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Abstract

The Pauli-Fierz Hamiltonian of the nonrelativistic QED is defined as a
self-adjoint operator Hj with ultraviolet cutoff A > 0, which describes an
interaction between an electron and photons with momentum < A. Spectral
properties of Hp are investigated for a sufficiently large A. In particular
enhanced binding, stability of matter and asymptotic behavior of effective
mass for A — oo are studied.

1 The Pauli-Fierz Hamiltonian

This is a joint work with Herbert Spohn [20, 21].! We consider spectral prop-
erties of a system of one spinless electron minimally coupled to a quantized
radiation field quantized in the Coulomb gauge. The system is called the
Pauli-Fierz model [26]. The Pauli-Fierz Hamiltonian with ultraviolet cutoff
A is defined as a self-adjoint operator on a Hilbert space. In this paper we
analyze the Hamiltonian for a sufficiently large A.

Since a photon is a transversely polarized wave, one particle state space
of a photon is defined by L?(R3x{1,2}). Here R? x {1,2} > (k,j) expresses
momentum and transversal component of one photon, respectively. The Boson
Fock space F describing a state space of photons is defined by

[ee]

F = @[ 7 LA (Rx{1,2})]

= {0 = {0 e @F LA(R*%{1,2}), | ¥ = Z % < oo},
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where ®7L*(R*x{1,2}), n > 1, denotes the n-fold symmetric tensor product
of L2(R*x{1,2}) and we set

RIL*(R¥x{1,2}) = C.
The creation operator a*(f) smeared by f € L?(R3x{1,2}) is defined by
(a*(£)T)" = VnSa(f @ ¥,
where S,, denotes the symmetrization operator, i.e.,
Su[@"LA(R® x {1,2})] = @ L*(R® x {1,2}).

The annihilation operator is given by

a(f) = (@ () [ 7,

where Fy denotes the finite particle subspace of F. Formally we often write

a(f) us
()= Y [ S abk gk, f € LHE x {1,2)).

j=1,2

Note that we do not give any rigorous mathematical meaning to formal kernel
af(k, j) in this paper. af(k, j) is just a symbol. af(f) satisfy CCR,

We see that
the liner hull of {a*(f1)---a*(fu)Q, Qf; € L*(R*x{1,2}),1 < j <n,n > 1}
is dense in F. The free Hamiltonian Hf of F is defined by

HiQ =0,

n

Hya*(f1) - a*(fu)Q =Y a*(f1)---a*(wfj) -~ a*(fn)Q,

J=1

and which is formally written as

H= Y [wa(k,dak, )k,

j=1,2
where the dispersion relation is given by

w(k) = |k|.
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Let us denote the spectrum (resp. discrete spectrum, point spectrum, essential
spectrum) of self-adjoint operator T by o(T") (resp. ogisc(T), op(T), Tess(T)).
It is well known that

o(Hy) = [0,00), op(Hy) = {0}.

Inequalities

la(£)T| < |1£/Vel||H W],
la*(£)@|| < |1 £/ Vol | H 2| + || £

are well known. The Pauli-Fierz Hamiltonian H is defined as a self-adjoint
operator acting on

52
H:LQ(R?’)@J-'%/ Fdzx (1.1)
R3
by
1
H:%(px®1—€A¢)2+V®1+1®Hf’

where fﬂg ---dr denotes a constant fiber direct integral, m and e the mass
and the charge of electron, respectively,

and V an external potential. We regard e as a coupling constant. Under
identification (1.1), quantized radiation field Ay is defined by

5]
As = /]R3 Ay(z)dx

= 3 [ aselh) {e e ) + € alk )}

7=1,2

and, e(k, 1), e(k,2) and k/|k| form a three dimensional right-handed orthonor-
mal system, i.e.,

e(hyg) k=0, e(kyi)-elkyj) =8, elk,1) x e(k,2) =k/lkl.  (1.2)
Note that

where

e(—k,1) = —e(k,1), e(—k,2)=ce(k,2).
Finally ¢ denotes a form factor. A; acts for ¥ € H as
(Ap¥)(z) = Ap(z)¥(x), =€ R3.

