Effective mass and mass renormalization of nonrelativistic QED

Fumio Hiroshima* ${ }^{* \dagger}$

November 29, 2003

Abstract

The effective mass $m_{\text {eff }}$ of the nonrelativistic QED is considered. $m_{\text {eff }}$ is defined as the inverse of curvature of the ground state energy with total momentum zero. The effective mass $m_{\text {eff }}=m_{\text {eff }}\left(e^{2}, \Lambda, \kappa, m\right)$ is a function of bear mass $m>0$, ultraviolet cutoff $\Lambda>0$, infrared cutoff $\kappa>0$, and the square of charge e of an electron. Introduce a scaling $m \rightarrow m(\Lambda)=(b \Lambda)^{\beta}$, $\beta<0$. Then asymptotics behavior of $m_{\text {eff }}$ as $\Lambda \rightarrow \infty$ is studied.

1 Introduction

1.1 The Pauli-Fierz Hamiltonian

This is a joint work with Herbert Spohn. ${ }^{1}$ We consider a single, spinless free electron coupled to a quantized radiation field (photons). The Hilbert space of states of photons is the symmetric Fock space:

$$
\mathcal{F}=\bigoplus_{n=0}^{\infty}\left[\otimes_{s}^{n} L^{2}\left(\mathbb{R}^{3} \times\{1,2\}\right)\right]
$$

where $\otimes_{s}^{n} L^{2}\left(\mathbb{R}^{3} \times\{1,2\}\right)$ denotes the n-fold symmetric tensor product of $L^{2}\left(\mathbb{R}^{3} \times\{1,2\}\right)$ with $\otimes_{s}^{0} L^{2}\left(\mathbb{R}^{3} \times\{1,2\}\right)=\mathbb{C}$. The inner product in \mathcal{F} is denoted by (\cdot, \cdot) and the Fock vacuum by Ω. On \mathcal{F} we introduce the Bose field

$$
\begin{equation*}
a(f)=\sum_{j=1,2} \int f(k, j)^{*} a(k, j) d k, \quad f \in L^{2}\left(\mathbb{R}^{3} \times\{1,2\}\right) \tag{1.1}
\end{equation*}
$$

[^0]where $a(f)$ and $a^{*}(f)=a(\bar{f})^{*}$ are densely defined and satisfy the CCR
\[

$$
\begin{aligned}
& {\left[a(f), a^{*}(g)\right]=(f, g)_{L^{2}\left(\mathbb{R}^{3} \times\{1,2\}\right)}} \\
& {[a(f), a(g)]=0} \\
& {\left[a^{*}(f), a^{*}(g)\right]=0}
\end{aligned}
$$
\]

The free Hamiltonian of \mathcal{F} is read as

$$
\begin{equation*}
H_{\mathrm{f}}=\sum_{j=1,2} \int \omega(k) a^{*}(k, j) a(k, j) d k \tag{1.2}
\end{equation*}
$$

where the dispersion relation is given by

$$
\omega(k)=|k| .
$$

The free Hamiltonian H_{f} acts as

$$
\begin{aligned}
& H_{\mathrm{f}} \Omega=0 \\
& H_{\mathrm{f}} a^{*}\left(f_{1}\right) \cdots a^{*}\left(f_{n}\right) \Omega=\sum_{j=1}^{n} a^{*}\left(f_{1}\right) \cdots a^{*}\left(\omega f_{j}\right) \cdots a^{*}\left(f_{n}\right) \Omega .
\end{aligned}
$$

The Pauli-Fierz Hamiltonian H is defined as a self-adjoint operator acting on

$$
\mathcal{H}=L^{2}\left(\mathbb{R}^{3}\right) \otimes \mathcal{F} \cong \int_{\mathbb{R}^{3}}^{\oplus} \mathcal{F} d x
$$

by

$$
H=\frac{1}{2 m}\left(p_{x} \otimes 1-e A_{\hat{\varphi}}\right)^{2}+V \otimes 1+1 \otimes H_{\mathrm{f}}
$$

where m and e denote the mass and charge of electron, respectively,

$$
p_{x}=\left(-i \frac{\partial}{\partial x_{1}},-i \frac{\partial}{\partial x_{2}},-i \frac{\partial}{\partial x_{3}}\right)
$$

and V an external potential. The quantized radiation field $A_{\hat{\varphi}}$ is defined by

$$
\begin{equation*}
A_{\hat{\varphi}}=\frac{1}{\sqrt{2}} \int_{\mathbb{R}^{3}}^{\oplus}\left(a\left(f_{x}\right)+a^{*}\left(\bar{f}_{x}\right)\right) d x \tag{1.3}
\end{equation*}
$$

where

$$
\begin{equation*}
f_{x}(k, j)=\frac{1}{\sqrt{\omega}} \hat{\varphi}(k) e(k, j) e^{i k x} \tag{1.4}
\end{equation*}
$$

$e(k, 1), e(k, 2), k /|k|$ form a right-handed dreibain, and $\hat{\varphi}$ is a form factor. $A_{\hat{\varphi}}$ acts for $\Psi \in \mathcal{H}$ as

$$
\left(A_{\hat{\varphi}} \Psi\right)(x)=\left(a\left(f_{x}\right)+a^{*}\left(\bar{f}_{x}\right)\right) \Psi(x), \quad x \in \mathbb{R}^{3}
$$

Theorem 1.1 Assume that $\hat{\varphi} / \omega, \hat{\varphi} / \sqrt{\omega}, \sqrt{\omega} \hat{\varphi} \in L^{2}\left(\mathbb{R}^{3}\right)$ and V is relatively bounded with respect to $-\Delta$ with a relative bound <1. Then, for arbitrary values of e, H is self-adjoint on $D(\Delta \otimes 1) \cap D\left(1 \otimes H_{\mathrm{f}}\right)$ and bounded from below.

Proof: See Hiroshima [3, 4].

1.2 Effective mass

The momentum of the photon field is given by

$$
\begin{equation*}
P_{\mathrm{f}}=\sum_{j=1,2} \int k a^{*}(k, j) a(k, j) d k \tag{1.5}
\end{equation*}
$$

and the total moment by

$$
P_{\text {total }}=p_{x} \otimes 1+1 \otimes P_{\mathrm{f}}
$$

Let as assume that

$$
V \equiv 0
$$

Then we see that

$$
\left[H, P_{\text {total } \mu}\right]=0, \quad \mu=1,2,3
$$

Hence H and \mathcal{H} can be decomposable with respect to $\operatorname{Spec}\left(P_{\text {total }}\right)=\mathbb{R}^{3}$, i.e.,

$$
\begin{aligned}
\mathcal{H} & =\int_{\mathbb{R}^{3}}^{\oplus} \mathcal{H}(p) d p \\
H & =\int_{\mathbb{R}^{3}}^{\oplus} H(p) d p
\end{aligned}
$$

