Ground state measure and its applications

Fumio Hiroshima*

1 Introduction

In this paper we shall consider structures of ground states of a model describing an interaction between a particle and a quantized scalar bose field, which is called the "Nelson model" [15],[18]. Basic ideas in this paper is due to a fairly nice work of H.Spohn [22], in which he studies the spinboson model. The Hamiltonian, H, of the Nelson model is defined as a self-adjoint operator acting on Hilbert space $\mathcal{H} := L^2(\mathbb{R}^d) \otimes \mathcal{F}$, where \mathcal{F} denotes a Boson Fock space. The existence of the ground states, Ψ_g , of H is established in e.g., [2],[4],[12],[23]. The main results presented here is to give the expectation-value of the number of bosons of Ψ_g and its boson distribution by means of a ground state measure constructed in this paper. Especially the localization of bosons of Ψ_g is proved. The ground state measure, μ , on the set of paths, Ω , gives an integral representation of the expectation-value of certain operator A in \mathcal{H} , i.e.,

$$(\Psi_{\rm g}, A\Psi_{\rm g}) = \int_{\mathbf{\Omega}} f_A(q)\mu(dq),$$

where f_A is a density function corresponding to A. This integral representation leads us to the goal of this paper. Detailed arguments shall be published elsewhere [2], and refer to see [17],[21],[22]. This paper is organized as follows: section 2 gives a definition of models considered in this paper. In section 3 we review the second quantizations. Section 4 is devoted to investigating the ground states. In section 5 we give further problems on the Pauli-Fierz model in nonrelativistic quantum electrodynamics.

^{*}I thank Japan Society for the Promotion of Science for the financial support. 講究録 1156

2 Scalar quantum field models

Let $\mathcal{F} := \bigoplus_{n=0}^{\infty} \otimes_s^n L^2(\mathbb{R}^d) := \bigoplus_{n=0}^{\infty} \mathcal{F}_n$, where \otimes_s^n denotes the *n*-fold symmetric tensor product with $\otimes_s^0 L^2(\mathbb{R}^d) := \mathbb{C}$. The bare vacuum, $\Omega \in \mathcal{F}$, is defined by $\Omega := \{1, 0, 0, ...\}$. Let $a^{\dagger}(f)$ and a(g) be the creation operator and the annihilation operator smeared by $f, g \in L^2(\mathbb{R}^d)$, respectively, which are linear in f and g. Let \mathcal{F}_{fin} be the finite particle subspace of \mathcal{F} :

 $\mathcal{F}_{\text{fin}} := \left\{ \Psi = \{\Psi^{(n)}\}_{n=0}^{\infty} \in \mathcal{F} \left| \text{there exists } n_0 \text{ such that } \Psi^{(m)} = 0, m \ge n_0 \right\}.$ They satisfy canonical commutation relations (CCR), i.e.,

$$[a(f), a^{\dagger}(g)] = (\bar{f}, g)_{L^{2}(\mathbb{R}^{d})}, \quad [a^{\sharp}(f), a^{\sharp}(g)] = 0,$$

on \mathcal{F}_{fin} , where a^{\sharp} denotes a or a^{\dagger} , and $(\cdot, \cdot)_{\mathcal{K}}$ the scalar product on Hilbert space \mathcal{K} . We denote by $\|\cdot\|_{\mathcal{K}}$ its associated norm. Unless confusion arises we omit \mathcal{K} in $(\cdot, \cdot)_{\mathcal{K}}$ and $\|\cdot\|_{\mathcal{K}}$, respectively. a^{\sharp} also satisfies that $(\Psi, a(f)\Phi) = (a^{\dagger}(\bar{f})\Psi, \Phi)$ for $\Psi, \Phi \in \mathcal{F}_{\text{fin}}$. For dense subset $\mathcal{K} \subset L^2(\mathbb{R}^d)$,

