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1 Introduction

1.1 Definition

This is a joint work with H. Spohn1 . We consider a system of one

electron interacting with a quantized radiation field. In particular we

investigate the so called Pauli-Fierz [13] model2 . Although the Pauli-

Fierz model is a nonrelativistic model, it correctly describes the inter-

action between low energy electrons and photons in a sense. Actually

the Lamb shift and gyromagnetic ratio shift were described by using the

Pauli-Fierz model. See [2, 14, 12].

In this paper we take the dipole approximation for simplicity. Moreover

we suppose that the electron is spinless, moves in the d-dimensional

space, and has the d− 1 transverse degrees of freedom. Throughout this

paper we assume

d ≥ 3.

The Hamiltonian of the system is of the form

H(α) =
1

2m
(p⊗ I − αI ⊗ A)2 + V ⊗ I + I ⊗Hf (1.1)
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acting on the Hilbert space

H := L2(Rd)⊗FEM.

Here FEM denotes the Boson Fock space over W := ⊕d−1L2(Rd)

FEM := ⊕∞n=0 [⊗nsW ] ,

where ⊗nsW denotes the n-fold symmetric tensor product of W with

⊗0
sW := C. m is the bare mass of the electron and α a coupling constant.

We adopt the unit h̄ = 1 = c. Then α ≈ √137. p = −i~∇ is the

momentum operator canonically conjugate to the position operator x in

L2(Rd), and V = V (x) an external potential for which precise conditions

will be specified below. The smeared radiation field is defined by

Aµ :=
d−1∑

r=1

1√
2

∫
erµ(k)





ϕ̂(−k)√
(2π)dω(k)

a†r(k) +
ϕ̂(k)√

(2π)dω(k)
ar(k)



 d

dk,

and the free Hamiltonian by

Hf :=
d−1∑

r=1

∫
ω(k)a†r(k)ar(k)dk,

where the dispersion relation is given by

ω(k) := |k|.
a†r(k) and ar(k) denote the annihilation and creation operators, respec-

tively. They satisfy the canonical commutation relations,

[ar(k), a†s(k′)] = δrsδ(k − k′), [ar(k), as(k′)] = [a†r(k), a†s(k′)] = 0.

The vectors, er(k) = (er1(k), · · · , erd(k)), r = 1, ..., d− 1, denote polariza-

tion vectors satisfying

er(k) · es(k) = δrs, k · er(k) = 0.

Finally ϕ̂ denotes a form factor serving as an ultraviolet cutoff. We

assume that

ϕ̂/
√
ω ∈ L2(Rd), (1.2)
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and

ϕ̂(k) = ϕ̂(−k). (1.3)

(1.2) and (1.3) ensure that H(α) is a well defined symmetric operator in

H. It is known that

Spec(Hf) = [0,∞)

and

Specp(Hf) = {0}.
The multiplicity of {0} is one, and

HfΩ = 0,

where Ω := 1⊕ 0⊕ 0⊕ · · · is the Fock vacuum in FEM.

1.2 Problems

Suppose that V is relatively bounded with respect to −∆ with a suf-

ficiently small relative bound. Then it is proven [8] that H(α) is self-

adjoint on D(∆⊗ I)∩D(I ⊗Hf) and bounded from below for arbitrary

couplings. Moreover by investigating the integral kernel of e−tH(α), t ≥ 0,

the uniqueness of the ground state, if it exists, is established in [6]3 .

In the case when − 1
2m∆ + V has the positive spectral gap,

inf Specess(−
1

2m
∆ + V )− inf Spec(− 1

2m
∆ + V ) > 0,

the existence of the ground state of the full Pauli-Fierz Hamiltonian is

established in [3, 5, 9, 4]. In particular, Bach, Fröhlich and Sigal [3]

proved it under no assumption of infrared cutoff condition4 but suffi-

ciently weak couplings. For arbitrary couplings, it is established in [4]

due to Griesemer, Lieb and Loss.
3 For the full Pauli-Fierz Hamiltonian, self-adjointness and the uniqueness of the ground state are

established in [8] and [6], respectively.
4 The condition

∫
Rd |ϕ̂(k)|2/ω(k)3dk <∞ is called the infrared cutoff condition. In the case of d = 3

this condition implies 0 = ϕ̂(0) = (2π)−3/2
∫
ϕ(x)dx, i.e., physically the electron charge turns out to

be zero!
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The main purpose of this paper is to prove the existence of the ground

state of H(α) under no assumption of the positive spectral gap. In the

zero spectral gap case, − 1
2m∆+V may have no ground state. That is, we

show that strong couplings produce the ground state. The physical rea-

soning behind such a result is as follows. As the electron binds photons

it acquires the effective mass

m→ m+ δm(α2)

which is increasing in |α|. Roughly speaking H(α) may be replaced by

H(α) ∼ − 1

2(m+ δm(α2))
∆ + V, (1.4)

and, for the sufficiently large |α|, the right hand side of (1.4) may have

ground states. Needless to say (1.4) has no sharp mathematical meaning,

we show, however, the associated phenomena in this paper.

s
m
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図 1: H(0)

This paper is organized as follows. In Section 2 we prove the binding.