Note that

$$
\begin{aligned}
& e^{-i x \otimes P_{\mathrm{f}}} P_{\text {total }} e^{i x \otimes P_{\mathrm{f}}}=p_{x} \\
& e^{-i x \otimes P_{\mathrm{f}}} H e^{i x \otimes P_{\mathrm{f}}}=\frac{1}{2 m}\left(p_{x} \otimes 1-1 \otimes P_{\mathrm{f}}-e 1 \otimes A_{\hat{\varphi}}(0)\right)+1 \otimes H_{\mathrm{f}}
\end{aligned}
$$

where

$$
A_{\hat{\varphi}}(0)=\frac{1}{\sqrt{2}}\left(a\left(f_{0}\right)+a\left(\bar{f}_{0}\right)\right)
$$

From this we obtain that for each $p \in \mathbb{R}^{3}$,

$$
\begin{aligned}
\mathcal{H}(p) & \cong \mathcal{F} \\
H(p) & \cong \frac{1}{2 m}\left(p-P_{\mathrm{f}}-e A_{\hat{\varphi}}(0)\right)+H_{\mathrm{f}}
\end{aligned}
$$

Let

$$
\begin{equation*}
E_{m, \Lambda}(p)=\inf \operatorname{Spec}(H(p)) \tag{1.6}
\end{equation*}
$$

Let us assume sharp ultraviolet cutoff Λ and infrared cutoff κ, which means

$$
\hat{\varphi}(k)= \begin{cases}0 & \text { for }|k|<\kappa \tag{1.7}\\ (2 \pi)^{-3 / 2} & \text { for } \kappa \leq|k| \leq \Lambda \\ 0 & \text { for }|k|>\Lambda\end{cases}
$$

Lemma 1.2 There exists constants p_{*} and e_{*} such that for

$$
(p, e) \in \mathcal{O}=\left\{(p, e) \in \mathbb{R}^{3} \times \mathbb{R}| | p\left|<p_{*},|e|<e^{*}\right\}\right.
$$

$H(p)$ has a ground state $\psi_{\mathrm{g}}(p)$ and it is unique. Moreover $\psi_{\mathrm{g}}(p)=\psi_{\mathrm{g}}(p, e)$ is strongly analytic and $E_{m, \Lambda}(p)=E_{m, \Lambda}(p, e)$ analytic with respect to $(p, e) \in \mathcal{O}$.

Proof: See Hiroshima and Spohn [6, 7].
In what follows we assume that $(p, e) \in \mathcal{O}$.
Definition 1.3 The effective mass $m_{\mathrm{eff}}=m_{\mathrm{eff}}\left(e^{2}, \Lambda, \kappa, m\right)$ is defined by

$$
\begin{equation*}
\frac{1}{m_{\mathrm{eff}}}=\frac{1}{3} \Delta_{p} E(p, e) \Gamma_{p=0} \tag{1.8}
\end{equation*}
$$

1.3 Mass renormalization

Removal of the ultraviolet cutoff Λ through mass renormalization means to find sequences

$$
\begin{equation*}
\Lambda \rightarrow \infty, \quad m \rightarrow 0 \tag{1.9}
\end{equation*}
$$

such that $E_{m, \Lambda}(p)-E_{m, \Lambda}(0)$ has a nondegenerate limit. To achive this, as a first step we want to find constants

$$
\beta<0, \quad 0<b
$$

such that

$$
\begin{equation*}
\lim _{\Lambda \rightarrow \infty} m_{\mathrm{eff}}\left(e^{2}, \Lambda, \kappa \Lambda^{\beta},(b \Lambda)^{\beta}\right)=m_{\mathrm{ph}} \tag{1.10}
\end{equation*}
$$

where m_{ph} is a given constant. Actually m_{ph} is a physical mass. Namely in the mass renormalization the scaled bare mass goes to zero and the effective mass goes to a physical mass as the ultraviolet cutoff Λ goes to infinity.

We will see later that $m_{\text {eff }} / m$ is a function of $e^{2}, \Lambda / m$ and κ / m. Let

$$
\begin{equation*}
\frac{m_{\mathrm{eff}}}{m}=f\left(e^{2}, \Lambda / m, \kappa / m\right) \tag{1.11}
\end{equation*}
$$

where $f(0, \Lambda / m, \kappa / m)=1$ holds. An analysis of (1.10) can be reduce to investigate the asymptotic behavior of f as $\Lambda \rightarrow \infty$. Namely we want to find constants

$$
0 \leq \gamma<1, \quad 0<b_{0}
$$

such that

$$
\begin{equation*}
\lim _{\Lambda \rightarrow \infty} \frac{f\left(e^{2}, \Lambda / m, \kappa / m\right)}{(\Lambda / m)^{\gamma}}=b_{0} \tag{1.12}
\end{equation*}
$$

If we succeed to find constants γ and b_{0} such as in (1.12) then by

$$
m_{\mathrm{eff}}\left(e^{2}, \Lambda, \kappa, m\right)=m f\left(e^{2}, \Lambda / m, \kappa / m\right)
$$

we have

$$
\begin{equation*}
m_{\mathrm{eff}}\left(e^{2}, \Lambda, \kappa \Lambda^{\beta},(b \Lambda)^{\beta}\right)=(b \Lambda)^{\beta} f\left(e^{2}, \Lambda /(b \Lambda)^{\beta}, \kappa / b^{\beta}\right) \approx b_{0}(b \Lambda)^{\beta}\left(\Lambda /(b \Lambda)^{\beta}\right)^{\gamma} \tag{1.13}
\end{equation*}
$$

Taking

$$
\beta=\frac{-\gamma}{1-\gamma}<0, \quad b=1 / b_{1}^{1 / \gamma}
$$

we see that by (1.13)

$$
\lim _{\Lambda \rightarrow \infty} m_{\mathrm{eff}}\left(e^{2}, \Lambda, \kappa \Lambda^{\beta},(b \Lambda)^{\beta}\right)=\lim _{\Lambda \rightarrow \infty} b_{0}\left(\frac{\Lambda}{b_{1}^{1 / \gamma}}\right)^{\beta}\left(\frac{\Lambda}{\left(\Lambda /\left(b_{1}\right)^{1 / \gamma}\right)^{\beta}}\right)^{\gamma}=b_{0} b_{1}
$$

where b_{1} is a parameter, which is adjusted such as

$$
b_{0} b_{1}=m_{\mathrm{ph}}
$$

Hence we will be able to establish (1.10). It is easily seen that

$$
f\left(e^{2}, \Lambda / m, \kappa / m\right)=1+\alpha \frac{8}{3 \pi} \log \left(\frac{\Lambda / m+2}{\kappa / m+2}\right)+O\left(\alpha^{2}\right)
$$

where $\alpha=e^{2} / 4 \pi$, which suggests

$$
f\left(e^{2}, \Lambda / m, \kappa / m\right) \approx(\Lambda / m)^{8 \alpha / 3 \pi}
$$

for sufficiently small α and large Λ, and therefore

$$
\gamma=8 \alpha / 3 \pi
$$

One may assume that

$$
f\left(e^{2}, \Lambda / m, \kappa / m\right) \approx(\Lambda / m)^{\alpha(8 / 3 \pi)+\alpha^{2} b}
$$

for sufficiently small α with some constant b. Then by expading $m_{\text {eff }} / m$ to order α^{2} one may expect that
$f\left(e^{2}, \Lambda / m, \kappa / m\right) \approx 1+\alpha \frac{8}{3 \pi} \log \left(\frac{\Lambda}{m}\right)+\frac{1}{2} \alpha^{2}\left(\frac{8}{3 \pi} \log \left(\frac{\Lambda}{m}\right)\right)^{2}+b \alpha^{2} \log \left(\frac{\Lambda}{m}\right)+O\left(\alpha^{3}\right)$
for sufficiently small α and large Λ. It is, however, that (1.14) is not confirmed. Instead of (1.14) we prove that there exists a constant $C>0$ such that

$$
f\left(e^{2}, \Lambda / m, \kappa / m\right)=1+\alpha \frac{8}{3 \pi} \log \left(\frac{\Lambda / m+2}{\kappa / m+2}\right)+\alpha^{2} C \sqrt{\Lambda / m}+O\left(\alpha^{3}\right)
$$

