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1 INTRODUCTION

Asymptotic behaviors of scaling Hamiltonians which describe interactions of particles and
quantized fields are considered. In a mathematical formulation, interaction Hamiltonians of
the particles and the quantized fields are described by the theory of self-adjoint operators
acting in the tensor product of two Hilbert spaces over the complex field C. Let H; and H,
be two Hilbert spaces. We define a self-adjoint operator H acting in the tensor product of

Hl and HQ,H:H1®H2, by
H:H1®I—|—aHmt—|—[®H2

Here H, and H, are self-adjoint operators in H; and H,, respectively, H;,; is a symmetric
operator in H and « € R is a coupling constant. Then, for the given self-adjoint operator

H, we define “B-coupling Hamiltonian, Hg(A)”, by
Hy(A) = Hi ® [ + AaHi + AT @ Hy, 1< 8. (1. 1)

Introducing a renormalization Eg(A) which goes to infinity or minus infinity as A — oo in

some sense, we want to investigate the following asymptotic behaviors

s — lim e (HsW-Es() — y (efitHeff ® P) U, ter (1. 2)

A—o0
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Here Heyy is a self-adjoint operator in H;, which is called “effective Hamiltonian”, U is a
unitary operator in ‘H and P a projection operator onto a one-dimensional subspace in H,. It
seems to be useful to readers to collect some background ingredient. Motivation of this paper
is [1] and [3]. In [1], in order to give an interpretation of a physical phenomenon “Lamb
shift” without formal perturbation theory, A.Arai elaborates a scaling limit of the Pauli-
Fierz model. The scaling limit corresponds to the case # = 1 in (1.1). In [3], E.B.Davies
studies a scaling limit of the Nelson model to derive a Schrodinger Hamiltonian (effective
Hamiltonian) with a scalar potential. The scaling limit corresponds to the case § = 2 in
(1.1). In this paper, we deal with the Nelson model [2,3,4,5,8,10], the Pauli-Fierz model
[1,6,7,8,9,10] and the spin-boson model [1]. Thus considering scaling limits as in (1.2) for
these models is an extension of those considered in [1,2,3,6,7,10]. We organize this paper
as follows. In section 2, we overview an abstract theory of a scaling limit of self-adjoint
operators. In section 3,4 and 5, we study the Nelson model, the Pauli-Fierz model and the

spin-boson model,respectively. In section 6, we give some remarks.

2 FUNDAMENTAL FACTS

2.1 An abstract Boson Fock space

In this subsection we define an abstract Boson Fock space and basic notations. For a sepa-
rable Hilbert space ‘H over C , we denote the scalar product by < f, g >4 and the associated
norm by || f||3;, where the scalar product is linear in g and antilinear in f. For the tempered
distributions f and g, the notation f denotes the complex conjugate of f, and f (resp.g) the
Fourier transform of f (resp.the inverse Fourier transform of g). We denote the domain of

an operator A by D(A). The Boson Fock space over the Hilbert space H is defined by

o0

Fu=PI[®:H],

n=0

where ®"H,n > 1, denotes the n-fold symmetric tensor product of H, and ®?H = C. Define
Q3 = {1,0,0,..}. Let the annihilation and creation operators in the Boson Fock space

denoted by ay(f), f € H and al,(g),g € H, respectively. It is well known that

F = L{a;(fl)...a;(fn)ﬂ,mfj EH,j=1,.,nn> 1}



is dense in F3, where L denotes the linear hull of the vectors in {...}. The annihilation and
the creation operators in the Boson Fock space satisfy the following canonical commutation

relations on F3p:

[a?-t(f)aa];-t(g)] = < f,9>u,
[ab,(f), b, (9)] = O,

where ag{ means ay Or airt. Let h be a self-adjoint operator in H. Define dI'3(h) by

T (R)Q =0,
AU (R)aby(f1)--ayy (F) 2 = 3 aby(f1)-aly(hfy).aly(fa) 0, f; € D(h).

7j=1
Then dI'y(h) is essentially self-adjoint. Let us use the same notation as dI'y(h) for its
self-adjoint extension.
2.2 An abstract theory of a scaling limit

We overview an abstract theory of a scaling limit of self-adjoint operators acting in a tensor
product Hilbert space established in [1] with a little modification. Let I be a Hilbert space
and put X = H ® K. Suppose that an operator, A (resp.B), is a nonnegative self-adjoint
operator in H (resp.K) and KerB = {kG|k € C,||G||, = 1}. Set the projection operator
onto KerB by Pp. We suppose that a family of self-adjoint operators, {Cy }aso, in X admits

the following conditions:
(1) For any € > 0, there exists Ag so that, for all A > Ay, D(Cy) D D(A® I + AI ® B) with
|CA®||y < €|[(A® I+ Al ® B)®||+b(e) ||®||, P € D(A®I)ND(I ® B),
where b(e) > 0 is a constant independent of A > Ao.

