)13 − sin(φw)13

sin(φw)13 cos(φw)13

] [
R 0
0 R

] [
e(k, 1)
e(k,−1)

]
(2.4)

or for each µ = 1, 2, 3,

[
eµ(Rk, 1)
eµ(Rk,−1)

]
=

[
cos(φw) − sin(φw)
sin(φw) cos(φw)

] [
(Re(k, 1))µ

(Re(k,−1))µ

]
. (2.5)

By assuming (P), we have by (2.5),

exp
{
iφ
(
wX̃ + n · `k

)} [ eµ(k, 1)
eµ(k,−1)

]
=

[
(Re(k, 1))µ

(Re(k,−1))µ

]
, (2.6)

where X̃ = −i
[
0 −1
1 0

]
: R2 → R2. Here is an example for polarization vectors satisfying

Assumption (P).

Example 2.2 Let n ∈ S3, and e(k,−1) := k̂×n/ sin θ and e(k,+1) := (k/|k|)×e(k, 1),

where θ = arccos(k̂ ·n). Then, since R = R(n, φ) satisfies that Rn = n and Ru×Rv =

R(u× v), e(k, j) obeys (2.4) with (n, 0) ∈ S2 × Z.
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Assume (P) with some (n,w) ∈ S2 × Z. We define Sf := dΓ(wX) and Lf := dΓ(`k).

Here X := −i
[
0 −1
1 0

]
: L2(R3) ⊕ L2(R3) −→ L2(R3) ⊕ L2(R3). Sf is called the helicity

of the field and Lf the angular momentum of the field. Define Jf := n · Lf + Sf . Then

we have for translation invariant f ,

eiφJfa](fe−ik·x
[
eµ(1)
eµ(−1)

]
)e−iφJf = a](feiφ(X̃+n`k)e−ik·x

[
eµ(1)
eµ(−1)

]
)

= a](fe−iRk·x
[

(Re(1))µ
(Re(−1))µ

]
) =

3∑

ν=1

Rµνa
](fe−ik·R

−1x

[
eν(1)
eν(−1)

]
), (2.7)

where R = R(φ, n). Let Jp := n · `x + 1
2
n · σ be the angular momentum plus spin for

the particle, and define

Jtotal := Jp ⊗ 1 + 1⊗ Jf .

Lemma 2.3 Assume (P) and that ϕ̂ and V are translation invariant. Then for arbi-

trary φ ∈ R,

eiφJtotalHPFe
−iφJtotal = HPF.

Proof: By eiφJf = eiφSfeiφn·Lf , (2.6) and (2.7), we see that (R = R(n, φ))

eiφJfHrade
−iφJf = Hrad, eiφJfPfµe

−iφJf = (RPf)µ,
eiφJfAϕ̂µ(x)e−iφJf = (RAϕ̂(R−1x))µ, eiφn·`xxµe−iφn·`x = (Rx)µ,

eiφn·`x(−i∇x)µe
−iφn·`x = (R(−i∇x))µ, eiφn·(1/2)σσµe

−iφn·(1/2)σ = (Rσ)µ.

Then we complete the proof. qed

Note that σ(n · (`x + (1/2)σ)) = Z1/2, σ(n ·Lf) = Z and σ(Sf) = Z. Then σ(Jtotal) =

Z1/2 and we have the theorem below.

Theorem 2.4 We assume the same assumptions as in Lemma 2.3. Then H and HPF

are decomposed as H =
⊕

z∈Z1/2
H(z) and HPF =

⊕
z∈Z1/2

HPF(z). Here H(z) is the

subspace spanned by eigenvectors of Jtotal with eigenvalue z ∈ Z1/2 and HPF(z) =

HPFdH(z).

Proof: This follows from Lemma 2.3 and the fact that σ(Jtotal) = Z1/2. qed

Next we consider incoherent polarization vectors. However we can show that the

Pauli-Fierz Hamiltonians with different polarization vectors are isomorphic with each
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others. We will see it below. Let e(1), e(−1) and η(1), η(−1) be polarization vectors.

The Pauli-Fierz Hamiltonian with polarization vector e(1), e(−1) (resp. η(1), η(−1))

is denoted by HPFe (resp. HPFη).

Lemma 2.5 HPFe and HPFη are isomorphic.

Proof: We learned it from [Sas06]. Since both polarization vectors form orthogonal

base on the plan perpendicular to the vector k, there exists θk such that
[
e(k, 1)
e(k,−1)

]
=

[
cos θk13 − sin θk13

sin θk13 cos θk13

] [
η(k, 1)
η(k,−1)

]
or

[
eµ(k, 1)
eµ(k,−1)

]
= Rk

[
ηµ(k, 1)
ηµ(k,−1)

]
,

where Rk =

[
cos θk − sin θk
sin θk cos θk

]
. Define R : hph → hph by R

[
f
g

]
(k) = Rk

[
f(k)
g(k)

]
and

U : Fb → Fb by the second quantization of R, i.e., U := Γ(R). Then U is the unitary

on Fb. Note that R

[
ηµ(1)f
ηµ(−1)f

]
=

[
feµ(1)
feµ(−1)

]
which implies that UHPFηU

−1 = HPFe.