The effective mass and its renormalization have been studied from a mathematical point of viwe by many authors. Spohn [10] investigates the effective mass of the Nelson model [9] from a functional integral point of view. Lieb and Loss [8] studied mass renormalization and binding energies of models of matter coupled to radiation fields including the Pauli-Fierz model. Hainzl and Seiringer [2] computed exactly the leading order in α of the effective mass of the Pauli-Fierz Hamiltonian with spin.

2 Perturbative expansions

The effective masses for $H(p)$ and

$$
\frac{1}{2 m}:\left(p-P_{\mathrm{f}}-e A_{\hat{\varphi}}(0)\right)^{2}:+H_{\mathrm{f}}
$$

are identical. Then in what follows we redefine $H(p)$ as

$$
H(p)=\frac{1}{2 m}:\left(p-P_{\mathrm{f}}-e A_{\hat{\varphi}}(0)\right)^{2}:+H_{\mathrm{f}} .
$$

Furthermore for notational convenience we write A and $E(p)$ for $A_{\hat{\varphi}}(0)$ and $E_{m, \Lambda}(p)$, respectively.

2.1 Formulae

Lemma 2.1 We have

$$
\frac{m}{m_{\mathrm{eff}}}=1-\frac{2}{3} \sum_{\mu=1,2,3} \frac{\left(\psi_{\mathrm{g}}(0),\left(P_{\mathrm{f}}+e A\right)_{\mu}(H(0)-E(0))^{-1}\left(P_{\mathrm{f}}+e A\right)_{\mu} \psi_{\mathrm{g}}(0)\right)}{\left(\psi_{\mathrm{g}}(0), \psi_{\mathrm{g}}(0)\right)} .
$$

Proof: It is seen that $E(p, e)=E(p,-e)=E(-p, e)$. Then

$$
\begin{equation*}
\left.\frac{\partial}{\partial p_{\mu}} E(p, e)\right|_{p_{\mu}=0}=0, \quad \mu=1,2,3, \tag{2.1}
\end{equation*}
$$

follows. Moreover it is seen that $E(p, e)$ is a function of e^{2} and

$$
\begin{equation*}
\frac{d^{2 m-1}}{d e^{2 m-1}} E(p, e) \Gamma_{e=0}=0 . \tag{2.2}
\end{equation*}
$$

In this proof, $f^{\prime}(p)_{\mu}$ means the strong derivative of $f(p)$ with respect to p_{μ}. Since

$$
H(p) \psi_{\mathrm{g}}(p)=E(p) \psi_{\mathrm{g}}(p),
$$

we have

$$
\begin{equation*}
H^{\prime}(p)_{\mu} \psi_{\mathrm{g}}(p)+H(p) \psi_{\mathrm{g}}^{\prime}(p)_{\mu}=E^{\prime}(p)_{\mu} \psi_{\mathrm{g}}(p)+E(p) \psi_{\mathrm{g}}^{\prime}(p)_{\mu} \tag{2.3}
\end{equation*}
$$

and

$$
\begin{align*}
& H^{\prime \prime}(p)_{\mu} \psi_{\mathrm{g}}(p)+2 H^{\prime}(p)_{\mu} \psi_{\mathrm{g}}^{\prime}(p)_{\mu}+H(p) \psi_{\mathrm{g}}^{\prime \prime}(p)_{\mu} \\
& =E^{\prime \prime}(p)_{\mu} \psi_{\mathrm{g}}(p)+2 E^{\prime}(p)_{\mu} \psi_{\mathrm{g}}^{\prime}(p)_{\mu}+E(p) \psi_{\mathrm{g}}^{\prime \prime}(p)_{\mu} . \tag{2.4}
\end{align*}
$$

By (2.1) it follows that $E^{\prime}(0)_{\mu}=0$, and by (2.3) with $p=0$,

$$
\begin{aligned}
& \left(P_{\mathrm{f}}+e A\right)_{\mu} \psi_{\mathrm{g}}(0) \in D\left((H(0)-E(0))^{-1}\right), \\
& \psi_{\mathrm{g}}^{\prime}(0)_{\mu}=(H(0)-E(0))^{-1}\left(P_{\mathrm{f}}+e A\right)_{\mu} \psi_{\mathrm{g}}(0) .
\end{aligned}
$$

Then we have by (2.3) and (2.4),

$$
\begin{aligned}
\frac{m}{m_{\mathrm{eff}}} & =\frac{1}{3} \sum_{\mu=1,2,3} \frac{\left(\psi_{\mathrm{g}}(0), E^{\prime \prime}(0)_{\mu} \psi_{\mathrm{g}}(0)\right)}{\left(\psi_{\mathrm{g}}(0), \psi_{\mathrm{g}}(0)\right)} \\
& =1-\frac{2}{3} \sum_{\mu=1,2,3} \frac{\left(\left(P_{\mathrm{f}}+e A\right)_{\mu} \psi_{\mathrm{g}}(0),(H(0)-E(0))^{-1}\left(P_{\mathrm{f}}+e A\right)_{\mu} \psi_{\mathrm{g}}(0)\right)}{\left(\psi_{\mathrm{g}}(0), \psi_{\mathrm{g}}(0)\right)}
\end{aligned}
$$

Thus the lemma follows.
Let

$$
\psi_{\mathrm{g}}(0)=\sum_{n=0}^{\infty} \frac{e^{n}}{n!} \varphi_{n}, \quad E(0)=\sum_{n=0}^{\infty} \frac{e^{2 n}}{(2 n)!} E_{2 n}
$$

Note that

$$
\varphi_{2 m} \in \bigoplus_{m=0}^{\infty} \mathcal{F}^{(2 m)}, \quad \varphi_{2 m+1} \in \bigoplus_{m=0}^{\infty} \mathcal{F}^{(2 m+1)}
$$