$$\mathcal{F}(\mathcal{K}) := l.h.\{a^{\dagger}(f_1) \cdots a^{\dagger}(f_n)\Omega, \Omega | f_j \in \mathcal{K}, j = 1, ..., n, n \in \mathbb{N}\}\$$

is dense in \mathcal{F} . We define the free Hamiltonian, $H_{\rm f}$, in \mathcal{F} by

$$H_{\mathrm{f}}\Omega := 0,$$

$$H_{\mathrm{f}}a^{\dagger}(f_{1})\cdots a^{\dagger}(f_{n})\Omega := \sum_{j=1}^{n} a^{\dagger}(f_{1})\cdots a^{\dagger}(\omega f_{j})\cdots a^{\dagger}(f_{n})\Omega,$$

$$f_{j} \in D(\omega), \quad j = 1, ..., n, \quad n \in \mathbb{N},$$

where D(T) denotes the domain of T, $\omega := \omega(k) := \sqrt{|k|^2 + m^2}$, $m \ge 0$. Here m denotes the mass of the quantized scalar bose field. Field operators $\phi(f)$ are defined by

$$\phi(f) := \frac{1}{\sqrt{2}} (a^{\dagger}(\bar{f}) + a(f)), \quad f \in L^2(\mathbb{R}^d).$$

Note that $H_{\rm f} \lceil_{\mathcal{F}(D(\omega))}$ and $\phi(f) \lceil_{\mathcal{F}_{\rm fn}}$ are essentially self-adjoint, respectively. It is known that $\sigma(H_{\rm f}) = [0, \infty)$ and $\sigma_{\rm p}(H_{\rm f}) = \{0\}$. The Hamiltonian, H, considered in this paper is defined by

$$H := H_{\rm p} \otimes 1 + 1 \otimes H_{\rm f} + \alpha H_{\rm I}$$

on $\mathcal{H} := L^2(\mathbb{R}^d) \otimes \mathcal{F} \cong L^2(\mathbb{R}^d; \mathcal{F})$, where $\alpha \in \mathbb{R}$ is a coupling constant, and

$$H_{\rm I} := \phi(e^{ikx}\lambda),$$
$$H_{\rm p} := -\Delta/2 + V,$$

where $\hat{\lambda}$ is the Fourier transform of λ . A reasonable physical choice of $\hat{\lambda}$ is of the form

$$\hat{\lambda} = \hat{\rho} / \sqrt{(2\pi)^d \omega},$$

where ρ describes a charge distribution, i.e.,

$$\sqrt{(2\pi)^d}\hat{\rho}(0) = \int_{\mathbb{R}^d} \rho(x) dx = \alpha.$$

For simplicity we assume that external potential $V = V_+ - V_-$ satisfies that $V_+ \in L^1_{loc}(\mathbb{R}^d)$ and that V_- is infinitesimally small with respect to Δ in the sense of form. Throughout this paper we assume that

$$\overline{\hat{\lambda}(k)} = \hat{\lambda}(-k).$$

Let $\hat{\lambda}, \hat{\lambda}/\sqrt{\omega} \in L^2(\mathbb{R}^d)$. Then it is known that, for arbitrary α , H is selfadjoint on $D(H_p \otimes 1) \cap D(1 \otimes H_f)$ and bounded from below. Moreover it is essentially self-adjoint on any core of $H_p \otimes 1 + 1 \otimes H_f$.

Proposition 2.1 ([2],[12]) Let $\hat{\lambda}/\omega, \hat{\lambda}/\sqrt{\omega}, \hat{\lambda} \in L^2(\mathbb{R}^d)$. Then there exists α_* such that for $|\alpha| \leq \alpha_*$ the ground states, Ψ_g , of H exist. Moreover $(f \otimes \Omega, \Psi_g) > 0$ for arbitrary nonnegative $f \in L^2(\mathbb{R}^d)$ with $f \not\equiv 0$.

See Figure 2 for more explicit results on the existence of the ground states of H.