Hence the lemma follows. qed

Combining Lemma 2.5 and Theorem 2.4, we have the corollary below.

Corollary 2.6 Suppose that ϕ̂ and V are translation invariant. Then HPF with arbi-

trary polarization vectors is isomorphic to
⊕
z∈Z1/2

HPF(z), where HPF(z) is defined in

Theorem 2.4.

2.3 Q-representations and dichotomic variables

To construct the functional integral representation, we have to take Q-representation of

HPF instead of the Fock representation. To introduce Q-representation, we define a bi-

linear form and construct the Gaussian random process with mean zero and covariance

given by this bilinear form. Let us define the field operator Aµ(f̂) by

Aµ(f̂) :=
1√
2

∑

j=±1

∫
eµ(k, j)(f̂(k)a†(k, j) + f̂(−k)a(k, j))dk

and 3 × 3 matrix D(k), k 6= 0, by D(k) := (δµν − kµkν/|k|2)1≤µ,ν≤3. Note that
∑
j=±1 eµ(k, j)eν(k, j) = Dµν(k). Then the bilinear form q0 : ⊕3L2(R3)×⊕3L2(R3)→ C

is given by

q0(f, g) :=
3∑

µ,ν=1

(Aµ(fµ)Ωb, Aν(gν)Ωb)Fb
=

1

2

∫

R3
f̂(k) ·D(k)ĝ(k)dk.
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Just as the Euclidean free field is exhibited as a kind of path integrals over the free

Minkowski field in constructive quantum field theory [Sim74, Theorem III.6], we intro-

duce an additional bilinear form q1 to define an additional Gaussian random process.

The bilinear form q1 : ⊕3L2(R3+1)×⊕3L2(R3+1)→ C is given by

q1(F,G) :=
1

2

∫

R3+1
F̂ (k, k0) ·D(k)Ĝ(k, k0)dkdk0.

From now on β stands for 0 or 1. Let Srβ := ⊕3Sr(R3+β), where Sr(R3+β) denotes the

set of real-valued Schwartz test functions. Define

Cβ(f) := exp(−qβ(f, f)), f ∈ Srβ.

It is immediate to check that (1)
∑n
i,j=1 z̄izjCβ(fi − fj) ≥ 0 for zi ∈ C, i = 1, ..., n, (2)

Cβ(g) is strongly continuous in g, (3) Cβ(0) = 1. Let 〈φ, f〉β denote the pairing between

Qβ := Sr
′
β and Srβ. By the Bochner-Minlos theorem there exists a probability space

(Qβ,BQβ , µβ) such that BQβ is the smallest σ-field generated by {〈φ, f〉β, f ∈ Srβ} and

〈φ, f〉β is the Gaussian random variable with mean zero and the covariance given by

∫

Qβ
ei〈φ,f〉βdµβ(φ) = e−qβ(f,f), f ∈ Srβ. (2.8)

For a general f = fRe + ifIm ∈ ⊕3S(R3+β), we set 〈φ, f〉β := 〈φ, fRe〉β + i〈φ, fIm〉β.

Since S(R3+β) is dense in L2(R3+β) and

∫

Qβ
|〈φ, f〉β|2dµβ(φ) ≤ ‖f‖2

⊕3L2(R3+β)

by (2.8), we can define 〈φ, f〉β for f ∈ ⊕3L2(R3+β) by a limiting argument.

So we define the multiplication operator Aβ(f) labeled by f ∈ ⊕3L2(R3+β) in

L2(Qβ) by (Aβ(f)F ) (φ) := 〈φ, f〉βF (φ) for φ ∈ Qβ. We denote the identity functions

in L2(Qβ) by 1Qβ and the function Aβ(f)1Qβ by Aβ(f) unless confusion may arise. It

is known that L2(Qβ) is divided in the infinite direct sum as

L2(Qβ) =
∞⊕

n=0

L2
n(Qβ),

where L2
n(Qβ) = L.H.{:Aβ(f1) · · · Aβ(fn):|fj ∈ ⊕3L2(R3+β), j = 1, 2, ..., n}, n ≥ 1, with

L2
0(Qβ) = {α1Qβ |α ∈ C} and :X: denotes the Wick product. Next let us define the
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second quantization Γββ′ on Q-representation, which is also the functor

Γββ′ : C(L2(R3+β)→ L2(R3+β′))→ C(L2(Qβ) :→ L2(Qβ′))

defined by

Γββ′(T )1Qβ := 1Qβ′ , Γββ′(T ):Aβ(f1) · · · Aβ(fn): = :Aβ′(Tf1) · · · Aβ′(Tfn):.