We want to get the explicit form of φ_{n}. Let

$$
\begin{aligned}
& \mathcal{F}_{\text {fin }}=\left\{\left\{\Psi^{(n)}\right\}_{n=0}^{\infty} \in \mathcal{F} \mid \Psi^{(m)}=0 \text { for } m \geq \ell \text { with some } \ell\right\} \\
& \mathcal{F}_{0}=\left\{\left\{\Psi^{(n)}\right\}_{n=0}^{\infty} \in \mathcal{F}_{\text {fin }} \mid\left(\text { i) } \Psi^{(0)}=0,\right.\right. \\
&\left(\text { ii } \operatorname{supp}_{\left(k_{1}, \ldots, k_{n}\right) \in \mathbb{R}^{3 n}} \Psi^{(n)}\left(k_{1}, \ldots, k_{n}, j_{1}, \ldots, j_{n}\right) \not \supset\{(0, \ldots, 0)\}\right\} .
\end{aligned}
$$

Lemma 2.2 We see that $\mathcal{F}_{0} \subset D\left(H_{0}^{-1}\right)$.
Proof: Let $\Psi=\left\{\Psi^{(n)}\right\}_{n=0}^{\infty} \in \mathcal{F}_{0}$. Since

$$
\begin{aligned}
& \left(H_{0} \Psi\right)^{(n)}\left(k_{1}, \ldots, k_{n}, j_{1}, \ldots, j_{n}\right) \\
& =\left[\frac{1}{2}\left(k_{1}+\cdots+k_{n}\right)^{2}+\sum_{j=1}^{n} \omega\left(k_{j}\right)\right] \Psi^{(n)}\left(k_{1}, \ldots, k_{n}, j_{1}, \ldots, j_{n}\right),
\end{aligned}
$$

we see that

$$
\begin{aligned}
& \left(H_{0}^{-1} \Psi\right)^{(n)}\left(k_{1}, \ldots, k_{n}, j_{1}, \ldots, j_{n}\right) \\
& =\left[\frac{1}{2}\left(k_{1}+\cdots+k_{n}\right)^{2}+\sum_{j=1}^{n} \omega\left(k_{j}\right)\right]^{-1} \Psi^{(n)}\left(k_{1}, \ldots, k_{n}, j_{1}, \ldots, j_{n}\right)
\end{aligned}
$$

Since $\operatorname{supp}_{\left(k_{1}, \ldots, k_{n}\right) \in \mathbb{R}^{3 n}} \Psi^{(n)}\left(k_{1}, \ldots, k_{n}, j_{1}, \ldots, j_{n}\right) \not \supset\{(0, \ldots, 0)\}$, we obtain that

$$
\left\|H_{0}^{-1} \Psi\right\|_{\mathcal{F}}^{2}=\sum_{n=1}^{\text {finite }}\left\|\left(H_{0}^{-1} \Psi\right)^{(n)}\right\|_{\mathcal{F}^{(n)}}^{2}<\infty
$$

Then the lemma follows.
We split $H(0)$ as

$$
H(0)=H_{0}+e H_{1}+\frac{e^{2}}{2} H_{2}
$$

where

$$
\begin{aligned}
& H_{0}=\frac{1}{2} P_{\mathrm{f}}^{2}+H_{\mathrm{f}} \\
& H_{1}=\frac{1}{2}\left(P_{\mathrm{f}} \cdot A+A \cdot P_{\mathrm{f}}\right)=P_{\mathrm{f}} \cdot A=A \cdot P_{\mathrm{f}} \\
& H_{2}=: A^{2}:
\end{aligned}
$$

Lemma 2.3 We have $E_{0}=E_{1}=E_{2}=E_{3}=0$ and

$$
\varphi_{0}=\Omega, \quad \varphi_{1}=0, \quad \varphi_{2}=-H_{0}^{-1} H_{2} \Omega, \quad \varphi_{3}=3 H_{0}^{-1} H_{1} H_{0}^{-1} H_{2} \Omega
$$

In particular $\varphi_{2} \in \mathcal{F}^{(2)}$ and $\varphi_{3} \in \mathcal{F}^{(1)} \cap \mathcal{F}^{(3)}$.
Proof: Let us set $H(0), E(0)$ and $\psi_{\mathrm{g}}(0)$ as H, E and ψ_{g}, respectively. It is obvious that $E_{0}=0$ and $\varphi_{0}=a \Omega$ with arbitrary $a \in \mathbb{C}$, and by (2.2), $E_{1}=E_{3}=0$. Set $a=1$. We denote the strong derivative of $f=f(e)$ with respect to e by f^{\prime}. We have

$$
\begin{equation*}
H^{\prime} \psi_{\mathrm{g}}+H \psi_{\mathrm{g}}^{\prime}=E^{\prime} \psi_{\mathrm{g}}+E \psi_{\mathrm{g}}^{\prime} \tag{2.5}
\end{equation*}
$$

and

$$
\begin{equation*}
H^{\prime \prime} \psi_{\mathrm{g}}+2 H^{\prime} \psi_{\mathrm{g}}^{\prime}+H \psi_{\mathrm{g}}^{\prime \prime}=E^{\prime \prime} \psi_{\mathrm{g}}+2 E^{\prime} \psi_{\mathrm{g}}^{\prime}+E \psi_{\mathrm{g}}^{\prime \prime} \tag{2.6}
\end{equation*}
$$

From (2.6) it follows that
$\left(\psi_{\mathrm{g}}, H^{\prime \prime} \psi_{\mathrm{g}}\right)+\left(\psi_{\mathrm{g}}, 2 H^{\prime} \psi_{\mathrm{g}}^{\prime}\right)+\left(\psi_{\mathrm{g}}, H \psi_{\mathrm{g}}^{\prime \prime}\right)=E^{\prime \prime}\left(\psi_{\mathrm{g}}, \psi_{\mathrm{g}}\right)+\left(\psi_{\mathrm{g}}, 2 E^{\prime} \psi_{\mathrm{g}}^{\prime}\right)+\left(\psi_{\mathrm{g}}, E \psi_{\mathrm{g}}^{\prime \prime}\right)$.
Put $e=0$ in (2.7). Then

$$
\begin{equation*}
\left(\Omega, H_{2} \Omega\right)+\left(\Omega, 2 H_{1} \Omega\right)+\left(\Omega, H_{0} \varphi_{2}\right)=E_{2}(\Omega, \Omega) \tag{2.8}
\end{equation*}
$$

Since the left-hand side of (2.8) vanishes, we have $E_{2}=0$. From (2.5) with $e=0$ and the fact $E_{0}=E_{1}=0$, it follows that

$$
H_{1} \Omega+H_{0} \varphi_{1}=0
$$

from which it holds that $H_{0} \varphi_{1}=0$. Since H_{0} has the unique eigenvector Ω (the ground state) with eigenvalue zero, it follows that $\varphi_{1}=b \Omega$ with some constant b. $\varphi_{1} \in \bigoplus_{m=0}^{\infty} \mathcal{F}^{(2 m+1)}$ which implies $b=0$. Hence $\varphi_{1}=0$ follows. By (2.6) with $e=0$, we have

$$
H_{2} \Omega+2 H_{1} \varphi_{1}+H_{0} \varphi_{2}=0
$$

Since $H_{2} \Omega \in \mathcal{F}_{0}$, we see that by Lemma $2.2, H_{2} \Omega \in D\left(H_{0}^{-1}\right)$. Thus we have $\varphi_{2}=-H_{0}{ }^{-1} H_{2} \Omega$. From the identity

