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Abstract

It is shown that a certain one-parameter symplectic group induces a one-
parameter unitary group on a Boson Fock space through the so-called Bo-
goliubov transformation. An infinitesimal generator A of a one-parameter
unitary group is given, and it is shown that A is quadratic.

1 Introduction

This is a joint work with K. R. Ito.! In the white noise analysis infinite dimensional
rotation groups acting on (S’) have been studied so far by many authors, e.g., see
Hida [2]. Here (S’) is a dual of a subspace (S) of a Boson Fock space F. Such
rotation groups are indueced from e.g., the conformal group (shifts, dilations, SO(n),
and special conformal transformations), the Lévy group, etc. Their infiniteisimal
generators define infinite dimensional Laplacians, e.g., the Gross Laplacian, the
Lévy Laplacian, etc. Formally these Laplacians are quadratic with respect to the
annihilation and the creation operators in (S’). Then these play an important role
of the infinite dimensional harmonic analysis in the white noise analysis.

The Bogoliubov transformation can be regarded as a map from a symplectic
group to unitary operators acting on F. The Bogoliubov transformation leaves
the canonical commutation relations of the annihilation and the creation operators
invariant. As is seen in this paper below, the Bogoliubov transformation associated
with an element A of a symplectic group has the form

U(A) = det(1 — KIK;)Y4x e 3Bk TN +AK), (1.1)
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Here Ag,, j = 1,3, and Nk, are quadratic operators defined by A. The formal
expression (1.1) has a rigorous mathematical meaning as an unitary operator. See
Berezin [1] and Ruijsenaars [5]. It has been also known that a Bogolibov transforma-
tion induces a projective unitary representation on F of a subgroup of a symplectic
group. See Shale [4].
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Figure 1: U(.A) and rotation group g

In this paper we give an example such that a certain one-parameter subgroup
of a symplectic group yields a one-parameter unitary group on a Boson Fock space
through the Bogoliubov transformation. Morever we show that the generator of a
one-parameter unitary group, which is a self-adjoint operator, is also quadratic with
respect to the annihilation and the creation operators.

2 Boson Fock space

We review fundamental facts on a Boson Fock space. Let H be a Hilbert space over
the complex field C and F = F(H) denote the Boson Fock space over H given by

F = @ HE
n=0

where H®* denotes the n-fold symmetric tensor product of # with H®* := C. Vector
U of F is written as ¥ = {\IJ(O), v p@ .. } with W™ ¢ ®"#. The vacuum € is
defined by

Q:={1,0,0,---}.

The creation operator a'(f) : F — F smeared by f € H is given by

(al(f)w)"”

where S,, denotes the symetrizer of n-degree. Let

=S(f® \Ij(n_l))a

Fo := the linear hull of {a'(f1)---a'(f.)Qlf; € H,j=1,...,n,n > 0}.
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It is known that F; is dense in F. The annihilation operator a(f) is defined by

N
()= (d(P],,)
where ~ denotes the complex conjugate. It holds that
(T, a'(f)®)r = (a())¥, D)5, ¥, P F,

and
a(f)Q2 =0. (2.1)

Conversely if a(f)¥U = 0 for all f € H, then U is a multiple of Q, i.e., ¥ = aQ
with some a € C. The creation operator and the annihilation operator satisfy the
canonical commutation relations (CCR):

[a(f),a'(9)] = (f, 9)m,

[a(f), alg)] =0,
[a (£), a(g)] = 0

on Fy, where (f, g)x denotes the scalar product on Hilbert space K, which is linear

in g and antilinear in f. In addition, we denote by || f||x the associated norm. From
(2.1) and CCR it follows that

la’(f1) -+~ al (£) % = 1A 1 fall

Let R(f) := 272(a(f) + a'(f)). Suppose that a bounded operator A commutes
with e’) for all f € H. Then it is proven that A is a multiple of the identity. This
is called that R(f) is irreducible.

3 Projective unitary representations

3.1 Symplectic group

Let B = B(H) denote the set of bounded operators on H and Hy = Hy(H) Hilbert
Schmidt operators. Let us define

Kf:= K—7
Since (K*) = (K)*, we write simply as K . For S,T € B we define
S T
.A.—(T §> T HOH—>HDOH
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We define the symplectic group ¥ and a subgroup >, as follows.

Let

Definition 3.1 (1) We say that A = < ? % ) ey, if

AJA* = A JA = J. (3.1)

S T

(2) WesaythatA:(T §>622, if A€ X and T € H,.

Note that the inverse A ™! of A is given by

1 e S* _T*
A —JAJ_<_T* 5 > (3.2)

We equip Y, with the topology as follows. We say A, = ( ,?" g” > - A =

T S
topology becomes the topological group.