Simply we write as Γβ for Γββ. For each self-adjoint operator h in L2(R3+β), Γβ(eith)

is the one parameter unitary group. Then Γβ(eith) = eitdΓβ(h), t ∈ R, for the unique

self-adjoint operator dΓβ(h) in L2(Qβ). Thus we can see that Fb, Aµ(f̂) and dΓ(h)

are isomorphic to L2(Q0), A0(⊕3
ν=1δµνf) and dΓ0(ĥ), respectively, where ĥ = FhF−1

and F denotes the Fourier transform on L2(R3). This isomorphism maps HPF to the

self-adjoint operator on L2(R3;C2)⊗L2(Q0). We will see it bellow. Let λ := (ϕ̂/
√
ωb)∨

and A0µ(λ(· − x)) := A0(⊕3
ν=1δµνλ(· − x)). Then we have H ∼= L2(R3;C2) ⊗ L2(Q0)

and

HPF
∼= 1

2
(−i∇− eA0)2 + V + dΓ0(ωb(−i∇))− e

2

3∑

j=1

σjB0j

=
1

2
(−i∇− eA0)2 + V + dΓ0(ωb(−i∇))− e

2

[
B03 B01 − iB02

B01 + iB02 −B03

]
. (2.9)

In this representation Aϕ̂µ and Bϕ̂ν are transformed to the multiplication operator

A0µ and B0ν , respectively. From now on we write the right-hand side of (2.9) (resp.

dΓ0(ω(−i∇)) as HPF (resp. Hrad) without confusion may arises. Preserving the discrete

structure of spin components as discrete random variables, we introduce dichotomic

variable σ with values in the additive group Z2 = {−1, 1}. Then the Hamiltonian under

consideration is the self-adjoint operator on the Hilbert space

H̃ := L2(R3×Z2)⊗ L2(Q0)

defined by

(HPFF )(σ) =
{

1

2
(−i∇− eA0)2 + V +Hrad − e

2
σB03

}
F (σ)−elog[ e

2
(B01+i(−σ)B02)]F (−σ).

(2.10)

In the last term we take log z = log |z| + i arg z, 0 ≤ arg z < 2π. The right-hand

side of (2.10) is our main object, i.e., we want to construct the functional integral

representation of semigroup generated by this.
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3 Functional integral representation of e−tHPF

3.1 Levy processes

Let us begin with defining notation on the wiener measure and the Brownian motion.

Let (Bt)t≥0 = (Bi,t)t≥0,1≤i≤3 be the three dimensional Brownian motion on (W,BW , P x)

with the natural filtration Ft = σ(Bs, s ≤ t), t ≥ 0, where W = C([0,∞);R3) and P x

denotes the wiener measure such that P x(B0 = x) = 1. I.e., Bi,t(w) = wi(t) for

w = (w1, w2, w3) ∈W .

In order to construct a Feynman-Kac type formula of e−tHPF , in addition to the

Brownian motion, we need a Poisson point process. Here we explain minimum prop-

erties of Poisson point processes and counting measures we need. Let (S,S, P ) be a

probability space with a right-continuous increasing family of sub σ-fields (St)t≥0. Let

EP denote the expectation with respect to P . We fix a measurable space (M, BM)

and a stationary (St)-Poisson point process p onM defined on (S,S, P ) with intensity

Λ(t, U) := EP [Np(t, U)] = tn(U) for some measure n on M with n(M) = 1, where Np

denotes the counting measure on ((0,∞)×M,B(0,∞) ×BM) defined by

Np(t, U) := #{s ∈ D(p)|s ∈ (0, t], p(s) ∈ U}, t > 0, U ∈ BM,

where B(0,∞) is the Borel σ-field on (0,∞). Hence EP [Np(t, U) = N ] = e−Λ(t)Λ(t)N/N !.

We set Nt := Np(ω)(t,M) and dNt :=
∫
MNp(dtdm). Since #{s ∈ D(p)|0 < s ≤ t} is

finite, for each τ ∈ S, there exists N = N(τ) ∈ N, 0 < s1 = s1(τ), ..., sN = sN(τ) ≤ t

such that

∫ t+

0
f(s,Ns)dNs =

∑

s′∈D(p)

0<s′≤t

f(s′, Ns′) =
N∑

j=1

f(sj, Nsj) =
N∑

j=1

f(sj, j). (3.1)

Finally we note that the expectation of (3.1) is reduced to the Lebesgue integral:

EP [
∫ t+

0
f(s,Ns)dNs] = EP [

∫ t

0
f(s,Ns)ds] =

∫ t

0

∞∑

n=0

f(s, n)
sn

n!
e−sds.