By (1.2), we have
Pz - Ag(z) = 0.
The decoupled Hamiltonian is given by H with e replaced by 0, i.e.,

1
Hy = <p§+V)®1+1®Hf.
2m



Theorem 1.1 Assume that $/w,/wp € L*(R®) and V is relatively bounded
with respect to p2 with a relative bound < 1. Then, for arbitrary values of e,
H is self-adjoint on D(p?®1)N D(1® Hy) and bounded from below. Moreover
it is essentially self-adjoint on any core of D(Hy).

Proof: See [15, 16]. O

Note that
D(Ho) = D(p; ® 1) N D(1 ® Hy).

Quantized radiation field Ay with a sharp ultraviolet cutoff is defined by A,
with ¢ replaced by

0, |k| < &,
xa(k) =4 1/3/(27)3, k< k| <A,
0, |k| > A.

Here k > 0 is called infrared cutoff, and which is fixed throughout this paper.
Hence the Hamiltonian under consideration is

1
HA:%(px®1—€AA)2+V®1+1®Hf-

In this paper we will review recent advances in analysis of the spectral prop-
erties of Hy for sufficiently large A. In particular we will discuss 1.-3.

1. Enhanced binding for a sufficiently large A.
2. Stability of matter as A — oc.

3. The asymptotic behavior of an effective mass as A — oc.

2 Enhanced binding

1
It is proven that, if z—pi +V has a ground state, then Hp has a ground state
m

and it is unique, under suitable conditions on V' and e. See e.g., [1, 3, 8, 12,
13, 14]. We want to show, however, the existence of a ground state without

1
assumption “if —pi 4+ V has a ground state”. On a formal level we expect

that bare mass m of an electron amounts to effective mass meg by a coupling
with a quantized radiation field, i.e.,

m — Meg = Meg(A) =m + dm(A)

Roughly speaking, Hy may be replaced by

Hp ~ Heg = < P>+ V> ®1+1® Hf + remainders . (2.1)

1
2meg(A)

Since it is expected that effective mass meg(A) increases as A does, a ground
state of Hp could be appear for a sufficiently large A even when Hy has no
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Figure 1. Effective mass

ground states. This kind of phenomena is called enhanced binding.
Enhanced binding for coupling constant e has been done in Hiroshima and
Spohn [20], and developed by e.g., [2, 4, 5, 10]. Catto and Hainzl [4], Chen,
Vougalter and Vugalter [5], Hainzl, Vougalter and Vugalter [10] study a more
physically reasonable case. Arai and Kawano [2] proved the similar result as
ours, i.e., enhanced binding for A, in a general framework.

In this section, we take the dipole approximation, i.e., Ax(z) in the defi-
nition of Hp is replaced as

AA(ac) —1® AA(O).
Then the Hamiltonian under consideration is

1
Hdip:%(px(@1+1®AA(0))2+V®1+1®Hf-

For notational convenience we omit the tensor notation ® unless confusions
may arise, i.e., Hgjp is simply written as

1
Hgip = %(pz —eAp(0))* +V + H.

Assumption (V) is as follow.
Assumption V
(a) V € C3°(R?).
(b) V <o.
(c) There exists pg > 1 and r > 0 such that for u > po,

. 1,
1nft7(%pm +uV) < —r.
. . . . 1 5.
Since V is relatively compact with respect to 2—pm, it holds that
m

1
Uess(%pgzc + /LV) = [Oa OO)

1
Hence z—pi + puV, u > po, has a ground state.
m

1
Remark 2.1 We do not assume the existence of ground states of 2_10925 +V.
m
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A typical example of V' is sufficiently shallow nonpositive potentials. By the
Lieb-Thirring inequality [24],