In Section 3 we give some examples of the external potentials. Finally

in Section 4 we give some remarks.

2 Binding

We suppose the following assumptions on V .
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図 2: H(α)

(1) ‖V f‖ ≤ a‖∆f‖+ b‖f‖ for f ∈ D(∆) with sufficiently small a ≥ 0,

and positive b ≥ 0.

(2) V ∈ C1(Rd) and ∂µV ∈ L∞(Rd), µ = 1, ..., d.

(3) There exist µ0 ≥ 1 and r0 > 0 such that for all η > µ0

inf Spec(− 1

2m
∆ + ηV ) ≤ −r0,

and

Specess(−
1

2m
∆ + ηV ) = [0,∞).

It is of interest to investigate sufficiently shallow external potentials.

Since d ≥ 3, for such a shallow V , − 1
2m∆+V may have no ground state.

If − 1
2m∆ + V has no ground state, then the decoupled Hamiltonian

H(α = 0) =

(
− 1

2m
∆ + V

)
⊗ I + I ⊗Hf

also has no ground state.

For later use we define the dilatation unitary of L2(Rd) by

D(κ)f(k) := κd/2f(k/κ),

where κ > 0 denotes the scaling parameter. The scaled Hamiltonian is

defined by

H(α, κ)
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:= κ2D(κ)−1
{

1

2m
(p⊗ I − αI ⊗ A)2 + I ⊗Hf +

1

κ2V (x/κ)⊗ I
}
D(κ)

=
1

2m
(p⊗ I − καI ⊗ A)2 + V ⊗ I + κ2I ⊗Hf .

We suppose the following technical assumptions on ϕ̂.

(1) ϕ̂(k) = ϕ̂(|k|).
(2) ωn/2ϕ̂ ∈ L2(Rd) for n = −5,−4,−3,−2,−1, 0, 1, 2.

(3) |ϕ̂(
√
s)|s(d−1)/2 ∈ Lε([0,∞), ds), 0 < ε < 1, and is Lipschitz contin-

uous of order strictly less than one.

(4) ‖ϕ̂ω(d−2)/2‖∞ <∞ and ‖ϕ̂ω(d−1)/2‖∞ <∞.

(5) ϕ̂(k) 6= 0 for all k 6= 0.

Thus (1)–(5) ensure the following lemmas5 .

Lemma 2.1 There exist the unitary operator U(κ) such that

U(κ)−1H(α, κ)U(κ) = Heff + κ2Hf + κ2α2g + δV,

where

Heff := − 1

2meff
∆ + V,

meff = meff(α2) := m+ α2
(
d− 1

d

)
‖ϕ̂/ω‖2,

and

g :=
d− 1

2π

∫ ∞
−∞

t2‖ϕ̂/(t2 + ω2)‖2

m+ α2(d−1
d )‖ϕ̂/√t2 + ω2‖2

dt.

Moreover

δV = δV (α, κ) := U(κ)−1(V ⊗ I)U(κ)− V ⊗ I.

5 See [1, 11] for details.
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Lemma 2.2 We have

−D(α)

κ
(Hf + I) ≤ δV ≤ D(α)

κ
(Hf + I)

in the sense of form, where D(α) is a real number satisfying

lim
|α|→∞

D(α) = 0.

Let

αcritical :=
√
m(µ0 − 1)

√√√√ d

d− 1
‖ϕ̂/ω‖−1.

We see

Heff =
m

meff

(
− 1

2m
∆ +

meff

m
V

)
.

Then, in the case of |α| > αcritical, it follows that

inf
x
V (x) ≤ inf Spec(Heff) < −r0

m

meff
.

In particular the ground states of Heff exist.

Theorem 2.3 Let κ = 1. There exists α∗ > αcritical such that for all

|α| ≥ α∗ the ground state of H(α) exists and it is unique.