Set (Ω,BΩ, P
x
Ω) := (W × S,BW × S, P x

W ⊗ P ) and ω := w × τ ∈ W × S = Ω. For

ω = w × τ , we put Bt(ω) := Bt(w) and p(s, ω) := p(s, τ). Let Ωt = Ft × St, t ≥ 0.
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Let Z2 be the additive group. We denote the sum in Z2 by ⊕Z2 , i.e., 1 ⊕Z2 1 = −1,

−1⊕Z2 1 = 1, −1⊕Z2 −1 = 1. Then the Z2-valued random process, σt : Z2 × Ω→ Z2,

is defined by

σt := σ ⊕Z2 Nt = σ(−1)Nt , σ ∈ Z2.

So we constructed the (3 + 1)-dimensional Levy process

ξt = (Bt, Nt)

on (Ω,BΩ, P
x
Ω). We set for simplicity

Ex,σ[f(ξ·)] :=
∫

Ω
f(x+B·, σ ⊕Z2 N·)dP

0
Ω =

∫

Ω
f(x+B·, σ(−1)N·)dP 0

Ω

and
∑
σ

∫
dx f(x, σ) :=

∑
σ∈Z2

∫
R3 dxf(x, σ).

3.2 Functional integral representations

In addition to Assumption 2.1, we need specify the class of external potentials V . We

assume the assumption below:

Assumption 3.1 V satisfies that VM := supx∈R3 Ex[e−
∫ t

0
V (Bs)ds] <∞.

The Kato class potentials satisfy Assumption 3.1 and, especially, the Coulomb potential

does. We study the self-adjoint operator H̃PF0(φ) defined for each φ ∈ Q0. Assume that

λ ∈ C∞0 (R3) in a moment. Then A0µ(λ(· − x), φ) = 〈φ,⊕3
ν=1δµνλ(· − x)〉0 ∈ C∞b (R3

x).

Define the multiplication operators A0µ(φ) and B0µ(φ), µ = 1, 2, 3, in L2(R3) by

A0µ(φ) =
∫ ⊕
R3
A0µ(λ(· − x), φ)dx, B0µ(φ) =

∫ ⊕
R3
B0µ(λ(· − x), φ)dx

and the Pauli operator on L2(R3×Z2) by

(H̃PF0(φ)f)(x, σ) :=
{

1

2
(−i∇− eA0(φ))2 + V + Vφ(x, σ)

}
f(x, σ)− eWφ(x,−σ)f(x,−σ),

where we set

Vφ(x, σ) := −e
2
σB03(φ), Wφ(x,−σ) := log[

e

2
(B01(φ)− iσB02(φ))].
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Lemma 3.2 For each φ ∈ Q0, H̃PF0(φ) is self-adjoint on D(−∆) and it follows that

(e−tH̃PF0(φ)g)(x, σ) = Ex,σ[e−
∫ t

0
V (Bs)dseZ̃φ(t)g(ξt)], where

Z̃φ(t) = −i
3∑

µ=1

∫ t

0
A0µ(λ(· −Bs), φ)dBµ,s −

∫ t

0
Vφ(Bs, σs)ds+

∫ t+

0
Wφ(Bs,−σs)dNs.

Proof: Since H̃PF0(φ) is a Pauli operator with the sufficiently smooth and compactly

supported vector potential A0(φ), the lemma follows from [ALS83]. qed

Define H̃PF0 :=
∫⊕
Q0
H̃PF0(φ)dµ0 and

H̃PF := H̃PF0 +̇ Hrad.

Here +̇ denotes the quadratic form sum. The next lemma is the key lemma in this

note.

Lemma 3.3 Assume that λ ∈ C∞0 (R3). Then (F, e−tHPFG) = (F, e−tH̃PFG).

Proof: Let L2
fin(Q0) denote the finite particle subspace of L2(Q0). Define the dense

subspace H̃0 := C∞0 (R3× Z2)⊗̂L2
fin(Q0), where ⊗̂ denotes the algebraic tensor product.

It is seen that H̃PF = HPF on H̃0, which implies that H̃PF = HPF as a self-adjoint

operator, since H̃0 is a core of HPF. Hence the lemma follows. qed

By Lemma 3.3 it is enough to construct a functional integral representation of

(F, e−tH̃PFG) instead of (F, e−tHPFG). By the Trotter-Kato product formula for the

quadratic form sum [KM78], we have (F, e−tH̃PFG) = limn→∞(F, (e−(t/n)H̃PF0e−(t/n)Hrad)nG).