(2) There exists a symmetric operator C' in X so that D(C) D D(A) ® KerB and, for
z €C\R,

s— lim CA(A®T+AT®B—2) ' =C{(A-2)"'®Ps}.
A—o0



We define an operator Eg(C') with the domain D(Eg(C)) = D(A) by
(f,Ec(C)g)y =(f®G,Clg®G))y, feH,gecDA).
We call Eg(C) “the partial expectation of C' with respect to G”. Set
Kepp = A+ Eg(C).
The following proposition is fundamental in this paper.

Proposition 2.1 ([1,Theorem 2.1]) Let operators A,B,Cy, and C be as above. Then

(1) For A > Ay, Ky = AR T+ AI® B+ Cy is self-adjoint on D(A® I) N D(I ® B) and
uniformly bounded from below. Moreover Eg(C) is infinitesimally small with respect

to A, i.e., Kess is self-adjoint on D(A).
(2) Forz€ C\R

lim (KA—Z)il == (Keff—Z)il®PB. (2 1)

s JE—
A—oo
Finally we note a fundamental fact.

Proposition 2.2 Let Ky and Kesf satisfy (2.1). Then

s — Ah_{n e—thA — e—thoo ® PB-
o0

Proof: See [1,Theorem 2.2] O

By Proposition 2.2, it is enough to show strong resolvent limits of $-coupling Hamiltonian

to investigate (1.2).

3 THE NELSON MODEL

3.1 The Nelson model

In this section, we consider the Nelson Hamiltonian with an ultraviolet cut-off function o
and with a finite number of nonrelativistic particles. Fix the number of the nonrelativistic

particles N. For the mathematical generality, suppose that the dimension of the space in



which the nonrelativistic particles move is d > 1. (This assumption remains throughout this

paper.) We use the following identification
Fn = LPR™) @ Frapay =2 L*(R™Y; Frapa)).

For notational simplicity, we write the annihilation or creation operators by a*(f) instead of

anL2 (way(f) in sections 3 and 5. We define a time-zero scalar field ¢(f) by

o(f) = ji{f (fa>+(ja)}

Here w = w(k) = vk?> + p2, p > 0. In this section we require that p is a real valued even
function, o(k) = o(—k), with

Lg 2 e r2md). (3. 1)

For each z = (z%,...,2") e RN 27 e RY,j =1,..., N, we set

We define

For the multiplication operator w in L?*(R?) with the maximal domain, we set dI’ r2md) (W) =

Hy,. Define an operator in Fy by
1
Hy(0,0) = 5 -Ax® 1~ AgH(0) + AT @ Hy, 1< < oo,

where g € R is a coupling constant, m > 0 a mass of the nonrelativistic particles, Ay
the Laplacian in L?(R?V) and A > 0 a scaling parameter. Moreover we put a decoupled

Hamiltonian Hg n(A) by
1
HY (M) = —5 A @I+ AT ® Hy.

We define a class of the set of multiplication operators in L#(R*). A multiplication operator

V is in a class, M4 (N), if and only if V is infinitesimally small with respect to —Ay.



Proposition 3.1 ([2]) For A > 0 and V € My(N), Hy(3,A) + V ® I is self-adjoint on
D(Hg(A)) and bounded from below. Moreover it is essentially self-adjoint on any core for

HRY(A).
In the case of 3 = 2, following proposition is well known.

Proposition 3.2 ([2,3],8 =2) Let V€ ML(N). Then

t(HY (8,A)+VRI)

. _ Y 2 ~
s— lim e e o am ANtVHV2) @ Py
A—o0

Here Py is the projection operator onto the subspace in F, spanned by the vector Qpa (ga).