3 Second quantizations

For later use we review the second quantization of operator T on $L^2(\mathbb{R}^d)$. Let T be a contraction operator on $L^2(\mathbb{R}^d)$, i.e., $||T|| \leq 1$. Then we define $\Gamma(T) : \mathcal{F}_{\text{fin}} \to \mathcal{F}_{\text{fin}}$ by

$$\Gamma(T)\Omega := \Omega,$$

$$\Gamma(T)a^{\dagger}(f_1)\cdots a^{\dagger}(f_n)\Omega := a^{\dagger}(Tf_1)\cdots a^{\dagger}(Tf_n)\Omega,$$

$$f_j \in L^2(\mathbb{R}^d), \quad j = 1, ..., n, \quad n \in \mathbb{N}.$$

For $\Phi \in \mathcal{F}_{\text{fin}}$ we have $\|\Gamma(T)\Phi\| \leq \|\Phi\|$. Thus $\Gamma(T)$ extends to a contraction operator on \mathcal{F} . We denote its extension by the same symbol. It is seen that $\Gamma(\cdot)$ is linear in \cdot and that $\Gamma(T)^* = \Gamma(T^*)$. Let h be a nonnegative self-adjoint operator in $L^2(\mathbb{R}^d)$. Then we see that $\Gamma(e^{-th})$ is a strongly continuous symmetric contraction one-parameter semigroup in $t \geq 0$. The second quantization of h, $d\Gamma(h)$, is defined by the generator of $\Gamma(e^{-th})$, i.e.,

$$\Gamma(e^{-th}) = e^{-td\Gamma(h)}, \quad t \ge 0.$$

Actually $H_{\rm f}$ is the second quantization of multiplication operator ω . For nonnegative multiplication operator h in $L^2(\mathbb{R}^d)$, formally, it is written as

$$d\Gamma(h) = \int h(k)a^{\dagger}(k)a(k)dk.$$
(3.1)

The number operator, N, in \mathcal{F} is defined by the second quantization of the identity operator in $L^2(\mathbb{R}^d)$, i.e.,

$$D(N) := \left\{ \Psi = \{ \Psi^{(n)} \}_{n=0}^{\infty} \in \mathcal{F} \left| \sum_{n=0}^{\infty} n^2 \| \Psi^{(n)} \|_{\mathcal{F}_n}^2 < \infty \right\}, \\ (N\Psi)^{(n)} := n\Psi^{(n)}.$$

Let *h* be a multiplication operator in $L^2(\mathbb{R}^d)$ such that $s = s_{R+} - s_{R-} + i(s_{I+} - s_{I-})$, where s_{R+} (resp. s_{R-}, s_{I+}, s_{I-}) denotes the real positive (resp. real nonpositive, imaginary positive, imaginary nonpositive) part of *s*. Then we define

$$d\Gamma(h) := d\Gamma(s_{R+}) - d\Gamma(s_{R-}) + i(d\Gamma(h_{I+}) - d\Gamma(h_{I-})),$$

$$D(d\Gamma(h)) := D(d\Gamma(s_{R+})) \cap D(d\Gamma(s_{R-})) \cap D(d\Gamma(h_{I+})) \cap D(d\Gamma(h_{I-}))$$

4 Ground state measures

Let $\Omega := (\mathbb{R}^d)^{(-\infty,\infty)}$ be the set of \mathbb{R}^d -valued paths and $\mathcal{B}(\Omega)$ the σ -field constructed by cylinder sets. For $T : \mathcal{H} \to \mathcal{H}$, we define

$$\langle T \rangle := (\Psi_{\rm g}, T \Psi_{\rm g})_{\mathcal{H}}$$

For a convenience we denote by $\langle S \rangle$ for $\langle 1 \otimes S \rangle$, for $S : \mathcal{F} \to \mathcal{F}$. Our fundamental theorem is as follows:

Theorem 4.1 ([2]) Let s be such that $\sup_{k \in \mathbb{R}^d} |s(k)| < \infty$. Let $\hat{\lambda}/\omega$, $\hat{\lambda}/\sqrt{\omega}$, $\hat{\lambda} \in L^2(\mathbb{R}^d)$, and $|\alpha| \leq \alpha_*$. We assume that A_1, \ldots, A_m are measurable sets in \mathbb{R}^d and let 1_A denote the characteristic function of A. Then there exists a probability measure μ on $(\Omega, \mathcal{B}(\Omega))$ such that, for $t_1 \leq \cdots \leq t_m$,

$$\langle 1_{A_1} e^{-(t_2 - t_1)H} 1_{A_2} \cdots e^{-(t_m - t_{m-1})H} 1_{A_m} \rangle = \int_{\Omega} 1_{A_1}(q(t_1)) \cdots 1_{A_m}(q(t_m))\mu(dq),$$

$$\langle e^{-\beta d\Gamma(s)} \rangle = \int_{\Omega} e^{(\alpha^2/2)Z(\beta)} \mu(dq), \quad \beta > 0,$$
 (4.1)

where

$$Z(\beta) := \int_{-\infty}^{0} dt \int_{0}^{\infty} ds \int_{\mathbb{R}^{d}} |\hat{\lambda}(k)|^{2} e^{-|t-s|\omega(k)|} \left(e^{-\beta s(k)} - 1\right) e^{ik(q(t)-q(s))} dk$$

We give a remark on $Z(\beta)$. Since $\left\|\hat{\lambda}/\omega\right\| < \infty$, we see that

$$|Z(\beta)| \le 2 \left\| \hat{\lambda} / \omega \right\|^2 < \infty$$

uniformly in paths $q \in \Omega$. Thus $Z(\beta)$ is well defined. It is proved in [2] that μ is a Gibbs measure. We call μ the "ground state measure for H". It is easily seen that the right-hand side of (4.1) is analytically continued to $\beta \in \mathbb{C}$. Although it does *not* imply that $\langle e^{-\beta d\Gamma(s)} \rangle$ is well defined for all $\beta \in \mathbb{C}$, we have the following theorem:

Theorem 4.2 ([2]) Let s, $\hat{\lambda}$ and α be in Theorem 4.1. Then we have $\Psi_{g} \in D(1 \otimes e^{-\beta d\Gamma(s)})$ for all $\beta \in \mathbb{C}$, and (4.1) holds true for all $\beta \in \mathbb{C}$.

We immediately have the following corollary.

Corollary 4.3 Let $\hat{\lambda}$ and α be in Theorem 4.1. Then, for arbitrary $\epsilon \in \mathbb{R}$, we have $\Psi_{g} \in D(1 \otimes e^{\epsilon N})$. Moreover

$$\langle N \rangle = \frac{\alpha^2}{2} \int_{-\infty}^0 dt \int_0^\infty ds \int_{\mathbb{R}^d} dk |\hat{\lambda}(k)|^2 e^{-|t-s|\omega(k)} \int_{\mathbf{\Omega}} e^{ik(q(t)-q(s))} \mu(dq).$$
(4.2)

Proof: Putting s = 1 in Theorem 4.2, we get $\Psi_{g} \in D(1 \otimes e^{\epsilon N})$ for all $\epsilon \in \mathbb{R}$. (4.2) follows from (4.1) and

$$\langle N\rangle = -\frac{d\langle e^{-\beta N}\rangle}{d\beta}\bigg|_{\beta=0}$$

The proof is complete.