To compute its right-hand side, we factorize e−tHrad as usual. Let jt : L2(R3) →
L2(R3+1), t ≥ 0, be defined by

ĵtf(k, k0) :=
e−itk0

√
π

√√√√ ωb(k)

ωb(k)2 + |k0|2 f̂(k), (k, k0) ∈ R3 × R.

Thus jt is a reality-preserving operator and j∗t js = e−|t−s|ωb(−i∇), s, t ∈ R, follows.

Define Jt : L2(Q0) → L2(Q1) by Jt := Γ01(jt). Hence J∗t Js = e−|t−s|Hrad follows on

L2(Q0). We denote the Lp-norm on (Qβ, µβ) by ‖ · ‖p. As is explained previously,

Γβ(T ) for ‖T‖ ≤ 1 is a contraction operator on L2(Qβ). It has also a particularly

strong property, so-called hypercontractivity. From this the lemma below is proved in

[HL07].



The Pauli-Fierz model with spin 1/2 13

Lemma 3.4 Let Φ ∈ L1(Q1) and F,G ∈ L2(Q1). Then, for a 6= b, (JaF )Φ(JbG) ∈
L1(Q1) and ∫

Q1

|(JaF )Φ(JbG)|dµ1 ≤ ‖Φ‖1‖F‖2‖G‖2. (3.2)

Let E[a,b] be the projection to the range of Jt, t ∈ [a, b].

Lemma 3.5 Assume that λ ∈ C∞0 (R3). Let 0 ≤ ` < s ≤ t, F ∈ E[0,`] and G ∈ E[s,t].

Then

(F, Jse
−tH̃PF0J∗sG) =

∑
σ

∫
dx Ex,σ[e−

∫ t
0
V (Bs′ )ds

′
∫

Q1

F (ξ0)eX̃s(0,t)EsG(ξt)dµ1]. (3.3)

Here X̃s(0, t) is defined by

X̃s(0, t) = −ie
3∑

µ=1

∫ t

0
A1µ(jsλ(· −Bs′))dBµ,s′ −

∫ t

0
(−e

2
)σs′B03(jsλ(· −Bs′))ds

′

+
∫ t+

0
log[

e

2
(B01(jsλ(· −Bs′)− iσs′B0(jsλ(· −Bs′)))]dNs′ . (3.4)

Now we define the L2(R3+1)-valued stochastic integral
∫ t
0 jsλ(·−Bs)dBµ,s by a limiting

procedure. Let χn(s) be the step function on the interval [0, t] given by

χn(s) :=
n∑

j=1

t(j − 1)

n
χ(t(j−1)/n,tj/n](s) (3.5)

Define the sequence of the L2(R3+1)-valued random variable ξµn : Ω → L2(R3+1) by

ξµn :=
∫ t

0 jχn(s)λ(· −Bs)dBµ,s. Since this sequence is Cauchy, we define

∫ t

0
jsλ(· −Bs)dBµ,s := s− lim

n→∞ ξ
µ
n , µ = 1, 2, 3,

and set ∫ t

0
A0µ(jsλ(· −Bs))dBµ,s := A0µ(

∫ t

0
jsλ(· −Bs)dBµ,s).

The next theorem is the main results of our investigation.

Theorem 3.6 It follows that

(F, e−tHPFG) =
∑
σ

∫
dxEx,σ[e−

∫ t
0
V (Bs)ds

∫

Q1

dµ1J0F (ξ0)eX(0,t)JtG(ξt)]. (3.6)
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Here the exponent X(0, t) is given by

X(0, t) = −ie
3∑

µ=1

∫ t

0
A1µ(jsλ(· −Bs))dBµ,s −

∫ t

0
(−e

2
)σsB13(jsλ(· −Bs))ds

+
∫ t+

0
log[

e

2
(B11(jsλ(· −Bs))− iσsB12(jsλ(· −Bs)))]dNs.

Proof: We outline the proof. See [HL07] for detail. In a moment we assume that

ϕ̂/
√
ωb ∈ C∞0 (R3). We can see that Ex,σ[e−

∫ t
0
V (Bl)dleX̃s(0,t)G(ξt)] ∈ H̃ for G ∈ H̃. Then

we define St,s : H̃ → H̃ by

(St,sG)(x, σ) := Ex,σ[e−
∫ t

0
V (Bl)dleX̃s(0,t)G(ξt)].

Here X̃s(0, t) is defined in (3.4). By making use of Markov properties of both Bs and

Ns, we can see that

(St′,s′St,sG)(x, σ) = Ex,σ[e−
∫ t+t′

0
V (Bl)dleX̃s′ (0,t

′)+X̃s(t′,t+t′)G(ξt+t′)]. (3.7)