1

#{bound states of z—pi +V}<Ls / ImV_(z)[>?d*z,
m

(V_ : the negative part of V)

with some constant L3 independent of V', we see that for a sufficiently shallow

nonpositive potential V', 2—p§ 4+ V has no bound states. In particular it has
m

no ground states. Thus Hg has also no ground state.
Proposition 2.2 There exists a unitary operator U such that

U : D(p;) N D(He) = D(p;) N D(Hy)

and
U~ 'HgpU = 5 Py + V(- — K/meg) + Hy + g(A),
Meff
where
8t 1
Meg = M + 3 (27r)3(A — K),

00 2 2 (.d2 2
g(A) _ 1/ t ||XA/(t + )H

— dt,
TJ_com+ %||XA/‘/t2+w2“2

and K = (Kl,KQ,Kg) with

K= 3 s [{outh i’ (e.d) + gl halh )}

j=1,2

and o,(-,j) satisfies that

™20, )| < Cllw™ = 2xa| (2.2)
with some constant C'.
Proof: See [20, 18]. ]
We set
5V = V(- — K/mug) — V,
off = 3 leﬁpi +V,
and

Hpy = U 'HyipU = Hog + 6V 4 Hy 4 g(A).



Lemma 2.3 Let A be such that
A @02 (o — Dm. (2.3)
8

Then Heg has a ground state, and

8r 1 3/2
#{bound states of Heg} < L3 <m + ?—(A — /ﬂ)) /|V(x)|3/2d333.

(2m)?
(2.4)
In particular Heg has a finite number of bound states.
Proof: By Hypothesis (V),
1 m 1 Meff
Heg = 2+V = —pi+ — V>
eff 2megpx + Meff <2mpx + m
implies that if
Pefl > o, (2.5)

then Heg has a ground state. (2.5) is identical with (2.3). (2.4) follows from
the Lieb-Thirring inequality. Then the lemma follows. |

We introduce an artificial parameter v > 0, and define
HY = He + 8V + HY + g(A),

where 6V* and Hy{ are defined by 6V and Hy with w replaced by w + v,
respectively. It is easily seen that

15V || < 6(A) (| HY 2P + || w]))
with some constant #(A) independent of v. Actually it is presented as

IV

€

0(A) (Ixa/@?| + Ixa/w®?||) % const.

Note that
meg ~ A, [[xa/w? ~ AY2 [[xa/w®?]| ~ log A,

as A — oo, we have

lim O(A) = 0. (2.6)

A— o0

Lemma 2.4 Suppose that min{|inf o(Heg)|/3,2} > 6(A). Then

~

o(HY) N [inf o (HY), inf o(HY) + v) C oqise(HY).

In particular PAIK has a ground state.



Proof: See [18, Lemma 10]. O
The number operator N of F is defined by
N=Y /a*(k,j)a(k,j)d3k.
§=1,2
ILe.,
(N =y

D(N) = {& = {w}2 | 3~ n?| )| < oo}
n=0

A ground state of ﬁK is denoted by g (V).

Lemma 2.5 Suppose that min{|inf o(Heg)|/3,2} > 0(A). Then, for v such
that |inf o (Heg)| > 36(A) + v,
IN' 2y ()]

)||XA/W5/2||
el

(S)

< C(max ||V, Vo (2.7)

with some constant C'.
Proof: We set E = infa(ﬁx). Since
[HY, a(k, /)] = —(w(k) + v)a(k, j) + V", a(k, )],
we have
(HY — E + w(k) +v)a(k, j)pg(v) = [V, a(k, /)]y (v)-

Note that

.p-KY ip-KV

V(= K fmeg) = ¢ e V'
where K" is defined by K with w replaced by w + v. Then we see that

p-KY -p-KY p-KY  .pKY

VY, a(k,j)] = e "mett [V, e et a(k, j)e " met |e’ metr .