$$
\begin{equation*}
H^{\prime \prime \prime} \psi_{\mathrm{g}}+3 H^{\prime \prime} \psi_{\mathrm{g}}^{\prime}+3 H^{\prime} \psi_{\mathrm{g}}^{\prime \prime}+H \psi_{\mathrm{g}}^{\prime \prime \prime}=E^{\prime \prime \prime} \psi_{\mathrm{g}}+3 E^{\prime \prime} \psi_{\mathrm{g}}^{\prime}+3 E^{\prime} \psi_{\mathrm{g}}^{\prime \prime}+E \psi_{\mathrm{g}}^{\prime \prime \prime} \tag{2.9}
\end{equation*}
$$

it follows that at $e=0$,

$$
3 H_{1} \varphi_{2}+H_{0} \varphi_{3}=0
$$

Since $H_{1} \varphi_{2}=-H_{1} H_{0}{ }^{-1} H_{2} \Omega \in \mathcal{F}_{0}$, Lemma 2.2 ensures that $H_{1} \varphi_{2} \in D\left(H_{0}{ }^{-1}\right)$. Hence $\varphi_{3}=-3 H_{0}^{-1} H_{1} \varphi_{2}=3 H_{0}^{-1} H_{1} H_{0}^{-1} H_{2} \Omega$. Then the lemma is proven.

2.2 Order e^{4}

In this subsection we expand $m / m_{\text {eff }}$ up to order e^{4}. We define A^{-}and A^{+} by

$$
A^{-}=\frac{1}{\sqrt{2}} a(f), \quad A^{+}=\frac{1}{\sqrt{2}} a^{*}(f) .
$$

Then $A=A^{+}+A^{-}$.
Lemma 2.4 We have

$$
\begin{align*}
& \frac{m}{m_{\mathrm{eff}}}=1-e^{2} \frac{2}{3} \sum_{\mu=1}^{3}\left(\Omega, A_{\mu} H_{0}^{-1} A_{\mu} \Omega\right) \\
& -e^{4} \frac{2}{3} \sum_{\mu=1}^{3}\left\{2\left(\Psi_{3}^{\mu}, H_{0}^{-1} \Psi_{1}^{\mu}\right)+\left(\Psi_{2}^{\mu}, H_{0}^{-1} \Psi_{2}^{\mu}\right)-2\left(\Psi_{2}^{\mu}, H_{0}^{-1} H_{1} H_{0}^{-1} \Psi_{1}^{\mu}\right)\right. \\
& \left.-\frac{1}{2}\left(\Psi_{1}^{\mu}, H_{0}^{-1} H_{2} H_{0}^{-1} \Psi_{1}^{\mu}\right)+\left(\Psi_{1}^{\mu}, H_{0}^{-1} H_{1} H_{0}^{-1} H_{1} H_{0}^{-1} \Psi_{1}^{\mu}\right)\right\}+O\left(e^{6}\right), \tag{2.10}
\end{align*}
$$

where

$$
\begin{aligned}
& \Psi_{1}^{\mu}=A_{\mu} \Omega \\
& \Psi_{2}^{\mu}=-\frac{1}{2} P_{\mathrm{f} \mu} H_{0}^{-1}\left(A^{+} \cdot A^{+}\right) \Omega \\
& \Psi_{3}^{\mu}=\frac{1}{2}\left\{-A_{\mu} H_{0}^{-1}\left(A^{+} \cdot A^{+}\right) \Omega+\frac{1}{2} P_{\mathrm{f}_{\mu}} H_{0}^{-1}\left(P_{\mathrm{f}} \cdot A+A \cdot P_{\mathrm{f}}\right) H_{0}^{-1}\left(A^{+} \cdot A^{+}\right) \Omega\right\} .
\end{aligned}
$$

Proof: In Lemma 2.1 we have seen that

$$
\begin{equation*}
\frac{m}{m_{\mathrm{eff}}}=1-\frac{2}{3} \sum_{\mu=1,2,3} \frac{\left(\left(P_{\mathrm{f}}+e A\right)_{\mu} \psi_{\mathrm{g}}(0),(H(0)-E(0))^{-1}\left(P_{\mathrm{f}}+e A\right)_{\mu} \psi_{\mathrm{g}}(0)\right)}{\left(\psi_{\mathrm{g}}(0), \psi_{\mathrm{g}}(0)\right)} . \tag{2.11}
\end{equation*}
$$

We can strongly expand $(H(0)-E(0))^{-1}$ as

$$
\begin{align*}
& (H(0)-E(0))^{-1}=H_{0}^{-1}-e H_{0}^{-1} H_{1} H_{0}^{-1} \\
& +e^{2}\left(-\frac{1}{2} H_{0}^{-1} H_{2} H_{0}^{-1}+H_{0}^{-1} H_{1} H_{0}^{-1} H_{1} H_{0}^{-1}\right)+O\left(e^{3}\right) . \tag{2.12}
\end{align*}
$$

Here we set

$$
H_{j}= \begin{cases}H_{j}, & j=1,2, \\ -E_{j}, & j \geq 3\end{cases}
$$

Note that

$$
\varphi_{0} \in \mathcal{F}^{(0)}, \varphi_{2} \in \mathcal{F}^{(2)}, \varphi_{3} \in \mathcal{F}^{(3)} \cap \mathcal{F}^{(1)}, \varphi_{4} \in \mathcal{F}^{(4)} \cap \mathcal{F}^{(2)}
$$

In particular
$\frac{1}{\left(\psi_{\mathbf{g}}, \psi_{\mathbf{g}}\right)}=1-e^{4}\left(\frac{1}{2} \varphi_{2}, \frac{1}{2} \varphi_{2}\right)-e^{4}\left(\Omega, \frac{1}{24} \varphi_{4}\right)+O\left(e^{6}\right)=1-e^{4} \frac{1}{4}\left(\varphi_{2}, \varphi_{2}\right)+O\left(e^{6}\right)$.
Moreover we have

$$
\begin{gather*}
\left(P_{\mathrm{f}}+e A\right)_{\mu} \psi_{\mathrm{g}}(0)=e A_{\mu} \Omega+e^{2}\left(\frac{1}{2} P_{\mathrm{f} \mu} \varphi_{2}\right)+e^{3}\left(\frac{1}{2} A_{\mu} \varphi_{2}+\frac{1}{6} P_{\mathrm{f} \mu} \varphi_{3}\right)+O\left(e^{4}\right) \\
=e \Psi_{1}^{\mu}+e^{2} \Psi_{2}^{\mu}+e^{3} \Psi_{3}^{\mu}+O\left(e^{4}\right) \tag{2.14}
\end{gather*}
$$

Substitute (2.12), (2.13) and (2.14) into (2.11). Then the lemma follows.
For each $k \in \mathbb{R}^{3}$ let us define the projection $Q(k)$ on \mathbb{R}^{3} by

$$
Q(k)=\sum_{j=1,2}\left|e_{j}(k)\right\rangle\left\langle e_{j}(k)\right| .
$$

We set

$$
\hat{\varphi}_{j}=\hat{\varphi}\left(k_{j}\right), \quad \omega_{j}=\omega\left(k_{j}\right), \quad Q\left(k_{j}\right)=Q_{j}, \quad j=1,2 .
$$