Corollary 4.3 implies that

$$\sum_{n=0}^{\infty} e^{2\epsilon n} \|\Psi_{g}^{(n)}\|_{L^{2}(\mathbb{R}^{d})\otimes\mathcal{F}_{n}}^{2} < \infty, \quad \text{for all } \epsilon > 0.$$

Hence we conclude that $\|\Psi_{g}^{(n)}\|$ decays super-exponentially as $n \to \infty$; it decays faster than $e^{-\epsilon n}$ for arbitrary $\epsilon > 0$. Let $s \in C_{0}^{\infty}(\mathbb{R}^{d})$. Then, by Theorem 4.2, we see that $\Psi_{g} \in D(d\Gamma(s))$ and

$$|\langle d\Gamma(s)\rangle| \le (\alpha^2/2) ||s||_{\infty} ||\hat{\lambda}/\omega||^2.$$

Thus map

$$\mathcal{D}: C_0^\infty(\mathbb{R}^d) \ni s \to \langle d\Gamma(s) \rangle \in \mathbb{C}$$

defines a distribution on $C_0^{\infty}(\mathbb{R}^d)$. Taking into account of the formal expression of $d\Gamma(s)$ (3.1), we denote by $\langle a^{\dagger}(k)a(k)\rangle$ the kernel of \mathcal{D} . From Corollary 4.3 it immediately follows:

Corollary 4.4 Let $\hat{\lambda}$ and α be in Theorem 4.1. Then for a.e. $k \in \mathbb{R}^d$,

$$\langle a^{\dagger}(k)a(k)\rangle = \frac{\alpha^2}{2}|\hat{\lambda}(k)|^2 \int_{-\infty}^{0} dt \int_{0}^{\infty} ds \ e^{-|t-s|\omega(k)|} \int_{\Omega} e^{ik(q(t)-q(s))} \mu(dq).$$

Note that

$$\int_{\mathbb{R}^d} \langle a^{\dagger}(k) a(k) \rangle dk = \langle N \rangle.$$

Moreover we see that

$$\langle a^{\dagger}(k)a(k)\rangle | \leq \frac{\alpha^2}{2} \frac{|\hat{\lambda}(k)|^2}{\omega(k)^2}, \quad \text{a.e. } k \in \mathbb{R}^d.$$

See Figure 1.

Q.E.D.

Figure 1: Infrared cutoff $\|\hat{\lambda}/\omega\| < \infty$ and $\langle N \rangle < \infty$

5 Nonrelativistic QED

5.1 The Pauli-Fierz model

The Pauli-Fierz model [1],[3],[5]-[11],[19],[20] in nonrelativistic QED describes an interaction of particles (electrons) and a quantized radiation field (photons). The quantized radiation field is quantized in a Coulomb gage. We assume that the number of the electrons is one and that the electron has spineless. Let

$$\mathcal{F}_{\mathrm{PF}} := \bigoplus_{n=0}^{\infty} \otimes_{s}^{n} \underbrace{L^{2}(\mathbb{R}^{d}) \oplus \cdots \oplus L^{2}(\mathbb{R}^{d})}_{d-1} \cong \underbrace{\mathcal{F} \otimes \cdots \otimes \mathcal{F}}_{d-1}.$$

Let $\{b^r(f), b^{\dagger r}(g)\}_{r=1}^{d-1}$ be the annihilation operators and the creation operators, respectively, which satisfy CCR:

$$[b^{r}(f), b^{\dagger s}(g)] = \delta_{rs}(\bar{f}, g)_{L^{2}(\mathbb{R}^{d})}, \quad [b^{\sharp r}(f), b^{\sharp s}(g)] = 0.$$

Let $H_{\rm f}^{\rm PF}$ be the free Hamiltonian in $\mathcal{F}_{\rm PF}$, i.e.,

$$H_{\mathrm{f}}^{\mathrm{PF}} := \sum_{r=1}^{d-1} \int \omega(k) b^{\dagger r}(k) b^{r}(k) dk.$$