3.2 The caseof =1

Put Cg°(R™Y )®.7-"z‘2’ (3d) = FR°, where ® denotes the algebraic tensor product. We perform a,

unitary transformation

o =es (o (22) -« (Z2)})

with the following result:

Proposition 3.3 The unitary operator U(A"Pg) maps F5 into D(HY(6,A))) with

UN ) (HR (6, A) +V @ DUAPg)

1 X , 2
=52 (P @I -gAg) + PNV R I+ Mo+ Vel (3.2)

j=1

on Fie, where p = (~izly, . ~iz%), 65 = (@ (&), @ (8U())), = 1, N, and

d

1 o(k)e 'k

o = ¢ (z, k)= Eu=1,..d
o() oy (z, k) i wo®) =1, ...d,
112
A . 1 N ée—ikﬂ

L2(r4)

Moreover, for sufficiently large A > 0, the right hand side (R.H.S.) of (3.2) is self-adjoint
on D(H%(A)) and the equation (3.2) can be extended to the equation on D(H4(A)).



Proposition 3.3 implies that the following equation holds, for V'€ ML (N) and sufficiently

large A > 0;
UM )™ (HR(0,A) — NPV (9) @ T+ V @ T)UA )
:2;]%(pj®I—gA1_5¢j>2+V®I+Af@I®Hb. (3. 3)
In this subsection we set § = 1. Then we define a symmetric operator Q(¢), which is

independent of A, by
R.H.S. 0f(3.3) = Hy(A) + Q(5).

Lemma 3.4 Let V € ML(N). Then, for any € > 0, there exists Ao and b(e) > 0 so that,
for all A > Ao, D(Q()) D D(HE(A)) with

1Q(2)2115, < e||[HN(A)2]|, +b(e) |2l ,® € D(HE). (3. 4)

Moreover D(Q(9)) D D(—Ay)®KerH, with, for z € C\ [0, 00),

s— lim Q(a) (M5 (1) =) " = Q@) l(—%AN _ z>1 ® PN] . (3. 5)

Proof: The proof of (3.4) follows from fundamental estimates with respect to a* and H,.

By (3.4), for any € > 0, taking sufficiently large A > 0, we see that

‘Q(@) {(H,@(A) —2) - (—LAN - z)l ® PN} P

2m Fa
< e||H%(A) (Hﬁ (A) — z)*l — <—LAN — z)l ® Py ®
= N N om .
3 -1 1 -1
+b(e) |3 (HR(A) —2) = <——AN - z) ® Py ¢ ®
2m Fa
Taking A — oo on the both sides above, we have
) R 3 -1 1 -1
A Q(0) (HN(A) - Z) - <_%AN - Z> ® Py ® .

<el[I@I—-1® Py)®||, -

Since € > 0 is arbitrary, (3.5) follows. O



Theorem 3.5 (3=1) Let V€ ML(N) and z € C\R. Put wy = wy(k) = |k| and

1

wyw

L2(rd) ‘

Then
s— lim (HY(8,A) — APV @ T+ VI —2)
A—o0
1 -1
~ Ulg) { (=5 An+NS@+V -2) ® PN} Ulg) ™. (3. 6)
Proof: From (3.3) it follows that

(HS(5,8) - AP V() @I +V @I —2)
= UNPg) (FR(N) +Q(2) = 2) UM g

By the fact that U(A'~?g) is independent of A, it is enough to show that
s— lim (HR(A)+Q(p) —2) = <—iA +PNS(D) +V — z>_1 ® P
A—oo N p 2m N g o N

Since the partial expectation of Q(0) with respect to Q2 is

EQLQ(Rd) (Q(é)) — 92 Z Z ;
+

it follows (3.6) from Lemma 3.4 and Proposition 2.1 with the following correspondence :

1
2m

A= Ay, B=H, Cr=C=Q(d), G =z

3.3 Thecaseof 1<(3<2,2<(

First we study the case of 1 < § < 2. We put the R.H.S. of (3.3) by

R.H.S.of (3.3) = Hy(A) + Q' (5, A). (3. 7)



Similar to (3.4) and (3.5), one can see that, for V€ M, (N) and any € > 0, there exists Ay
and b(e) > 0 so that, for all A > Ao, D(Q'(4,A)) D D(H%(A)) with

Q' (2, M)F]|, < c|HY (M|, +b(e)[|D]]5, @ € DHY(A)). (3. 8)

Moreover D(Q(9,A)) D D(—Ax)®KerHy and, for z € C\ R,

) R —1 1 -1
s — All_lllo Q" (6, M) (H]%(A) - z) = lV <—%AN - z> ] ® Py. (3. 9)
Note that, for 5 > 1,
s—hmu< J ):1 (3. 10)
A—o0 Aﬁfl ) )