Let

$$
\begin{aligned}
\frac{1}{F_{j}} & =\frac{1}{r_{j}^{2} / 2+r_{j}}, \quad j=1,2, \\
\frac{1}{F_{12}} & =\frac{1}{\left(r_{1}^{2}+2 r_{1} r_{2} X+r_{2}^{2}\right) / 2+r_{1}+r_{2}}, \quad r_{1}, r_{2} \geq 0, \quad-1 \leq X \leq 1 .
\end{aligned}
$$

Lemma 2.5 We have

$$
\frac{m}{m_{\mathrm{eff}}}=1-\alpha a_{1}(\Lambda / m, \kappa / m)-\alpha^{2} a_{2}(\Lambda / m, \kappa / m)+O\left(\alpha^{3}\right),
$$

where

$$
\begin{equation*}
a_{1}(\Lambda / m, \kappa / m)=\frac{8}{3 \pi} \log \left(\frac{\Lambda / m+2}{\kappa / m+2}\right) \tag{2.15}
\end{equation*}
$$

and

$$
\begin{align*}
& a_{2}(\Lambda / m, \kappa / m) \\
& =\frac{(4 \pi)^{2}}{(2 \pi)^{6}} \frac{2}{3} \int_{-1}^{1} \mathrm{~d} X \int_{\kappa / m}^{\Lambda / m} \mathrm{~d} r_{1} \int_{\kappa / m}^{\Lambda / m} \mathrm{~d} r_{2} \pi r_{1} r_{2} \times \\
& \times\left\{-\left(\frac{1}{F_{1}}+\frac{1}{F_{2}}\right) \frac{1}{F_{12}}\left(1+X^{2}\right)+\left(\frac{1}{F_{12}}\right)^{3} \frac{r_{1}^{2}+2 r_{1} r_{2} X+r_{2}^{2}}{2}\left(1+X^{2}\right)\right. \\
& +\left(\frac{1}{F_{1}}+\frac{1}{F_{2}}\right)\left(\frac{1}{F_{12}}\right)^{2} r_{1} r_{2} X\left(-1+X^{2}\right)-\frac{1}{F_{1}} \frac{1}{F_{2}}\left(1+X^{2}\right) \\
& \left.+\left(\frac{r_{1}^{2}}{F_{1}^{2}}+\frac{r_{2}^{2}}{F_{2}^{2}}\right) \frac{1}{F_{12}}\left(1-X^{2}\right)+\frac{1}{F_{1}} \frac{1}{F_{2}} \frac{1}{F_{12}} r_{1} r_{2} X\left(-1+X^{2}\right)\right\} \tag{2.16}
\end{align*}
$$

Proof: Note that

$$
\begin{aligned}
a_{1}(\Lambda, \kappa) & =\frac{2}{3}(\sqrt{4 \pi})^{2}\left(A_{\mu}^{+} \Omega, H_{0}^{-1} A_{\mu}^{+} \Omega\right) \\
& =\frac{8}{3 \pi} \log \left(\frac{\Lambda / m+2}{\kappa / m+2}\right)
\end{aligned}
$$

Thus (2.15) follows. To see $a_{2}(\Lambda, \kappa)$ we exactly compute the five terms on the right-hand side of (2.10) separately. Let

$$
\begin{aligned}
\frac{1}{E_{j}} & =\frac{1}{\left|k_{j}\right|^{2} / 2+\omega_{j}}, \quad j=1,2 \\
\frac{1}{E_{12}} & =\frac{1}{\left|k_{1}+k_{2}\right|^{2} / 2+\omega_{1}+\omega_{2}}
\end{aligned}
$$

(1) We have

$$
\begin{align*}
& 2\left(\Psi_{3}^{\mu}, H_{0}^{-1} \Psi_{1}^{\mu}\right)=\left(\Omega,-\left(A^{-} \cdot A^{-}\right) H_{0}^{-1} A_{\mu} H_{0}^{-1} A_{\mu}^{+} \Omega\right) \\
& +\frac{1}{2}\left(\Omega,\left(A^{-} \cdot A^{-}\right) H_{0}^{-1}\left(P_{\mathrm{f}} \cdot A+A \cdot P_{\mathrm{f}}\right) H_{0}^{-1} P_{\mathrm{f} \mu} H_{0}^{-1} A_{\mu}^{+} \Omega\right) \\
& =-\iint \mathrm{d} k_{1}^{3} \mathrm{~d} k_{2}^{3} \frac{\left|\hat{\varphi}_{1}\right|^{2}}{2 \omega_{1}} \frac{\left|\hat{\varphi}_{2}\right|^{2}}{2 \omega_{2}} \frac{1}{E_{12}}\left(\frac{1}{E_{1}}+\frac{1}{E_{2}}\right) \operatorname{tr}\left(Q_{1} Q_{2}\right) \tag{2.17}
\end{align*}
$$

(2) We have

$$
\begin{align*}
& \left(\Psi_{2}^{\mu}, H_{0}^{-1} \Psi_{2}^{\mu}\right) \\
& =\left(\frac{1}{2}\right)^{2}\left(P_{\mathrm{f} \mu} H_{0}^{-1}\left(A^{+} \cdot A^{+}\right) \Omega, H_{0}^{-1} P_{\mathrm{f} \mu} H_{0}^{-1}\left(A^{+} \cdot A^{+}\right) \Omega\right) \\
& =\left(\frac{1}{2}\right)^{2} \iint \mathrm{~d} k_{1}^{3} \mathrm{~d} k_{2}^{3} \frac{\left|\hat{\varphi}_{1}\right|^{2}}{2 \omega_{1}} \frac{\left|\hat{\varphi}_{2}\right|^{2}}{2 \omega_{2}}\left(\frac{1}{E_{12}}\right)^{3}\left|k_{1}+k_{2}\right|^{2} 2 \operatorname{tr}\left(Q_{1} Q_{2}\right) \tag{2.18}
\end{align*}
$$

(3) We have

$$
\begin{align*}
& -2\left(\Psi_{2}^{\mu}, H_{0}^{-1} H_{1} H_{0}^{-1} \Psi_{1}^{\mu}\right) \\
& =\frac{1}{2}\left(P_{\mathrm{f} \mu} H_{0}^{-1}\left(A^{+} \cdot A^{+}\right) \Omega, H_{0}^{-1}\left(P_{\mathrm{f}} \cdot A+A \cdot P_{\mathrm{f}}\right) H_{0}^{-1} A_{\mu}^{+} \Omega\right) \\
& =\iint \mathrm{d} k_{1}^{3} \mathrm{~d} k_{2}^{3} \frac{\left|\hat{\varphi}_{1}\right|^{2}}{2 \omega_{1}} \frac{\left|\hat{\varphi}_{2}\right|^{2}}{2 \omega_{2}}\left(\frac{1}{E_{12}}\right)^{2}\left(\frac{1}{E_{1}}+\frac{1}{E_{2}}\right)\left(k_{2}, Q_{1} Q_{2} k_{1}\right) \tag{2.19}
\end{align*}
$$

