Ground state measure and its applications

Fumio Hiroshima*

1 Introduction

In this paper we shall consider structures of ground states of a model
describing an interaction between a particle and a quantized scalar bose
field, which is called the “Nelson model” [15],[18]. Basic ideas in this paper
is due to a fairly nice work of H.Spohn [22], in which he studies the spin-
boson model. The Hamiltonian, H, of the Nelson model is defined as a
self-adjoint operator acting on Hilbert space H := L*(r?) ® F, where F
denotes a Boson Fock space. The existence of the ground states, W,, of
H is established in e.g., [2],[4],[12],[23]. The main results presented here is
to give the expectation-value of the number of bosons of ¥, and its boson
distribution by means of a ground state measure constructed in this paper.
Especially the localization of bosons of W, is proved. The ground state
measure, 4, on the set of paths, 2, gives an integral representation of the
expectation-value of certain operator A in H, i.e.,

(W, AT,) = | falq

where f4 is a density function corresponding to A. This integral represen-
tation leads us to the goal of this paper. Detailed arguments shall be pub-
lished elsewhere [2], and refer to see [17],[21],[22]. This paper is organized
as follows: section 2 gives a definition of models considered in this paper.
In section 3 we review the second quantizations. Section 4 is devoted to
investigating the ground states. In section 5 we give further problems on
the Pauli-Fierz model in nonrelativistic quantum electrodynamics.
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2 Scalar quantum field models

Let F 1= &2, ®@" L?(r?) := & (F,, where ®” denotes the n-fold sym-
metric tensor product with ®'L?(r?) := c. The bare vacuum, Q € F, is
defined by Q := {1,0,0,...}. Let a(f) and a(g) be the creation operator
and the annihilation operator smeared by f, g € L%(r?), respectively, which
are linear in f and g. Let Fj, be the finite particle subspace of F:

Fin = {\I/ = {\Il(”) o €F ‘there exists ng such that ¥™ = 0,m > no} .
They satisfy canonical commutation relations (CCR), i.e.,

[a(f),a'(9)] = (F, 9) 12y, [6*(f),a*(g9)] = O,

on Fgn, where af denotes a or af, and (-,-)x the scalar product on Hilbert
space K. We denote by ||-|| its associated norm. Unless confusion arises we
omit K in (-, )k and [|-]|, respectively. a* also satisfies that (¥, a(f)®) =
(a'(f)¥,®) for ¥, ® € Fg,. For dense subset K C L?(r?),

F(K) :=LhAd' (f1)---d' (f)Q,Qlf; €K, j=1,...,n,n € N}
is dense in F. We define the free Hamiltonian, H¢, in F by
HQ) := 0,

Hea'(f1) - a'(£,)2 = 1@*(1"1) edl(wf) - al(£a)Q

]:
fieDw), j=1,..,n, neNn,

where D(T') denotes the domain of T, w := w(k) := /|k|? + m2, m > 0.
Here m denotes the mass of the quantized scalar bose field. Field operators
¢(f) are defined by
1 _
o(f) = ﬁ(aT(f) +a(f), feL®).

Note that H[rp()) and ¢(f)[#,, are essentially self-adjoint, respectively.
It is known that o(Hf) = [0,00) and o,(Hf) = {0}. The Hamiltonian, H,
considered in this paper is defined by

H:=H,®1+1® Hf + aH
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on H := L?(r?) ® F = L?(»%; F), where o € R is a coupling constant, and
H := ¢(e™*"}),
H,:=—-A/2+4YV,
where ) is the Fourier transform of A. A reasonable physical choice of s

of the form
A =p/y(2m)w,

where p describes a charge distribution, i.e.,

V@m)ip(0) = [, pla)dz = o

For simplicity we assume that external potential V' =V, —V_ satisfies that
V. € Li (r?) and that V_ is infinitesimally small with respect to A in the
sense of form. Throughout this paper we assume that

o

(k) = A(—F).

Let A\, A/v/w € L%(®%Y). Then it is known that, for arbitrary a, H is self-
adjoint on D(H, ® 1) N D(1 ® H;) and bounded from below. Moreover it
is essentially self-adjoint on any core of H, ® 1 + 1 ® Hj.

Proposition 2.1 ([2],[12]) Let \/w, A\//w, A € L2(8%). Then there exists
o, such that for |a] < a, the ground states, Wy, of H exist. Moreover
(f ® Q,¥,) > 0 for arbitrary nonnegative f € L*(r?) with f # 0.

See Figure 2 for more explicit results on the existence of the ground states
of H.

3 Second quantizations

For later use we review the second quantization of operator T' on L?(r?).
Let T be a contraction operator on L?(r?), i.e., ||T|| < 1. Then we define
F(T) : Foin — Fin by

0(T)Q = Q,

3



D(T)a'(f1) - a'(£)Q == a (T fr) - a'(T£,)Q
fie L*®Y, j=1,..,n, neEnN
For ® € Fg, we have ||[[(T)®|| < ||®||. Thus I'(T") extends to a contraction
operator on F. We denote its extension by the same symbol. It is seen
that I'(+) is linear in - and that I'(T")* = I'(T™). Let h be a nonnegative
self-adjoint operator in L*(r?). Then we see that I'(e7™") is a strongly
continuous symmetric contraction one-parameter semigroup in ¢ > 0. The
second quantization of h, d['(h), is defined by the generator of I'(e™'"), i.e.,

F(e_th) _ e—tdf‘(h)’ t>0.