Since
.p-KY .p-KY

€' merr a(k,jle ™t =a(k,j) —

3
b Qy(kaj)a
V2meg

it follows that

.p-KY

(VV) - o (k, j)> e

.p- KV
[ﬂwﬂ@gﬂzezhﬁ<

1
\/imeff

Thus we obtain that
a(k,j)eg(v) = (HY—E+w(k)+v) " x
.p-KY

_jpKEY 1 v . i
xoe <\/§meH(VV) 0 (ka.])> e et pg(v).
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Using this identity we see that
(N2 0g(v), N2 0g (v))
= % [ llatk,d)euw)Pdk

j=1,2

== /H (H{ — E + w(k) +v)™ x
j=1,2

—1 p-KY ( ]_
Xe  Meff
\/§meff

3 2
1 1
<33 % [(SIVavle) |5
p=1j=12 w(k)" " V2meg "

R )
Mef2 &

€

2
A3k

.p.KV

(V) (1) ) 548 gy (v)

2
k|l ()

(k. J)

1.

IN

¢ ((mzx 19,V1))

Hence the lemma follows. O

Remark 2.6 Although we used a formal calculation of a(k,j) in the proof of
Lemma 2.5, (2.7) can be justified in [19] rigorously.

We normalize g (v), i.e.,
lpg ()] = 1.

Take a subsequence v/ such that ¢, (1) weakly converges to a vector ¢, as
v — oo.

Proposition 2.7 Assume that p, # 0. Then g is a ground state of Hgp,.

Proof: See [1, Lemma 4.9]. O

Theorem 2.8 There exists Ay such that for A > Ay, Hgp, has a ground state.

Proof: It is enough to prove ¢, # 0 by Proposition 2.7. Let Ep denote the
spectral projection of Heg to a Borel set B C R. Let P be the projection
onto the one-dimensional subspace {af2 | a € C}, and we set

Q = Ex1500) ® Pa

with some § > 0 such that .
6> 59(A).

Note that 1 @ N +1® P, > 1. Hence

E[272+5) @Pp>1—-1® N —-Q. (2.8)
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Suppose that min{|inf o(Heg)|/3,2} > 6(A). Then it is established in [18,
Lemma 12] that
1Qee (W) | 6(A)

leg()Il ~ 6 —30(7) (2.9)

for v/ such that
inf o(H, > 30(A) + /. 2.10
| ( eff)| ( )

Then for v/ such as (2.10), we have by (2.8),

(
(e(+), Bz n18) @ Pagg(V'))
> [leg ()7 = (ps(v), Nog () = (05 (v"), Qo))

W5/2 2
L {cnxA/ "<m3x||VMV||oo>} ~ em)(

Meff
Note that by (2.6),

lim w _ o)
A—o0 Meff A—oo § — %9(/\)

Hence for sufficiently large A,

(2e(), (Brz,z15) © Pa)pg(v')) > €

uniformly in v/ with some € > 0. Take v/ — oo on the both sides above. Since
Ejs 5 15) ® Pq is a finite rank operator, we have

(¢g; (Eis,545) @ Pa)pg) > €

which implies ¢, # 0. Then ¢ is a ground state of H,. Hence Hgip, has a
ground state. a

Remark 2.9 The uniqueness of of the ground state of Hgai, can be also es-
tablished. See [14].

3 Stability of matter

As a corollary of Proposition 2.2 we can see a stability of matter with respect
to A. Stability of matter investigated in this section is pointed out in e.g.,
Lieb and Loss [22, 23] and Fefferman, Frohlich and Graf [7].

3.1 g(A)/A?
In the case of V =0, from Proposition 3.3 it follows that

g(A) = inf o (Haip)-

We want to see the asymptotic behavior of g(A) as A — oo.