(4) We have

$$
\begin{align*}
- & \frac{1}{2}\left(\Psi_{1}^{\mu}, H_{0}^{-1} H_{2} H_{0}^{-1} \Psi_{1}^{\mu}\right) \\
= & -\frac{1}{2}\left(A_{\mu}^{+} \Omega, H_{0}^{-1}\left(\left(A^{+} \cdot A^{+}\right)+2\left(A^{+} \cdot A^{-}\right)+\left(A^{-} \cdot A^{-}\right)\right) H_{0}^{-1} A_{\mu}^{+} \Omega\right) \\
= & -\iint \mathrm{d} k_{1}^{3} \mathrm{~d} k_{2}^{3} \frac{\left|\hat{\varphi}_{1}\right|^{2}}{2 \omega_{1}} \frac{\left|\hat{\varphi}_{2}\right|^{2}}{2 \omega_{2}} \frac{1}{E_{1}} \frac{1}{E_{2}} \operatorname{tr}\left(Q_{1} Q_{2}\right) \tag{2.20}
\end{align*}
$$

(5) We have

$$
\begin{align*}
& \left(\Psi_{1}^{\mu}, H_{0}^{-1} H_{1} H_{0}^{-1} H_{1} H_{0}^{-1} \Psi_{1}^{\mu}\right) \\
& =\left(\frac{1}{2}\right)^{2}\left(A_{\mu}^{+} \Omega, H_{0}^{-1}\left(P_{\mathrm{f}} \cdot A+A \cdot P_{\mathrm{f}}\right) H_{0}^{-1}\left(P_{\mathrm{f}} \cdot A+A \cdot P_{\mathrm{f}}\right) H_{0}^{-1} A_{\mu}^{+} \Omega\right) \\
& =\iint \mathrm{d} k_{1}^{3} \mathrm{~d} k_{2}^{3} \frac{\left|\hat{\varphi}_{1}\right|^{2}}{2 \omega_{1}} \frac{\left|\hat{\varphi}_{2}\right|^{2}}{2 \omega_{2}} \frac{1}{E_{12}}\left\{\left(\frac{1}{E_{1}}\right)^{2}\left(k_{1}, Q_{2} k_{1}\right)+\left(\frac{1}{E_{2}}\right)^{2}\left(k_{2}, Q_{1} k_{2}\right)\right\} \\
& +\iint \mathrm{d} k_{1}^{3} \mathrm{~d} k_{2}^{3} \frac{\left|\hat{\varphi}_{1}\right|^{2}}{2 \omega_{1}} \frac{\left|\hat{\varphi}_{2}\right|^{2}}{2 \omega_{2}} \frac{1}{E_{12}} \frac{1}{E_{1}} \frac{1}{E_{2}}\left(k_{2}, Q_{1} Q_{2} k_{1}\right) . \tag{2.21}
\end{align*}
$$

Changing variables to the polar coordinate, we obtain (2.16) from Lemma 2.4, (2.17), (2.18), (2.19), (2.20), (2.21) and the facts

$$
\begin{aligned}
& \operatorname{tr}\left[Q_{1} Q_{2}\right]=1+\left(\hat{k}_{1}, \hat{k}_{2}\right)^{2}, \\
& \left(k_{1}, Q_{2} Q_{1} k_{2}\right)=\left(k_{1}, k_{2}\right)\left(\left(\hat{k}_{1}, \hat{k}_{2}\right)^{2}-1\right), \\
& \left(k_{1}, Q_{2} k_{1}\right)=\left|k_{1}\right|^{2}\left(1-\left(\hat{k}_{1}, \hat{k}_{2}\right)^{2}\right) .
\end{aligned}
$$

Thus the proof is complete.

3 Main theorem

The main theorem is as follows.
Theorem 3.1 There exist strictly positive constants $C_{\min }$ and $C_{\max }$ such that

$$
C_{\min } \leq \lim _{\Lambda \rightarrow \infty} \frac{a_{2}(\Lambda / m, \kappa / m)}{\sqrt{\Lambda / m}} \leq C_{\max }
$$

Proof: We show an outline of a proof. See Hiroshima and Spohn [7] for details. By (2.16) we can see that

$$
\begin{equation*}
a_{2}(\Lambda, \kappa)=\frac{(4 \pi)^{2}}{(2 \pi)^{6}} \frac{2}{3} \sum_{j=1}^{6} b_{j}(\Lambda / m) \tag{3.1}
\end{equation*}
$$

where

$$
\begin{aligned}
& b_{1}(\Lambda / m)=-\int\left(1+X^{2}\right)\left(\frac{1}{F_{1}}+\frac{1}{F_{2}}\right) \frac{1}{F_{12}} \\
& b_{2}(\Lambda / m)=\int\left(1+X^{2}\right)\left(\frac{1}{F_{12}}\right)^{3} \frac{r_{1}^{2}+2 r_{1} r_{2} X+r_{2}^{2}}{2}, \\
& b_{3}(\Lambda / m)=\int X\left(-1+X^{2}\right) r_{1} r_{2}\left(\frac{1}{F_{1}}+\frac{1}{F_{2}}\right)\left(\frac{1}{F_{12}}\right)^{2}, \\
& b_{4}(\Lambda / m)=-\int\left(1+X^{2}\right) \frac{1}{F_{1}} \frac{1}{F_{2}}, \\
& b_{5}(\Lambda / m)=\int\left(1-X^{2}\right)\left(\frac{r_{1}^{2}}{F_{1}^{2}}+\frac{r_{2}^{2}}{F_{2}^{2}}\right) \frac{1}{F_{12}}, \\
& b_{6}(\Lambda / m)=\int X\left(-1+X^{2}\right) r_{1} r_{2} \frac{1}{F_{1}} \frac{1}{F_{2}} \frac{1}{F_{12}},
\end{aligned}
$$

where

$$
\int=\int_{-1}^{1} \mathrm{~d} X \int_{\kappa / m}^{\Lambda / m} \mathrm{~d} r_{1} \int_{\kappa / m}^{\Lambda / m} \mathrm{~d} r_{2} \pi r_{1} r_{2} .
$$

Let $\rho_{\Lambda}(\cdot, \cdot):[0, \infty) \times[-1,1] \rightarrow \mathbb{R}$ be defined by

$$
\rho_{\Lambda}=\rho_{\Lambda}(r, X)=r^{2}+2 \Lambda r X+\Lambda^{2}+2 r+2 \Lambda=(r+\Lambda X+1)^{2}+\Delta
$$

where

$$
\begin{equation*}
\Delta=\Lambda^{2}\left(1-X^{2}\right)+2 \Lambda(1-X)-1 \tag{3.2}
\end{equation*}
$$

Then we can show that there exist constants C_{1}, C_{2}, C_{3} and C_{4} such that for sufficiently large $\Lambda>0$,
(1) $\int_{-1}^{1} \mathrm{~d} X \int_{0}^{\Lambda} \mathrm{d} r \frac{1}{\rho_{\Lambda}(r, X)} \leq C_{1} \frac{1}{\Lambda}$,
(2) $\int_{-1}^{1} \mathrm{~d} X \int_{0}^{\Lambda} \mathrm{d} r\left(\frac{1}{\rho_{\Lambda}(r, X)}\right)^{2} \leq C_{2} \frac{1}{\Lambda^{5 / 2}}$,
(3) $\int_{-1}^{1} \mathrm{~d} X \int_{0}^{\Lambda} \mathrm{d} r \frac{1}{\rho_{\Lambda}(r, X)} \frac{1}{r+2} \leq C_{3} \frac{\log \Lambda}{\Lambda^{2}}$,
(4) $\int_{-1}^{1} \mathrm{~d} X \int_{0}^{\Lambda} \mathrm{d} r\left(\frac{1}{\rho_{\Lambda}(r, X)}\right)^{2}\left(1-X^{2}\right) \leq C_{4} \frac{1}{\Lambda^{3}}$.