Actually H; is the second quantization of multiplication operator w. For
nonnegative multiplication operator h in LQ( r?), formally, it is written as

) = [ h(k)a k)dk. (3.1)

The number operator, N, in F is defined by the second quantization of the
identity operator in L?(r?), i.e.,

D(N) = {\I! (o }noef

2 e < oo}
n=0

(NT)™ = n@ ™),
Let h be a multiplication operator in L?(r?) such that s = sp, — sp_ +
i(s;+ — s;), where sgpy (resp. Sgr_,Sr:+,s; ) denotes the real positive
(resp. real nonpositive, imaginary positive, imaginary nonpositive) part
of s. Then we define

dl'(h) :=dl(sgy) — dl(sg_) + i(dl(hyy) — dT (R )),
D(AU(h)) = D(dT(sg)) N D(T(sp_)) 0 DAL (hy+)) O D(AT (b)),

4 Ground state measures

Let Q := (r")(=>%) be the set of r%-valued paths and B(£2) the o-field
constructed by cylinder sets. For T : H — H, we define

(T) == (Vg, TV 3.
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For a convenience we denote by (S) for (1® S), for S : F — F. Our
fundamental theorem is as follows:

Theorem 4.1 ([2]) Let s be such that supyeg |s(k)| < oco. Let Ajw,
A w, A € LA&Y), and |a| < a,. We assume that Ay, ..., A, are mea-
surable sets in R? and let 14 denote the characteristic function of A. Then
there exists a probability measure p on (2, B(Q)) such that, fort; <--- <

b,

(La,e” 21y, o emlmmtnoi)lly /1,41 (t1)) -~ 1a,.(q(tm))p(dg),

(e P = /n @ /22B) 1y (dq), B> 0, (4.1)

where

2(8) = [ dt [ds [, |M(k) el (750 1) (a0 g,
We give a remark on Z((3). Since ";\/WH < 00, we see that

Zp)] < 2[3/u] <o

uniformly in paths ¢ € ©.Thus Z(3) is well defined. It is proved in [2]
that p is a Gibbs measure. We call p the “ground state measure for H”.
It is easily seen that the right-hand side of (4.1) is analytically continued
to B € c. Although it does not imply that (e=#%()) is well defined for all
B € ¢, we have the following theorem:

Theorem 4.2 ([2]) Let s, A\ and « be in Theorem 4.1. Then we have
U, € D(1®e PO for all B € ¢, and (4.1) holds true for all B € c.

We immediately have the following corollary.

Corollary 4.3 Let X and « be in Theorem 4.1.Then, for arbitrary € € R,
we have ¥, € D(1® e™N). Moreover

052 0 o0 \ —|t—s|w i —q(s
N) = 7/_oodt/o s /]Rd dk|\(k)|2e sl (®) /ﬂek(q(t) MDp(dg).  (4.2)
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Proof: Putting s = 1 in Theorem 4.2, we get U, € D(1 ® eV)for all € € k.
(4.2) follows from (4.1) and

The proof is complete. Q.E.D.
Corollary 4.3 implies that

> €2€n‘|\:[jén)H%2(Rd>®]_‘n < o0, foralle>D0.
n=0

Hence we conclude that ||\Ifé”)\| decays super-exponentially as n — oo; it
decays faster than e~“" for arbitrary € > 0. Let s € C°(r?). Then, by
Theorem 4.2, we see that ¥, € D(dI'(s)) and

(dL ()] < (®/2) 1sllooll A/l

Thus map
D:CPRY) 35— (dl'(s)) €c

defines a distribution on C§°(r?). Taking into account of the formal ex-
pression of dI'(s) (3.1), we denote by (a'(k)a(k)) the kernel of D. From
Corollary 4.3 it immediately follows:

Corollary 4.4 Let X and o be in Theorem 4.1. Then for a.e.k € R,

(1/2 ~ 0 00 —lt—slw i —als
(al(Ra(k)) = A®)P [ dt [ ds e 7oR® [ O (dg),

Note that

See Figure 1.



Jratat (R)a(k))dk = (N) L

Figure 1: Infrared cutoff |A/w|| < oo and (N) < oo

5 Nonrelativistic QED

5.1 The Pauli-Fierz model

The Pauli-Fierz model [1],[3],[5]-[11],[19],[20] in nonrelativistic QED de-
scribes an interaction of particles (electrons) and a quantized radiation
field (photons). The quantized radiation field is quantized in a Coulomb
gage. We assume that the number of the electrons is one and that the
electron has spineless. Let

For =0, " LR @ LR X F®---® F.
d—1 d—1

Let {b"(f),b"(¢)}?=} be the annihilation operators and the creation oper-
ators, respectively, which satisfy CCR:

V7 (),0"(9)] = 6rs(f, 9)r2ay, [0 (f), 0% (9)] = 0.
Let HF'Y be the free Hamiltonian in Fpp, i.e.,

Z / k)BT (k)b (k)dk.