10



Remark 3.1 From a formal perturbation theory it follows that

9(A) ~ (f® 0, Hipf © Q) = (@ Q, 5 (px +e?45(0)°)f ® Q) ~ A?

as A — co. As will be seen later, this is, however, incorrect.

Since
47 K A
2 _ —1 —1
||XA/\/m|| —W{(A—H)—i—t(tan g—tan ?)},
and
Ixa/(t? +w?)|?
= oy (s (o § - ) 45 (i~ ) )
e lae T T 2\124+ K2 24+ A2))°
we have
e [ (tanlr—llrz)—(tanlr(l’i)—uégy) N
—4 ar
9l /0 2m)3mr + ZA{(r — tarlr) — (r (§) — ta L7 (§))} r2

In [18] the following proposition is established.

Proposition 3.2 Assume that (27)3m > 87k/3. Then

8/3 1 1\Y?x g(A) 879 1 1\Y2x
3(87r(27r)3m) 2<A1§éos*/253<&r(2w)3m) 2
3.2 g(A,N)/N?

We consider an N particle system. We assume simply that each particle has
mass m and there is no external potential. The Hamiltonian, H é\ifp, is defined

as a self-adjoint operator acting on L?(R*N) ® F, and is given by

N

1
Hil = 2—(pj + Ajx(0))* + Hy,
j=1 M
where
XA e .
- / XA ok, ) {a” (k, 5') + a(k, §')} k.
j'=12
Let

inf o (Hy,) = g(A, N).
We consider the two cases such as

(1) xja(k) =xa(k), j=1,..,N,

11



(2) xja,j =1,...,N, are characteristic functions on closed sets in R3 such as
suppx;ja Nsuppxia N {0} =0, (i # j).

Intuitively (1) describes that N electrons interact each others by exchanging
photons, but in (2), they do not. We expect that g(A, N) ~ N for a sufficiently
large N in case (2). We have a proposition.

Proposition 3.3 In the case of (1),

g(A,N) =

VIR T
U *Oom‘i‘%NHXA/‘/tz—i-wZ“? )

in the case of (2),

N
T o i 1V
ST oo m+ VP P

Proof: See [17]. O

In the case of (1), in a similar manner as in Proposition 3.2 we can prove
the following proposition.

Proposition 3.4 We assume case (1) and (27)3m > 87k /3. Then

8<3 1 1)1/2 _ g(AN) 8<9 1 >1/27r
R (. — < lim < — -
3\ 87 (2m)3m 2 = ANSoo 4/ NA3/2 81 (2m)3 m 2

Proof: see [18]. O

In the case of (2), if we adjust x;a such as

1/°° Plxin/E+ I
oom+3||><JA/\/t2+w2II2

with some constant g independent of j. Then

g(A,N) = Ngy.

4 Effective mass

In this section, instead of Hygj,, we revive Hy.

12



4.1 Translation invariance

The momentum of the quantized radiation field is given by

P=Y / ka* (k, j)a(k, 5)dk
j=1,2

and the total moment by
Piotal = pz ® 1+ 1@ Pr.
Let us assume that V' = 0. Then we see that
[HAaptotaI,u] =0, p=123.

Hence Hp and H can be decomposable with respect to o(Piptal) = R3, i.e.,

D D
H=[ Hp)dp, Hy= /R Ha(p)dp.

RS 3
Note that
—iz®P, 2@ P,
€ e flj‘cotalew® f = Pz,

1
(pe®1—1® P — el ® Ap(0)) +1® Hy.

67iw®PfHA€iw®Pf —
2m

From this we obtain that for each p € R3,

H(p) = F,

Ha(p) = ﬁ(p — Pr— eAp(0)) + H.

Let
Ema(p) = info(Hp(p)), peR’.

Lemma 4.1 There exist constants p, and e, such that for
(pe) € O ={(p,e) € B’ x Rl|p| < ps, [e] < €},
a ground state @g(p) of Hx(p) exists and it is unique. Moreover pg(p) =

e(p, €) is strongly analytic and Ey, A(p) = Em a(p,e) analytic with respect to
(p,e) € 0.