Let Et = JtJ
∗
t and

∏n
j=1 Tj := T1T2 · · ·Tn up to the order. Then using the identity

HPF = H̃PF, we have

(F, e−tHPFG) = (F, e−t(H̃PF0 +̇Hrad)G)

= lim
n→∞(F, (e−(t/n)H̃PF0e−(t/n)Hrad)nG)

= lim
n→∞(J0F,



n−1∏

j=0

Jjt/ne
−(t/n)H̃PF0J∗jt/n


 JtG)

= lim
n→∞(J0F,



n−1∏

j=0

Ejt/nSt/n,jEjt/n


 JtG)

= lim
n→∞(J0F,



n−1∏

j=0

St/n,tj/n


 JtG)

= lim
n→∞

∑
σ

∫
dx Ex,σ[e−

∫ t
0
V (Bs′ )ds

′
∫

Q1

dµ1J0F (ξ0)eXn(0,t)JtG(ξt)],

where we used the formula J∗sJt = e−|t−s|Hrad in the third line, Lemma 3.5 in the forth

line, the Markov property of E[···] in the fifth line, and (3.7) in the sixth line. Here we

set

Xn(0, t) = X1,n(t) +X2,n(t) +X3,n(t),
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where

X1,n(t) = −ieA1(⊕3
µ=1

∫ t

0
jχn(s)λ(· −Bs)dBµ,s),

X2,n(t) = −
∫ t

0
Vχn(s)(Bs, σs)ds,

X3,n(t) =
∫ t

0
Wχn(s)(Bs,−σs)dNs,

and

Vs(x, σ) := −e
2
σB13(jsλ(· − x)), (3.8)

Ws(x,−σ) := log[
e

2
(B11(jsλ(· − x))− iσB12(jsλ(· − x)))]. (3.9)

We have

∑
σ

∫
dxEx,σ

∫

Q1

dµ1e
−
∫ t

0
V (Bs)ds|J0F (ξ0)||JtG(ξt)||eXn(t) − eX(t)|

≤ VM‖G‖H̃Ex,σ[

(∑
σ

∫
dx ‖F (x, σ)‖2

2‖eXn(t) − eX(t)‖2
1

)1/2

]. (3.10)

We show that the right-hand side above goes to zero as n→∞. For each ω ∈ Ω, there

exists N = N(ω) ∈ N such that

‖eXn(0,t)‖2
1 ≤ exp

(
e2

4
t2
∫

R3
|ϕ̂(k)|2|k|dk

)
(
e

2
)2NN !‖

√
|k|ϕ̂‖2N := C(ω).

Then Ex,σ[C(·)1/2] < ∞ follows. Similarly ‖eX(t)‖1 < C ′(ω) and Ex,σ[C ′(·)1/2] < ∞
follows for some C ′(ω). Note that C and C ′ are independent of (x, σ) ∈ R3 × Z2 and

n. Thus by (3.10) and the dominated convergence theorem, it is enough to show that

for almost every ω ∈ Ω, eXn(t) → eX(t) as n→∞ in L1(Q1). We have

eXn(0,t) − eX(0,t) = eX1,n(t)eX2,n(t)eX3,n(t) − eX1(t)eX2,n(t)eX3,n(t)

︸ ︷︷ ︸
=I

+ eX1(t)eX2,n(t)eX3,n(t) − eX1(t)eX2(t)eX3,n(t)

︸ ︷︷ ︸
=II

+ eX1(t)eX2(t)eX3,n(t) − eX1(t)eX2(t)eX3(t)

︸ ︷︷ ︸
=III

. (3.11)

We estimate I, II and III. We have

‖I‖1 ≤ ‖eX1,n(t) − eX1(t)‖2‖eX2,n(t)eX3,n(t)‖2, (3.12)

‖II‖1 ≤ ‖eX2,n(t) − eX2(t)‖2‖eX3,n(t)‖2, (3.13)

‖III‖1 ≤ ‖eX2(t)‖2‖eX3,n(t) − eX3(t)‖2. (3.14)
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and that there exists N = N(ω) such that

‖eX2,n(t)eX3,n(t)‖2
2 ≤ e4(e/2)2t2‖

√
|k|ϕ̂‖2(e/2)4N(2N)!‖

√
|k|ϕ̂‖4N , (3.15)

‖eX3,n(t)‖2
2 ≤ (e/2)2NN !‖

√
|k|ϕ̂‖2N , (3.16)

‖eX2,n(t)‖2
2 ≤ e(e/2)2t2‖

√
|k|ϕ̂‖2 . (3.17)

From (3.12)-(3.17) and the dominated convergence theorem, it is enough to show that

‖eXj,n(t) − eXj(t)‖2 → 0 as n→∞ for j = 1, 2, 3 for almost every ω ∈ Ω.