Hence we prove the following theorem

Theorem 3.6 (1< <2) LetV € M. (N), z€ C\R. Then

-1
i 85 A) — A2 BV (5 St (L _
s A11_r>1010(1T1T]\,(Q,A) GNPV () @I+ VI z) = < 2mAN+V z> ® Py.
Proof: Since the partial expectation of V' ® I with respect to (22 gay is EQL2(Rd) (VelI)=V,

from (3.8), (3.9), (3.10) and Proposition 2.1, theorem follows with the following correspon-

dence:

1
A=

T 2m

Ay, B=H, Cy=Q'3,A), C=V&I G=Qpg)
O

Secondly we study the case of 2 < 3. In this case, note that we do not need to subtract

the renormalization A>~?V(9) ® I. Put the R.H.S. of (3.2) by
R.H.S.of (3.2) = HY(A) + Q*(5, A).

By the same argument as that of the case of 1 < 3 < 2 with Q(A, 9) replaced by Q?(A, ),

one can easily prove the following theorem.

Theorem 3.7 (2 < 3) Let V€ My (N) and z € C\R. Then

m (HO (6 M) 4V el—z) = (—tAy+vV—2) P
e o1 = (s —) e
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4 THE PAULI-FIERZ MODEL

4.1 The Pauli-Fierz model

In this section, we study the Pauli-Fierz model in quantum electrodynamics with the dipole

approximation. Let

W=L*R)®.. o L*RY.

d—1

For 0®... f ..®0)eW, wesetdy,(0®.... f ..®0)=al"(f). We write

< <~
the r—th the r—th
i) (0) = [ ) Mok, r=1,...d—1

Let e" : R = R?,r = 1,...,d — 1, be measurable functions so that

We denote the p-th component of e” by ej,n = 1,...,d. The quantized smeared radiation
field Au(f,a;) with f in the Coulomb gauge, and the conjugate momentum Hu(f, z), p=
1,...,d,z € R¢, are defined by

Here g(k) = g(—k). We define the free Hamiltonian in Fyy by
-1

We require that ¢ satisfies (3.1) and p is real-valued rotation invariant function throughout
this section. Then the Pauli-Fierz Hamiltonian with the ultraviolet cut-off function ¢ and

with N-nonrelativistic particles is defined as an operator acting in

Ly = LAR™N) @ Fy =2 L*(RY; Fy),
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1 N
2o (01— eA0))" 18 Ha, (1)

where e € R is a coupling constant and A(g,-) = (AL(9,), ..., Aq(0,-)). Introducing the
polarization vector e”, which corresponds to taking the Coulomb gauge, we see that, on a

suitable dense domain,

Then formally we may rewrite (4.1) by

2

N
——AN®I—EZZ p), ® I)A,(o, )+—A2( )+ 1® Hgy.

s o 2m
Here, for simplicity, we introduce the following assumptions to the Pauli-Fierz Hamiltonian:
(1) The self-interaction term A%(g, ) is neglected.
(2) We introduce the dipole approximation,i.e.,A(9,x) is replaced by A(9,0).
Then, putting A(9,0) = I ® A(6), our Hamiltonian is as follows:
H? . (6,A) = —2—AN ® I — AeHPM(p) + A°T @ Hiyy,

where
1N d
HEM () = 33 bl @ 4, (0)

j=lp=1

Put
8 1 8
Hpy(A) = —2mAN®I+A I ® Hgu.

Theorem 4.1 ([1]) Let V € My (N). Then the operator H, (6, A) +V ® I is self-adjoint

on D(HS,,(A)) and bounded from below. Moreover it is essentially self-adjoint on any core

for HgM(A).
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We define a unitary operator by

S(e) = exp (—ie (ié %pg; ® 11, (%))) :

where we put I1,(0, f) = I @ IL,(f).

Lemma 4.2 ([1]) Let V € My(N). Then the unitary operator S(e) maps D(Hp (6, )
onto itself with

S(A*Pe) Y (HY, (0,A) +V @ I)S(APe)
1

2

(4. 2)

where
2

~

w

. Va(0,A) = S(A*Pe) H(V @ I)S(A* Pe).

L2(Rr4)

L_doiy
oM d m

To obtain the scaling limit of the case of 3 = 1, we need to fix a dN x dN-matrix T so that

11 ... 1 N 0 .. 0
11 ... 1 L 0 0 ... 0
T T = )
1 : 0
11 1 0 0 0

Then, for a multiplication operator V in L*(R*Y), we put

_ (Tz)p-y|?