Proof: See [21]. O

Remark 4.2 Note that Ep, (p) € 0disc(Ha(p)) for (p,e) € O and

Em,A (p) = Em,A(_p)'

13



In what follows we assume that (p,e) € O. The effective mass meg =
meg(e?, A, k,m) is the inverse of the curvature of energy-momentum graph
(p, E(p)) in R® x R at p = 0. Precisely meg is given by

1
E%A@>—E5Amw=5;;mﬁ+00m%,

or
1

Meff

1
= gApEm,A (pa 6) [pZO-

Removal of the ultraviolet cutoff A through mass renormalization means to
find sequences
A—oo, m—0

such that Ep, A(p) — Em a(0) has a nondegenerate limit. In order to find such
sequences, we want to find constants

B<0, 0<b (4.1)

such that
Alim meg(e2, A, kAP, (bA)P) = myy, (4.2)
—00

where my,), is a given constant. It is well known that

mzl—% Z X

Meft p=12,3

(£(0), (Pt + eAx(0))u(HA(0) — Ema(0)" (Pt + eAx(0))u(0))
(¢2(0), v4(0))

From this we see that meg/m is a function of €2, A/m and x/m. Let

X

. (4.3)

[eft = f(e2,A/m, H/m)
m
To find constants (4.1), it is enough to find constants

0<~y<1l, 0<by

such that )
A
i €A monfm)
A—oc0 (A/m)Y
Actually, taking
_ 7 _ 11/
B_—<07 b_]'/bl )

L=
we see that
&mln%H@P¢LnAﬂ(mwﬂ):bdn,
—00

where by is a parameter, which is adjusted such as

bobl = mph.

14



Hence (4.2) has been established. It is seen by (4.3) that

8 A/m+2
9 . S 2
f(e,A/m,ﬁ/m)—1—|—a3ﬂ_log(ﬂ/m+2)+0(a )a (44)
where
o2
a=—.
4

By (4.4) one may assume that
f(€2,A/m, K/m) = (A/m)a(8/37f)+a2c

for sufficiently small o and large A with some constant ¢. Then by expanding
Meg/m to order o? one may expect that

A A N\? A
f(e2, A/m,k/m) ~ 1—|—a% log(E)—f—%oz2 <% log(g)> +ca? log(g)—I—O(a?’).
(4.5)

Hence the coefficient of a? may diverge as [log(A/m)]?> as A — oo. It is,
however, that (4.5) is not confirmed. Instead of (4.5) we prove in this section
that the coefficient of o? diverge as \/A/m as A — oo, i.e., there exists a
constant C' > 0 such that

A/m+2

py 2) + a?C\/A/m + O(a?).

£, A fm) = 1+ a2 Tog

The effective mass and its renormalization have been studied from a mathe-
matical point of view by many authors. Spohn [27] investigates the effective
mass of the Nelson model [25] from a functional integral point of view. Lieb
and Loss [23] studied mass renormalization and binding energies of models
of matter coupled to radiation fields including the Pauli-Fierz model. Hainzl
and Seiringer [9] computed exactly the leading order in « of the effective mass
of the Pauli-Fierz Hamiltonian with spin 1/2.

4.2 Asymptotics

We split Hp(0) as
2
e
H(0) = Ho + ety + o Hy,

where
19
Hy = EPf + Hg,
1
H1 = i(Pf . AA(O) =+ AA(O) . Pf),

Hy = Ax(0) - A (0).