Using (1)-(4) we can prove that there exists a constant $C>0$ such that

$$
\begin{aligned}
& \left|b_{j}(\Lambda / m)\right| \leq C[\log (\Lambda / m)]^{2}, \quad j=1,4 \\
& \left|b_{2}(\Lambda / m)\right| \leq C(\Lambda / m)^{1 / 2} \\
& \left|b_{j}(\Lambda / m)\right| \leq C \log (\Lambda / m), \quad j=3,5,6
\end{aligned}
$$

Hence there exists a constant $C_{\text {max }}$ such that

$$
\lim _{\Lambda \rightarrow \infty} \frac{a_{2}(\Lambda / m, \kappa / m)}{\sqrt{\Lambda / m}} \leq C_{\max }
$$

Next we can show that there exists a positive constant $\xi>0$ such that

$$
\lim _{\Lambda \rightarrow \infty} \sqrt{\Lambda / m} \frac{d}{d(\Lambda / m)} b_{2}(\Lambda / m)>\xi
$$

which implies that there exists a constan ξ^{\prime} such that

$$
\xi^{\prime} \leq \lim _{\Lambda \rightarrow \infty} \frac{b_{2}(\Lambda / m)}{\sqrt{\Lambda / m}}
$$

Thus we have

$$
C_{\min } \leq \lim _{\Lambda \rightarrow \infty} \frac{a_{2}(\Lambda / m, \kappa / m)}{\sqrt{\Lambda / m}} \leq C_{\max }
$$

Remark 3.2 Theorem 3.1 may suggests $\gamma \geq 1 / 2$ uniformly in e but $e \neq 0$.
Remark 3.3 (1) $a_{2}(\Lambda / m, \kappa / m) / \sqrt{\Lambda / m}$ converges to a nonnegative constant as $\Lambda \rightarrow \infty$. (2) By (3.1), we can define $a_{2}(\Lambda / m, 0)$ since $b_{j}(\Lambda / m)$ with $\kappa=0$ are finite. Moreover $a_{2}(\Lambda / m, 0)$ also satisfies Theorem 3.1. (3) In the case of $\kappa=0$, Chen [1] established that $H(0)$ has a ground state $\psi_{\mathrm{g}}(0)$ but does not for $H(p)$ with $p \neq 0$.

4 Concluding remarks

The Pauli-Fierz Hamitonian with the dipole approximation, $H_{\text {dip }}$, is defined by H with $A_{\hat{\varphi}}$ replaced by $1 \otimes A_{\hat{\varphi}}(0)$, i.e.,

$$
H_{\mathrm{dip}}=\frac{1}{2 m}\left(p \otimes 1-e 1 \otimes A_{\hat{\varphi}}(0)\right)^{2}+V \otimes 1+1 \otimes H_{\mathrm{f}}
$$

Set $V \equiv 0$. Note that

$$
\left[H_{\mathrm{dip}}, P_{\mathrm{total}}\right] \neq 0
$$

It is established in [5] that there exists a unitary operator $U: \mathcal{H} \rightarrow \mathcal{H}$ such that

$$
U H_{\mathrm{dip}} U^{-1}=-\frac{1}{2(m+\delta m)} \Delta \otimes 1+1 \otimes H_{\mathrm{f}}+e^{2} G
$$

where

$$
\begin{aligned}
& \delta m=m+e^{2} \frac{2}{3}\|\hat{\varphi} / \omega\|^{2} \\
& G=\frac{1}{\pi} \int_{-\infty}^{\infty} \frac{t^{2}\left\|\hat{\varphi} /\left(t^{2}+\omega^{2}\right)\right\|^{2}}{m+\left(2 e^{2} / 3\right)\left\|\hat{\varphi} / \sqrt{t^{2}+\omega^{2}}\right\|^{2}} d t
\end{aligned}
$$

Hence

$$
\left[U H_{\mathrm{dip}} U^{-1}, P_{\mathrm{total}}\right]=0
$$

Then we can define the effective mass $m_{\text {eff }}$ for $U H_{\text {dip }} U^{-1}$, and which is

$$
m_{\mathrm{eff}} / m=1+\alpha \frac{4}{3 \pi}(\Lambda / m-\kappa / m)
$$

Hence $\gamma=1$, then the mass renormalization for $H_{\text {dip }}$ is not available.

References

[1] T. Chen, Operator-theoretic infrared renormalization and construction of dressed 1-particle states in non-relativistic QED, mp-arc 01-301, preprint, 2001.
[2] C. Hainzl and R. Seiringer, Mass Renormalization and Energy Level Shift in Non-Relativistic QED, math-ph/0205044, preprint, 2002.
[3] F. Hiroshima, Essential self-adjointness of translation-invariant quantum field models for arbitrary coupling constants, Commun. Math. Phys. 211 (2000), 585-613.
[4] F. Hiroshima, Self-adjointness of the Pauli-Fierz Hamiltonian for arbitrary values of coupling constants, Ann. Henri Poincaré, 3 (2002), 171-201.
[5] F. Hiroshima and H. Spohn, Enhanced binding through coupling to a quantum field, Ann. Henri Poincaré 2 (2001), 1159-1187.
[6] F. Hiroshima and H. Spohn, Ground state degeneracy of the Pauli-Fierz model with spin, Adv. Theor. Math. Phys. 5 (2001), 1091-1104.
[7] F. Hiroshima and H. Spohn, Mass renormalization in nonrelativistic QED, arXiv:math-ph0310043, preprint, 2003.
[8] E. Lieb and M. Loss, A bound on binding energies and mass renormalization in models of quantum electrodynamics, J. Stat. Phys. 108, 1057-1069 (2002).
[9] E. Nelson, Interaction of nonrelativistic particles with a quantized scalar field, J. Math. Phys. 5 (1964), 1190-1197.
[10] H. Spohn, Effective mass of the polaron: A functional integral approach, Ann. Phys. 175 (1987), 278-318.

[^0]: *Department of Mathematics and Physics, Setsunan University, 572-8508, Osaka, Japan. email: hiroshima@mpg.setsunan.ac.jp
 ${ }^{\dagger}$ This work is partially supported by Grant-in-Aid for Science Reserch C 1554019 from MEXT.
 ${ }^{1}$ Zentrum Mathematik and Physik Department, TU München, D-80290, München, Germany. email: spohn@ma.tum.de