First we estimate I. Let %n = ⊕3
µ=1

∫ t

0

{
jχn(s)λ(· −Bs)− jsλ(· −Bs)

}
dBµ. Then

we have (eX1,n(t), eX1(t))2 = exp
(
− e2

2
q1(%n, %n)

)
. Since

Ex,σ[q1 (%n, %n)] ≤ 3

2
Ex,σ[

∫ t

0

{
2‖λ‖2 − 2<(λ(· −Bs), e

−|χn(s)−s|ωbλ(· −Bs))
}
ds]→ 0

as n → 0. This implies that there exists a subsequence n′ such that for almost every

ω ∈ Ω, limn→∞(eX1,n′ (t), eX1(t))2 = 1 and then ‖eX1,n′ (t) − eX1(t)‖2 → 0. We reset n′

as n. Then limn→∞ ‖I‖1 = 0 follows from (3.12). Second we estimate II. A direct

computation yields that

‖eX2,n(t)‖2
2

= exp

(
(
e

2
)2
∫ t

0
ds
∫ t

0
ds′σsσs′

∫
dk
|ϕ̂(k)|2
ωb(k)

e−ik(Bs−Bs′ )(|k1|2 + |k2|2)e−|χn(s)−χn(s′)|ωb(k)

)

→ exp

(
(
e

2
)2
∫ t

0
ds
∫ t

0
ds′σsσs′

∫
dk
|ϕ̂(k)|2
ωb(k)

e−ik(Bs−Bs′ )(|k1|2 + |k2|2)e−|s−s
′|ωb(k)

)

= ‖eX2(t)‖2
2

and

(eX2,n(t), eX2(t))2

= exp

(
1

4
(
e

2
)2
∫ t

0
ds
∫ t

0
ds′σsσs′

∫
dk
|ϕ̂(k)|2
ωb(k)

e−ik·(Bs−Bs′ )(|k1|2 + |k2|2)

×(e−|s−s
′|ωb(k) + e−|s−χn(s′)|ωb(k) + e−|s

′−χn(s)|ωb(k) + e−|χn(s)−χn(s′)|ωb(k))
)

→ exp

(
(
e

2
)2
∫ t

0
ds
∫ t

0
ds′σsσs′

∫
dk
|ϕ̂(k)|2
ωb(k)

e−ik·(Bs−Bs′ )(|k1|2 + |k2|2)e−|s−s
′|ωb(k)

)

= ‖eX2(t)‖2
2



The Pauli-Fierz model with spin 1/2 17

as n → ∞. Then limn→∞ ‖II‖2 = 0 follows from (3.13). Finally we estimate III. For

the notational convenience, we set B1µ(jlλ(· − Bs)) := B1µ(l, s). For each ω ∈ Ω we

have

exp(X3,n(t)) =
n∏

j=1

∏

s∈D(p)

t(j−1)/n≤s≤tj/n

e

2
(B11(t(j − 1)/n, s)− iσ(−1)NsB12(t(j − 1)/n, s)).

For sufficiently large n, the number of si’s contained in the interval (t(j − 1)/n, tj/n]

is at most one. Then assume that n is sufficiently large and we denote the interval

containing sj by (n(sj), n(sj) + t/n], j = 1, ..., N . Hence

exp(X3,n(t))1Q1 =
N∏

j=1

e

2
(B11(n(sj), sj)− iσ(−1)NsjB12(n(sj), sj))1Q1

→
N∏

j=1

e

2
(B11(sj, sj)− iσ(−1)NsjB12(sj, sj))1Q1

= exp
(∫ t+

0
log[

e

2
(B11(jsλ(· −Bs))− iσsB12(jsλ(· −Bs)))]dNs

)
1Q1 = exp(X3(t))1Q1

strongly as n→∞, since n(sj)→ sj as n→∞. Then limn→∞ ‖eX3,n(t) − eX3(t)‖2 = 0

and limn→∞ ‖III‖ = 0 follows from (3.14). Combining these estimates we can conclude

(3.6). Finally we show (3.6) for ϕ̂ such that
√
ωbϕ̂, ϕ̂/

√
ωb ∈ L2(R3) by a limiting

argument. qed

4 Concluding remarks

4.1 Breaking of degenerate ground states

It is established that HPF has degenerate ground states for sufficiently small coupling

constants [HS01, Hir05]. Let us consider some toy model defined by HPF with spin

interaction replaced by the Fermion harmonic oscillator:

H(ε) =
1

2
(−i∇− eA0)2 + V +Hrad +

1

2
ε(σ3 + iσ2)(σ3 − iσ2)− 1

2
ε

︸ ︷︷ ︸
=−εσ1

, ε ∈ R.