The Hamiltonian of the Pauli-Fierz model is defined as an operator in $\mathcal{H}_{\mathrm{PF}} := L^2(\mathbb{R}^d) \otimes \mathcal{F}_{\mathrm{PF}} \cong L^2(\mathbb{R}^d; \mathcal{F}_{\mathrm{PF}})$ and reads

$$H_{\mathrm{PF}} := rac{1}{2} \left(-i \nabla \otimes 1 - e \mathbf{A}(x) \right)^2 + 1 \otimes H_{\mathrm{f}}^{\mathrm{PF}} + V \otimes 1,$$

where e is a coupling constant, $\mathbf{A}(x) := (\mathbf{A}_1(x), \cdots, \mathbf{A}_d(x)),$

$$\mathbf{A}_{\mu}(x) := \frac{1}{\sqrt{2}} \sum_{r=1}^{d-1} \left(b^{\dagger r} (e_{\mu}^r \bar{\lambda} e^{-ikx}) + b^r (e_{\mu}^r \bar{\lambda} e^{ikx}) \right),$$

and $e^r := (e_1^r, \dots, e_d^r)$, polarization vectors; $e^r(k) \cdot e^s(k) = \delta_{rs}$ and $e^r(k) \cdot k = 0$. Note that

 $\operatorname{div} \mathbf{A} = 0.$

For the Nelson model, the self-adjointness of H for arbitrary α is trivial, since $H_{\rm I}$ is infinitesimally small with respect to $H_{\rm p} \otimes 1 + 1 \otimes H_{\rm f}$. It is not so easy to show self-adjointness of $H_{\rm PF}$ for arbitrary $e \in \mathbb{R}$. Let $N_{\rm PF}$ be the number operator in $\mathcal{F}_{\rm PF}$. We have the following proposition:

Proposition 5.1 ([9]) ¹ Let $\hat{\lambda}, \omega^2 \hat{\lambda} \in L^2(\mathbb{R}^d)$. We assume that V is relatively bounded with respect to Δ . Then, for arbitrary $\epsilon \in \mathbb{R}$, H_{PF} is essentially self-adjoint on

$$D(\Delta \otimes 1) \cap D(1 \otimes (H_{\mathrm{f}}^{\mathrm{PF}})^2) \cap_{k=1}^{\infty} D(1 \otimes N_{\mathrm{PF}}^k).$$

The existence of the ground states of $H_{\rm PF}$ are studied in [1],[6], and their multiplicities in [7],[11]. Moreover inf $\sigma(H_{\rm PF})$ is investigated in [3],[16].

5.2 Ground states of H and $H_{\rm PF}$

Let

$$gap(T) := \inf \sigma_{ess}(T) - \inf \sigma(T).$$

The existence of the ground states of H and $H_{\rm PF}$ are deeply related to conditions on m, gap, $\hat{\lambda}$ and coupling constants. Let $\hat{\lambda}/\omega \in L^2(\mathbb{R}^d)^2$. Then sufficient conditions for the existence of the ground states of H and $H_{\rm PF}$, as far as we know, are in Figures 2 and 3, respectively.

	m > 0	m = 0
$\operatorname{gap}(H) = \infty$	$\alpha \in {\bf R}$	$\alpha \in \mathbb{R}$
$0 < \operatorname{gap}(H) < \infty$	$ \alpha \ll 1$	$ \alpha \ll 1$

Figure 2: α for the existence of the ground states of H.

	m > 0	m = 0
$\mathrm{gap}(H_{\mathrm{PF}}) = \infty$	$e\in \mathbb{R}$	$ e \ll 1$
$0 < \mathrm{gap}(H_{\mathrm{PF}}) < \infty$	$ e \ll 1$	$ e \ll 1$

Figure 3: e for the existence of the ground states of $H_{\rm PF}$.

Note that see [4],[23] for a proof of the existence of ground states for case $gap(H) = \infty$ and $m \ge 0$ in Figure 2, and [8],[9] for case $gap(H_{PF}) = \infty$ and m > 0 in Figure 3. In [13],[14] the authors give examples such that the ground states of H and H_{PF} exist for the case where gap(H) = 0 and $gap(H_{PF}) = 0$, respectively. In [17] no existence of the ground states of H for arbitrary $\alpha \ne 0$ is proved if $\|\hat{\lambda}/\omega\| = \infty$.