Proof: Let N be the number operator in FEM and 0 < ν. By a mo-

mentum lattice approximation we see that H(α) + νN has the normal-

ized ground state Φν. Let EI denote the spectral projection of Heff to

I ⊂ R and PΩ the projection to Ω. Let P = E(−∞,−r0m/meff) ⊗ PΩ and

Σ := inf Spec(Heff). Then we can see that

(Φν, PΦν) ≥ 1−

 |α|ε
meff




2

− D(α)/2

|Σ| −D(α)/2
(2.1)

with some constant ε. Note that

lim
|α|→0

|α|
meff(α2)

= 0
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and

lim
|α|→0

Σ = inf
x
V (x).

Thus for sufficiently large |α| the right hand side of (2.1) is strictly

positive. Take a subsequence ν ′ such that Φν′ → Φ as ν → 0 weakly.

Since P is a finite rank operator, PΦν strongly converges to PΦ and

(Φ, PΦ) ≥ 1−

 |α|ε
meff




2

− D(α)/2

|Σ| −D(α)/2

holds. In particular Φ 6= 0. Hence Φ is the ground state. 2

By the assumptions Heff has ground states for |α| > αcritical. We have

to make sure that H(α) has the same properties.

Theorem 2.4 We suppose that κ is sufficiently large. Set Vκ(x) :=

κ−2V (x/κ). Then the ground state of

Hκ(α) =
1

2m
(p⊗ I − αI ⊗ A)2 + Vκ ⊗ I + I ⊗Hf

exists for all |α| > αcritical and it is unique.

Proof: We have

Hκ(α) =
1

κ2D(κ)H(α, κ)D(κ)−1.

Thus it is enough to prove the existence of the ground states of H(α, κ).

From the momentum lattice approximation we see that H(α, κ) + νN

has the ground state Φν. Moreover we have the inequality

(Φν, PΦν) ≥ 1− 1

κ6


 |α|ε
meff




2

− 1

κ2


 D(α)/2

|Σ| −D(α)/2


 .

Then the theorem follows in the same way as in Theorem 2.3. 2
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3 Example

Suppose that

V (x) ≤ 0.

Let

N(V ) := ad
∫

Rd
|mV (x)|d/2dx,

where ad is a universal constant. The following is known as the Lieb-

Thirring equality

N(V ) = #{the nonnegative eigenvalues of− 1

2m
∆ + V }.

Suppose that

N(V ) < 1.

Then H(0) has no ground state, H(α) for sufficiently large |α|, however,

has the ground state and it is unique by Theorem 2.3.

Remark 3.1 If − 1
2m∆ + V has the ground state with a positive spectral

gap, then H(α) has the ground state for arbitrary α ∈ R.

4 Concluding remarks

(1) The full Pauli-Fierz Hamiltonian is defined by

H(α) =
1

2m
(p⊗ I − αA)2 + V ⊗ I + I ⊗Hf .

Here under the identification H ∼= ∫⊕
Rd FEMdx

Aµ :=
∫ ⊕
Rd
Aµ(x)dx,

and

Aµ(x) :=
d−1∑

r=1

1√
2
×

×
∫
erµ(k)





ϕ̂(−k)√
(2π)dω(k)

e−ikxa†r(k) +
ϕ̂(k)√

(2π)dω(k)
eikxar(k)



 d

dk.
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For the full Pauli-Fierz Hamiltonian, it seems to be unknown the

binding.

(2) For α such that 0 < |α| < αcritical, no existence of the ground state

is not known.

v

v

図 3: HNelson(0)
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図 4: HNelson(α)

(3) The Nelson Hamiltonian with two charged particles is defined by

HNelson(α) :=

(
− 1

2m
∆ + V

)
⊗ I + I ⊗HN + αφ

acting on

H := L2(Rd × Rd)⊗F ,
where F denotes the Boson Fock space over L2(Rd). The free Hamil-

tonian is defined by

HN :=
∫
ω(k)a†(k)a(k)dk
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and the scalar field by

φ :=
∫ ⊕
Rd×Rd φ(x)dx,

φ(x) :=
2∑

j=1

1√
2

∫
λ̂(−k)e−ikx

j

a†(k) + λ̂(k)eikx
j

a(k)dk.

Roughly speaking HNelson(α) may be replaced by

HNelson(α) ∼ − 1

2m
∆ + V + Veff ,

Veff(x1, x2) = −α
2

2

∫

Rd

λ̂(k)2

ω(k)
e−ik(x1−x2)dk.

Then we can also prove the binding of the Nelson Hamiltonian under

certain conditions. We omit details.
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