The Hamiltonian of the Pauli-Fierz model is defined as an operator in
Hpr := L*(RY) ® Fpp = L2(R%; Fpr) and reads

1
Hpp ::2(—z’V@l—eA(:c))2+1®HfPF+V®1,

where e is a coupling constant, A(x) := (Ay(z), -, Ayg(z)),

A, (x) = ! dzjl <bTr(e Ae ™) 447 (e r)\e’kx))
o) =5
and e” := (e}, - -, e}, polarization vectors; e (k)-e*(k) = d,s and e" (k) -k =

0. Note that
divA = 0.

For the Nelson model, the self-adjointness of H for arbitrary « is trivial,
since H is infinitesimally small with respect to H, ® 1 + 1 ® H;. It is not
so easy to show self-adjointness of Hpp for arbitrary e € R. Let Npg be the
number operator in Fpr. We have the following proposition:

Proposition 5.1 ([9]) ' Let A\, w?\ € L2(&?). We assume that V is rela-
tively bounded with respect to A. Then, for arbitrary e € R, Hpp is essen-
tially self-adjoint on

D(A®1)N DA ® (HY)?) N, D(1® Nip).
The existence of the ground states of Hpp are studied in [1],[6], and their
multiplicities in [7],[11]. Moreover inf o(Hpy) is investigated in [3],[16].
5.2 Ground states of H and Hpp

Let
gap(T) := inf o.s(T) — inf o(T).

The existence of the ground states of H and Hpp are deeply related to
conditions on m, gap, A and coupling constants. Let )\/w c L*(r?).2
Then sufficient conditions for the existence of the ground states of H and
Hpy, as far as we know, are in Figures 2 and 3, respectively.
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m>0 | m=0
gap(H) = oo AER | € ER
0<gap(H)< oo ||la] <1 ||k 1

Figure 2: « for the existence of the ground states of H.

m>0 | m=0
gap(Hpp) = 00 e€r |le|] <1
0 < gap(Hpp) < oo |le] <1 |]e] K1

Figure 3: e for the existence of the ground states of Hpp.

Note that see [4],[23] for a proof of the existence of ground states for case
gap(H) = oo and m > 0 in Figure 2, and [8],[9] for case gap(Hpr) = oo
and m > 0 in Figure 3. In [13],[14] the authors give examples such that
the ground states of H and Hpy exist for the case where gap(H) = 0 and
gap(Hpr) = 0, respectively. In [17] no existence of the ground states of H
for arbitrary o # 0 is proved if || A/w]| = co.

5.3 Distribution of bosons for Upyp

Let WUpp be the ground state of Hpr and

(T)pr = (Vpp, TVpp)3pp-

L In [9] essential self-adjointness of Hpp is proved only for the case where the number of the electrons
is one. As far as we know it is not clear whether the statement in Proposition 5.1 with N-electrons holds
true or not. In [19] self-adjointness of Hpr on D(A® 1)N D(1® H") is proved for sufficiently small |e|.

2 Tt is not necessarily to assume \/w € L*(R?) for Hpg. See [1].
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Our next problem is to study the distribution of bosons of Wpp, e.g.,
(Npp)pr, (¢ PMPF)pp, etc. In [10] a ground state measure, upy, on (2, B(€2))
for Hpr is constructed, which satisfies

(Lot ont ot DHen

= [ Laia(t1) - - La, (a(tn) Jupr(da).

Moreover a “formal” calculation gives a “formal” expression [5],[21]:

(e "NPr)pp = /Q e 1220 (B) o (dg),

where

Zpr(PB) = (e_ﬁ — 1) zd: /Ooodqu(t)/ooodq,,(s)x

wy=1""
< [,y (k) ACk) et 0O~ gy,

Here d,, (k) := X' e, (k)e,(k) and [---dg,(t) denotes a stochastic in-

<2

tegral. For the Nelson model |Z(5)| < ZH)\/wH < oo guarantees that
Je e /2Z20) 1y(dq) is well defined. We do not have such an estimate for
Zpr(B), which is a crucial points to study (Npp)pr in terms of the ground
state measure. Actually the definition of Zpp(f3) is not clear, e.g., it is
needed to give a rigorous definition of [°_ dq,(t)/$dq,(s).

5.4 Conjectures and problems

In view of subsections 5.1-5.3, we give the following conjectures. We assume
some conditions on A and V.

Conjecture 5.2 For arbitrary e € R, Hpr s self-adjoint and bounded
from below on D(A ® 1) N D(1 ® HET).

Conjecture 5.3 Let gap(Hpp) = oo and m > 0. Then the ground states
of Hpp exist for arbitrary e € R.

Conjecture 5.4 Upp € D(1 ® eV*F) for all € € R.
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