( S T ) asn — oo if S, — S in B(H) and T,, — T in Hs. ¥ equipped with this

3.2 Bogoliubov transformation

Let K € H,. Then there exist complete orthonormal systems (CONS’s) {¢,,}, {ém },
and a positive sequence {\,} such that

Kf = Z )\”(,Ivbnaf)fbna f S Ha
n=0

with 0% (A2 = ||K||3,. We define for ¥ € F,

n=0 "'n

(@RI = s i 3 0 ()0 G,

(o) = s i 3" Na(Z,)a(6n) ¥,
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Moreover for S € B(H) we dfine
N

(a'|S]a) := s —lim " a'(e,)a(S%e,),

N—o0 "0

where {e, } is a CONS. Note that (a'|S|a) is independent of the choice of {e, }. Let
U =al(f))---a'(f,)Q. Then
(K [a) = 3 (15 Kf)al ()l (£) - aT(£) a2
i#]
and .
(| K o)W Z a'(Kf;)-+-al(£)
where ~ denotes omitting the term below. We simply write
(a|Ka®) = A%,
(a'|Sla) = N,
(a|Kla) = Ak.
Let N be the number operator and define
Dy = N2 D(N®).
Proposition 3.2 (1) Suppose that
()K € Hy, (i)K =K, (i5)| K| pm) < 1.
Then

N

Ui(K) = s —lim 3~ (—%(aT|K|aT))n\II

|
N—oo 0 n!

exists for ¥ € Fy, and U1 (K)V € Dy,
(2) Suppose that S € B and K € Hy. Then

N

Un(S) = s —lim 3 — :<—;(aT|S|a>>n: \1;

n=>0 .

Uy(K) — s — lim 3" i <—;(a|K|a>>n\Il

N—oo o n!

exist for U € Fy, and Uy(K)W,Us(L)V € Fy, where :X: denotes the Wick ordering.
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Proof: See Ruijsenaars [5]. O

A= < :—]S: g > induces the following action:

Az a(f) — a(Sf) +a"(Tf) := ba(f) (3-3)

and
A:d'(f) — a(Tf) +al(Sf) := b, (f). (3.4)

Formally we may write

Wl N

S
(a0 = ') 5
Suppose A € Y. Then the canonical commutation relations

ba(f), b (9)] = (. 9),

0,
[b14(f),b4(9)] = 0,
and

(L,05(£)®)r = (ba(H)V, @)r, U, P € F,

follow. The map (3.3) and (3.4) are the so-called homogeneous Bogoliubov transfor-
mation. It is well known that b&( f) is unitarily equivalent with a*(f) if and only if
A € 3. See Berezin [1].

3.3 Construction of Bogoliubov transformation

Now we want to construct a unitary operator implementing a unitary equivalence
between b%y(f) and af(f). We need some preparations.
(3.1) is equivalent with

S*S —T*T =1, (3.5)
ST —-T"S =0, (3.6)
SS*—TT =1, (3.7)
TS*— ST =0. (3.8)

Lemma 3.3 Let A = (‘; g) €Y. Then (1) ST € B, (2) |TS7'| < 1, (3)
TS =TS8 (4) ST = S7'T.



Proof: From (3.5) it follows that
S*S=14+T'T > 1. (3.9)

Thus (1) follows. In the case of ||T|| = 0, [|[TS7!| = 0 < 1. We may assum that
IT|| = € > 0. By (3.9) we have

TS\ = (1+T°T)"'5",
which implies that

Thus

ITS7 <L+ T°T) )| < —— < L.

14 €2

Thus (2) follows. By (3.6) we have S"T'S~' =T". Then S*T'S~1 = T* follows. Note
that (S*)~! = (S~1)*. It is obtained that

TS = (S*)-1T* = (S~1)*T* =TS~V
Hence (3) follows. Similarly (4) is obtained from (3.8). O
S T

LetA:z(T S)EEQ. We set

o K, =TS,
o Ko:=1—-51"
o Ky:=—5"1T.
Since K; € Hy, K; = K; and ||K;|| < 1 by Lemma 3.3,
N(A) := det(1 — K7 K;)Y*

and

U(A) = N(A)Ul (Kl)U2(2K2)U3(K3)

are well defined, moreover U(.A) maps Fy to Dy. It may be formally written as
U(A) =det(1 — KIK1)1/4 o3 (Ax 42V +AKs ).
Lemma 3.4 Let A € ;. Then U(A) has the unique unitary operator extension.
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Proof: In Ruijsenaars [5] it has been established that
U(A)a* (UA) T = by ()Y

for ¥ € Fy and
U (K1)Q|)? = det(1 — K7 K,)~ Y2,

From this it follows that
1U(A)a"(f1) - al () QU = bl (f1) - DL () U (A)QP?
= det(1 — K7 K1) 2ol (f1) - - by (fu) U (E)QY