5.3 Distribution of bosons for $\Psi_{\rm PF}$

Let $\Psi_{\rm PF}$ be the ground state of $H_{\rm PF}$ and

$$\langle T \rangle_{\mathrm{PF}} := (\Psi_{\mathrm{PF}}, T\Psi_{\mathrm{PF}})_{\mathcal{H}_{\mathrm{PF}}}.$$

¹ In [9] essential self-adjointness of $H_{\rm PF}$ is proved only for the case where the number of the electrons is one. As far as we know it is not clear whether the statement in Proposition 5.1 with N-electrons holds true or not. In [19] self-adjointness of $H_{\rm PF}$ on $D(\Delta \otimes 1) \cap D(1 \otimes H_{\rm f}^{\rm PF})$ is proved for sufficiently small |e|.

² It is not necessarily to assume $\hat{\lambda}/\omega \in L^2(\mathbb{R}^d)$ for $H_{\rm PF}$. See [1].

Our next problem is to study the distribution of bosons of $\Psi_{\rm PF}$, e.g., $\langle N_{\rm PF} \rangle_{\rm PF}$, $\langle e^{-\beta N_{\rm PF}} \rangle_{\rm PF}$, etc. In [10] a ground state measure, $\mu_{\rm PF}$, on $(\Omega, \mathcal{B}(\Omega))$ for $H_{\rm PF}$ is constructed, which satisfies

$$\langle 1_{A_1} e^{-(t_2 - t_1)H_{\rm PF}} 1_{A_2} \cdots e^{-(t_m - t_{m-1})H_{\rm PF}} 1_{A_m} \rangle_{\rm PF}$$

= $\int_{\mathbf{\Omega}} 1_{A_1}(q(t_1)) \cdots 1_{A_m}(q(t_m)) \mu_{\rm PF}(dq).$

Moreover a "formal" calculation gives a "formal" expression [5], [21]:

$$\langle e^{-\beta N_{\rm PF}} \rangle_{\rm PF} = \int_{\mathbf{\Omega}} e^{(-e^2/2)Z_{\rm PF}(\beta)} \mu_{\rm PF}(dq),$$

where

$$Z_{\rm PF}(\beta) := (e^{-\beta} - 1) \sum_{\mu,\nu=1}^{d} \int_{-\infty}^{0} dq_{\mu}(t) \int_{0}^{\infty} dq_{\nu}(s) \times \int_{\mathbb{R}^{d}} d_{\mu\nu}(k) |\hat{\lambda}(k)|^{2} e^{-|t-s|\omega(k)|} e^{ik(q(t)-q(s))} dk.$$

Here $d_{\mu\nu}(k) := \sum_{r=1}^{d-1} e_{\mu}^{r}(k) e_{\nu}^{r}(k)$ and $\int \cdots dq_{\mu}(t)$ denotes a stochastic integral. For the Nelson model $|Z(\beta)| \leq 2 \left\|\hat{\lambda}/\omega\right\|^{2} < \infty$ guarantees that $\int_{\Omega} e^{(\alpha^{2}/2)Z(\beta)} \mu(dq)$ is well defined. We do not have such an estimate for $Z_{\rm PF}(\beta)$, which is a crucial points to study $\langle N_{\rm PF} \rangle_{\rm PF}$ in terms of the ground state measure. Actually the definition of $Z_{\rm PF}(\beta)$ is not clear, e.g., it is needed to give a rigorous definition of $\int_{-\infty}^{0} dq_{\mu}(t) \int_{0}^{\infty} dq_{\nu}(s)$.

5.4 Conjectures and problems

In view of subsections 5.1-5.3, we give the following conjectures. We assume some conditions on $\hat{\lambda}$ and V.