Veéff(x) = (27TCN(@))_% /Rd dyV (T_l(y, (Tx)s, ..., (Tg;)N)> e oN@

where

Cn(8) = % (%)%N dk |5((Z))|32

and (Tz); € R, j = 1,..., N, denotes the j-th element of Tz € R*. In the case of 3 = 1,

the following proposition is well known.
Proposition 4.3 ([1,6,7],0 = 1) Let V € ML(N) with

V|2 ,(2) < 00,aex e RN, VIS, € L, (™).
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Then —ﬁAN + Veéff is self-adjoint on D(—Ay) with, for z € C\ R,

, . 5 € -
S—All_lllo (HgM(Q,A)+V®I+A2 ﬂmAN@JI—z)

= S(e) {(—LAN + Veéff — Z>_1 ® PEM} S(e)_la

2m

where Pgyy is the projection operator onto the subspace {kShy|k € C} C Fy.

4.2 The case of =2

Put
HY, (A) = — i+i Av®I+ANT®H
EMVET \om T oM ) TN B
Lemma 4.4 Let V € ML(N). Then, for any € > 0, there exists Ay and b(e) > 0 so that,

for all A > Ao, D (Vs (3,A)) > D(HZ,,(A)) with

Vs (2) @], <€

HEw (N0

L M2l @ € D(HEy (W) (4. 3)

1 e? -
V(- (—+ 5 )ay-
( <2m - 2M> N Z)
Proof: Since V is infinitesimally small with respect to —Ay and —Ay commutes S(e), one

—_— —1 _
can derive (4.3). Put <H§M(A) - z> =Ky, (= (55 + 57) Ay — 2) ' © Py = Koo and
S(A'=Pe) = S). Note that, for 3 > 1,

Moreover, for z € C \ [0, c0),

s— lim Vy(5,A) (HEM(A) _ z> o © Pon. (4. 4)

A—o0

s— lim S (AYPe) =1,

A—o0

By (4.3), for any € > 0, taking sufficiently large A > 0, we have
IVa(0, M) Ka® — (V ® ) Koo @]
<e||-AN(Ka — Kuo)®|l,, +€l|-An(Sa K — Koo) @[,
+b(e) [|(Kn — Koo)@| . +b(€) [[(Sa Koo — Koo)®|l, + ||(S3" = D(V @ DE®||

N

Taking A — oo on the both sides above, we have

[[Va(0, A)KA® — (VR ) K@, < €l|[(I®I—1® Pru)®|l,, -

lim
A—o00

Since € > 0 is arbitrary, (4.4) follows. O
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Theorem 4.5 (8 =2) Let V€ My(N). Then, for z € C\R,

-1
. ] A -l _ L 6_2 —
s—j\lgglo(HEM(g,A)—i—V@]—z} —{ <2m+2M>AN+V z} ® Py

(4. 5)

Proof: By virtue of (4.2), we see that, for z € C \ R,

1

(Hiw(o ) +v e 1-2) " =5 (8 %) (Hiw )+ Va(o4) - 2) 5 (%) ",

and the partial expectation of V' ® I with respect to Qy is Eq,, (V ® I) = V. Hence, it

follows (4.5) from Lemma 4.4 and Proposition 2.1 with the following correspondence:

1 e? .

4.3 Thecaseof 1< (3<2,2<(

For the case of 1 < 8 < 2, by (4.2), we should subtract the term —A2*ﬁ%AN ® I from the
original Hamiltonian H EM(@, A), and for the case of § > 2, we do not need any renormal-

ization. Hence,the similar argument of the cases of = 2 and = 1 gives an asymptotic

behaviors of Ho,,(4,A). See Fig. 6.2.

5 THE SPIN-BOSON MODEL

5.1 The spin-boson model

In this section we study the spin-boson model. The total Hamiltonian of the spin-boson

model is defined as an operator acting in the Hilbert space

Lsp = (C2 &® fL2(Rd) = fL2(Rd) 7] fLZ(Rd),

Hig(\A) = vor+Aos @ (af(3) +a(N)) + AT ® Hsp.
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Here Hgp = dI' 2(za)(w), v > 0, A € L*(R?) and

01 1 0
o) = , O3= .
Lo T lo -1
In what follows, we assume that

A\ ——=, = € L*(RY).

7w

Theorem 5.1 ([1]) The operator Hsp(\, A) is self-adjoint on D(I ® Hsp) and bounded

from below. Moreover essentially self-adjoint on any core for I @ Hsp.