15



Let

o0 em o0 eZn
Pe0) = X Sron BO) =Y oo
n=0 n=0
Directly we see that
Ey=FE,=FEy;=FE3=0, (4.6)

$o = Q, $Y1 = 0, Y2 = —HoilHQQ, Y3 = 3H071H1H071H2Q. (47)

Substitute (4.6) and (4.7) into formula (4.3). Then we obtain that

3
mn:ff - ; z_: (Q’A“HOAA“SQ
—e4§ Z {2 (‘I’é‘,Ho’l‘I"f) + (‘If‘z‘ Ho*I‘If‘z‘) —2 (wg,HolelHofqug‘)
p=1

1
—5 (W G HpHT ) + (@T,Ho—lHlﬂo*HlHo—l\If‘f)} +0(e%), (4.8)

where
U = A,0,
U = —7Pfu 0 (AT-AT)Q,
= % {_AuHo—l(A+.A+)Q + %Pfﬂﬂo (P-A+ A-P)Hy (AT A+)Q}
and
]Zw [ W alk, )dk
,j)a* (k, j)dk.
j=1,2

We compute the coefficients of e? and e* in (4.8). Let

1 1 )
Fj = ma Jj=12,
1 1
Fio - (r? +2rreX +73)/2+7r1 + 13’ rrz 20, —ls X <1

A direct calculation shows that

L aai(A/m, k/m) — &?az(A/m, k/m) + O(a®),

Meff

where

ai(A/m,k/m) = % log <%>

16



and

1\3
[}

az(A/m,k/m) =

O.'J

bu(Afme/m) =~ [(1+ X% ( L i) L

F,  Fy) Fio’
1 > r% + 2riro X + r%
Fio 2 ’

bs(A/m,k/m) = /X —1 4+ X?)ryry (Fl, + ;,2> <FL12>2’

bo(A/m, k/m) = /(1 +X?) (

ba(r/mA/m) = /(1+X2)FLIFL2
bs(A/m,k/m) = /(1 - X% <17;12 + ;22> Fllz

1 1 1
F Fy Fiy’

1 A/m A/m
/:/ dX/ drl/ dromrirs.
-1 K/m K/m

The main theorem in this section is as follows.

bs(A/m,Kk/m) = /X —14 X*)riry—

and

Theorem 4.3 There exist strictly positive constants Cinin and Cpax such that

Coi < lim 2A/m8/m)

A /Am

Proof: We show an outline of a proof. See [21] for details. We can prove that
there exists a constant C' > 0 such that

S Cmax-

Ibj(A/m)| < Cllog(xa/m)P%, j =1,4,
ba(A/m)| < C(A/m)!/?,
b (A/m)| < Clog(A/m), j =3,5,6.

Hence there exists a constant Cp,.x such that

hm CLQ(A/m, H/m) < Cmax-

Ao JAJm o

Next we can show that there exists a positive constant & > 0 such that

lim A/m d
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which implies that there exists a constant £’ such that

gl < hm bz(XA/m)
T Ao /xa/m

Thus we have A
Coi < lim 2WO/mMK/m) o

S fm = S

O

Remark 4.4 (1) ag(A/m,k/m)/\/A/m converges to a nonnegative constant
as A — co. (2) By (4.9), we can define az(A/m,0) since bj(A/m) with kK =0
are finite. Moreover az(A/m,0) also satisfies Theorem 4.3. (3) In the case of
k =0, Chen [6] established that H(0) has a ground state pgz(0) but does not
for Hx(p) with p # 0.

4.3 Concluding remarks

Nelson ? HA? Hdip

Figure 2: Mass renormalization

(Hp) Theorem 4.3 may suggests v > 1/2 uniformly in e but e # 0.

(Nelson models) It is expected that the effective mass of the Nelson model
can be trivially renormalized, i.e., v = 0. See [11].

(Hgip) Let V =0. Note that

[Hdipa Ptotal] 7é 0.
It has been seen, however, that
[UHaipU ™", Progal] = 0.

Then we can define the effective mass meg for UHg;p U —1 and which is

megg/m =1+ a%(A/m — Kk/m).

Hence v = 1, then the mass renormalization for Hy;, is not available.

See Fig. 2.
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