Conjecture 5.2 For arbitrary $e \in \mathbb{R}$, H_{PF} is self-adjoint and bounded from below on $D(\Delta \otimes 1) \cap D(1 \otimes H_{f}^{PF})$.

Conjecture 5.3 Let $gap(H_{PF}) = \infty$ and $m \ge 0$. Then the ground states of H_{PF} exist for arbitrary $e \in \mathbb{R}$.

Conjecture 5.4 $\Psi_{\rm PF} \in D(1 \otimes e^{\epsilon N_{\rm PF}})$ for all $\epsilon \in \mathbb{R}$.

References

- [1] V.Bach, J.Fröhlich, and I.M.Sigal, Spectral Analysis for systems of atoms and molecules coupled to the quantized radiation field, preprint.
- [2] V.Betz, F.Hiroshima, J.Lőrinczi and H.Spohn, Gibbs measure associated with a particle-field system, preprint.
- [3] C.Fefferman, J.Fröhlich, and G.M.Graf, Stability of ultraviolet-cutoff quantum electrodynamics with non-relativistic matter, *Comm. Math. Phys.***190** (1997), 309-330.
- [4] C.Gérard, On the existence of ground states for massless Pauli-Fierz Hamiltonians, preprint.
- [5] F. Hiroshima, Functional integral representation of a model in quantum electrodynamics, *Rev. Math. Phys.* 9 (1997), 489-530.
- [6] F. Hiroshima, Ground states of a model in nonrelativistic quantum electrodynamics I, J. Math. Phys. 40 (1999), 6209-6222.
- [7] F.Hiroshima, Ground states of a model in nonrelativistic quantum electrodynamics II, J. Math. Phys. 41 (2000) in press.
- [8] F.Hiroshima, Ground states and spectrum of non-relativistic quantum electrodynamics, submitting.
- [9] F.Hiroshima, Essential self-adjointness of translation invariant quantum field models for arbitrary coupling constants, to be published in *Comm. Math. Phys.* (2000).
- [10] F.Hiroshima, Euclidean Gell-Mann-Low formula and double stochastic integrals, to be published in *Stochastic processes, geometry and physics. New interplay* (2000).
- [11] F.Hiroshima, Point spectra and asymptotics of models coupled to quantum fields: a functional integral approach, submitting.
- [12] F.Hiroshima, Introduction to spectral properties of the Hamiltonian for a particle coupled to a scalar boson field, unpublished note.
- [13] F.Hiroshima and H.Spohn, unpublished note.
- [14] F.Hiroshima and H.Spohn, Binding through a coupling to a field, in preparation.
- [15] R.Høegh-Krohn, Asymptotic fields in some models of quantum field theory I, J. Math. Phys. 9 (1968), 2075-2080, II, J. Math. Phys. 10 (1969),639-643, III, J. Math. Phys. 11 (1969), 185-189.
- [16] E.Lieb and M.Loss, Self-energy of electrons in non-perturbative QED, preprint.
- [17] R.Minlos and H.Spohn, Existence and uniqueness of ground states of system: a scalar field interacting with particles, unpublished note.
- [18] E.Nelson, Interaction of nonrelativistic particles with a quantized scalar field, J. Math. Phys.5 (1964), 1190–1197.
- [19] T. Okamoto and K. Yajima, Complex scaling technique in non-relativistic massive QED, Ann. Inst. Henri Poincaré 42 (1985),311-327.
- [20] W.Pauli and M. Fierz, Zur Theorie der Emmision langwelliger Lichtquanten, Nuovo Cimento 15 (1938), 167-188.
- [21] H.Spohn, Effective mass of the polaron: a functional integral approach, Ann. Phys. 175 (1987), 278-318.
- [22] H.Spohn, Ground state(s) of the spin-boson Hamiltonian, Comm. Math. Phys. 123 (1989), 277-304.
- [23] H.Spohn, Ground state of quantum particle coupled to a scalar boson field, Lett. Math. Phys. 44 (1998), 9–16.