We define a unitary operator by

HAB-C} (T o
T(A):( 0 e—{af(%)—a(e>}>=( 0 T()\)>'

In the case of 3 = 1, following proposition is well known.

Proposition 5.2 ([1],8 =1) Let F(\) = <QL2(Rd),T+(>\)QL2(Rd)> and z € C\R. Then

L2 (rd)

s lim (HEy(0A) = A*PEgp —2) " = TO) {(?F(Nor — 2) ™ ® Psp} T(V) 1

2
Here Psp is the projection operator onto {kQ|k € C} C F2(zay and Esp = — H%‘ L2 (xd)’

5.2 the case of 3 =2
It is well known and easily checked that T(A'#)\) maps D(I ® Hsp) onto itself with
T (AN HiG(A)T(AYF))

0 T?(A'7P))
= - +API® Hgp + N> PEsp. 5.1
. ( ey N N

Theorem 5.3 (3 =2) Let z € C\R. Then

71 _
s~ jm (HEz(\A) —2) = (vor + Esp —2) ' ® Psp. (5. 2)
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Proof: We see that, by (5.1),

T 1 (A PX) (HEg(A A) — 2) M (AT F))

2 1-38 -1
:{V(T_%_(/\()lgA> T(AO A>)+AﬂI®HSB+A2_BESB_Z} :

It is easily seen that s — limp_,o, T (Alfﬁ)\) =1 and

0 T2 (A“ﬁ)\)
T2 (AF)) 0
= {1/0'1 (ESB — Z)il} (024 PSB-

s — lim v
A—o00

) (A*PEgp + AT ® Hep — z)*l

Hence, with the following correspondence:

0 T2 (AlfﬂA)

A= Esp,B = Hgp,C(A) =
v 55, C(4) V(Ti (A1-52) 0

) ,C = V0'1,G = QLQ(Rd)a

one can easily check the conditions with respect to C'(A) and C' in section 2. Since the partial
expectation of voy ® I with respect to Q L2(R?) is EQL2(Rd)(]/O'1 ® I) = voy, we get (5.2) by
Proposition 2.1. O

5.3 Thecaseof 1 <(3<2,2<(

For the case of 1 < 8 < 2, by (5.1), we should subtract the term A*>#Egp from the original
Hamiltonian H §B(>\,A), and for the case of # > 2, we do not need any renormalization.

Hence,the similar argument of the cases of § = 2 and § = 1 gives an asymptotic behaviors

of H25(\, A). See Fig 6.3.

6 CONCLUDING REMARKS

(1) In section 4, we studied the Pauli-Fierz model neglected the terms A%(g,-). In [6,7], we
studied the Pauli-Fierz Hamiltonian with the terms A%(p, ). By the same method developed

in [6,7], we can investigate the following scaling Hamiltonians:

1 eZN
—— AN®T — AeHEM(3)+ AT® H —— A5, )+ VI 6. 1
o N® eH " (0) + AI ® EM+2m (0,) +FV @I, (6. 1)
1 EM ~ 2 2€2N 2/ A
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Introducing different renormalizations from those given in this paper, we can get effective

Hamiltonians of (6.1) and (6.2).

(2) In the case of 0 < § < 1, we need delicate discussions of asymptotic behaviors of unitary

operators U(APg), S(A*Pe) and T(AP)) as A — co. We omit the discussions.

Effective Hamiltonian | Unitary operator | Renormalization
B> 2 —5=AN+V I 0
B=2 —5= AN +g*V(0)+V I 0
1<p<2 —=AN+V I g? N> PV (p)
B=1 | -—3=An+g’Ns()+V U(g) g*AV (9)
Fig 6.1 B-coupling Nelson model HI’(\J,(@, A)
Effective Hamiltonian | Unitary operator | Renormalization
B>2 —5= AN +V I 0
B=2 —<ﬁ+%)AN+V I 0
1<f<2 —E AN+ I AP Ay
G=1 — AN+ VE Se) —Asi A

Fig.6.2 3-coupling Pauli-Fierz model HgM(@, A)
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Effective Hamiltonian | Unitary operator | Renormalization
B> 2 Vo, I 0
B =2 vo, + Fsp I 0
1<pB<2 Vo I A*PE¢p
s=1 vE (Ao T(N\) AFEsp

Fig.6.3 B-coupling spin-boson model HgB(/\, A)
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