= ANl = Hla®(f1) - ot (£2) Q1%

Then U(A) maps F, onto € := the linear hull of {b%(f1)-- - by (f.)U1(A)Q}. From
(3.2) it follows that

(@), (1)) = (bal), B() ( s ) | (3.10)

By this we see that a*(f)€ C €. Thus £ is dense in F. Hence we conclude that
U(A) can be uniquely extended to a unitary operator on F. The lemma follows. O

We denote its unitary extension by the same symbol U(.A).

3.4 Projective unitary representation

Lemma 3.5 Let Ay, Ay € Xo. Then there exists a constant w(Ay, As) such that
U(A)U (A1) = (Ao, AT (As - Ay ).
Proof: A direct calculation shows that
" (F)U(Az - A1) 7' U (As)U (A1) = U (Az - Ar)7HU (A0)U (A (f).
Since a!(f) is irreducible,
U (ApAy) U (As)U (Ay) = w(Ag, A1

with some constant w(Aj, As). We conclude the lemma. O

Lemma 3.6 U(A) is strongly continuous in A € 3s.
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Proof: See [3]. O
The one-dimensional subspace defined by
T = {\U|\ € ¢}
is called the ray. We say that U ~ ®, Set F/ ~:= F. For A € ¥y we define U(A)
by .
UAY = (U(A)YD).

Corollary 3.7 The map Y3 5 A — U (A) gives a continuous unitary representation
of X9 on F.

Proof: 1t follows from Lemmas 3.5 and 3.6. a

4 One-parameter unitary group

In this section we construct a one-parameter unitary group on F derived from a
homogeneous Bogoliubov transformation and see an explicit form of its infinitesimal
generator.

4.1 Unitary representation of E;eal,con

In the previous section we show that by virtue of a Bogoliubov transformation a
projective unitary representation of Y5 is given. In the present section we construct
a unitary representation of a subgroup of X,.

S T
T S
T =T. (2) 25" is defined by the connected component of L5, which includes
the identity 1.

Definition 4.1 (1) We say A = < > e Xl ff A€ Xy and S = S and

From the construction of U(A) it follows that for A € Yieal

U(A)® = U(A)S. (4.1)

Lemma 4.2 The map S5*°" 5 A — U(A) defines a contiunous unitary repre-
sentaion of LR,

Proof: Since U(A;)U(Az) = w( A1, As)U(A1Az), we have
w( Ay, Az) = (U(A1A2)Q, U(A;)U(A2)R2).

From (4.1), w(Aj, Az) is real. Then w(A;, As) is +1 or —1. Since U(A) is strongly
continuous in A, w(A4;,.4y) is continuous in both of A; and A;. Moreover w(1,1) =
1. Hence w(A;,Ay) =1 for all 4y, A4, € deal’con. Thus the lemma follows. a



4.2 Examples
We suppose that A € Hy, A= A*, and A = A. Let

ac=en(t( 20 )) = (ot somia) )> <
Then {A;}icr is a one-parameter group and
(A} yen C Sieabeon,
Define the unitary operators U(t) on F by
Ut):=U(A;), teRr

Lemma 4.3 We have

UU(s) = Ut + s), (4.2)
U(0) =1, (4.3)
s limU(t) = 1. (4.4)

Proof: (4.2) and (4.3) follow from Lemma 4.2. From Lemma 3.6, (4.4) follows. O

Hence by the Stone theorem there exists a self-adjoint operator A acting on F
such that
Ut) =e"™, ter

Theorem 4.4 We have A = —i/2(A% — Ay).

Proof: See [3] for details. O

5 Concluding remarks

In the previous section it is shown that the generator of U(t) is 1/2(A% —A4). Here
we give a remark on N = [ af(k)a(k)dk. Note

[N, a'(f)] = al (f),

[N, a(f)] = —a(f).
Let ¢(f) = 271/2 {aT(f) + a(f)} be a field opertor, and 7(f) = i271/2 {aT(f) - a(f)}

its conjugate momentum. They satisfy
[9(/),7(9)] =i [ F(k)g(k)dk.
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Let
U(r/2) = ™V,
Then one can regard U(7w/2) as the Fourier transformation on F. See Segal [6].
Actually since U(7/2)a’(f)U*(7/2) = ia'(f) and U(7/2)a(f)U*(7/2) = —ia(f), it
is obtained that
U(r/2)¢(f)U(n/2) = 7 (f)-
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