When ε = 0, the ground state of H(0) is two fold degenerate for arbitrary values of

coupling constants. Nevertheless we will show that the ground state of H(ε) for ε 6= 0

is unique for arbitrary values of coupling constants.
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Corollary 4.1 Let θ = e−i(π/2)N . Then θ−1eH(ε)θ is positivity improving for ε > 0

and, in particular, the ground state of H(ε), ε 6= 0 is unique whenever it exists.

Proof: Note that H(ε) and H(−ε) are isomorphic. Let ε > 0. By a direct computation,

we have2

(F, θ−1e−tH(ε)θG) =
∫
dxEPxW e

−
∫ t

0
V (Bs)ds

× ∑

σ∈Z2

[(F (x, σ), TtG(Bt, σ)) cosh εt+ (F (x, σ), TtG(Bt,−σ)) sinh εt],

where A = e
∑3
µ=1

∫ t
0 A1µ(jsλ(· − Bs))dBµ,s and Tt := J∗0θ

−1e−iAθJt. Then for 0 ≤
F,G ∈ L2(R3 × Z2 × Q0) but F 6≡ 0 and G 6≡ 0, (F, θ−1e−tH(ε)G) > 0, since Tt is

positivity improving which is proven in [Hir00a]. Then e−tH(ε) is positivity improving.

The uniqueness of the ground state follows from the infinite dimensional version of

Perron Frobenius theorem. qed

4.2 Energy inequality

We can also derive some energy inequality from the functional integral representation

which is an extension of the so-called the diamgnetic inequality. Although Aϕ̂ and Bϕ̂

are connected with rotAϕ̂ = Bϕ̂, Aϕ̂ and Bϕ̂ are regarded as independent operators.

The bottom of the spectrum of HPF is denoted by

inf σ(HPF) = E(Aϕ̂, Bϕ̂1, Bϕ̂2, Bϕ̂3).

Then E(0, 0, 0, 0) ≤ E(Aϕ̂, 0, 0, 0), is called diamagnetic inequality. We extend this

inequality. We define H⊥PF by

H⊥PF = Hp +Hrad − e

2


 B03

√
B0

2
1 + B0

2
2√

B0
2
1 + B0

2
2 −B03


 .

2Assume that ε 6= 0. Then

(F, e−tH(ε)G) =
∑
σ

∫
dxEx,σ[εNte−

∫ t
0
V (Bs)ds(J0F (ξ0), e−iAJtG(ξt))].



The Pauli-Fierz model with spin 1/2 19

Since the interaction term is infinitesimally small with respect to the decoupled Hamil-

tonian Hp + Hrad, H⊥PF is self-adjoint on D(−∆) ∩D(Hrad) and bounded from below.

By Theorem 3.6 the functional integral representation of e−tH
⊥
PF is as follows:

(F, e−tH
⊥
PFG) =

∑
σ

∫
dx Ex,σ[e−

∫ t
0
V (Bs)ds

∫

Q1

dµ1J0F (ξ0)eX⊥(t)JtG(ξt)],

where

X⊥(t) =
∫ t

0

e

2
σsB13(jsλ(· −Bs))ds

+
∫ t+

0
log

[
e

2

√
B11(jsλ(· −Bs))2 + B12(jsλ(· −Bs))2

]
dNs.

Corollary 4.2 It follows that |(F, e−tHPFG)| ≤ (|F |, e−tH⊥PF|G|) and

max





E(0,
√
B0

2
1 + B0

2
2, 0,B03)

E(0,
√
B0

2
3 + B0

2
1, 0,B02)

E(0,
√
B0

2
2 + B0

2
3, 0,B01)




≤ E(A0,B01,B02,B03). (4.1)

Proof: Since H⊥PF is unitarily equivalent to H⊥PF with e replaced by −e, we may assume

that e > 0 without loss of generality. By the functional integral representation of

e−tHPF , we have

|(F, e−tHPFG)| ≤∑
σ

∫
dxEx,σ[e−

∫ t
0
V (Bs)ds

∫

Q1

dµ1(J0|F (ξ0)|)(Jt|G(ξt)|)eX⊥(t)],

where we used that |JtG| ≤ Jt|G|, since Jt is positivity preserving. Then the de-

sired inequality follows. From this, E(0,
√
B0

2
1 + B0

2
2, 0,B03) ≤ E(Aϕ̂,B01,B02,B03) is

obtained. (4.1) follows from the symmetry. Then the corollary is complete. qed

4.3 Translation invariance

Let V = 0. Then HPF is translation invariant and decomposed as HPF =
∫⊕
R3 HPF(P )dP

with respect to the spectrum of the total momentum. In the spinless case the functional

integral representation of e−tHPF(P ) is constructed for each P ∈ R3 and some energy

inequality is shown in [Hir06]. When HPF(P ) includes spin, we can also construct it.

See [HL07] for detail.
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