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DECAY OF CORRELATIONS IN NEAREST-NEIGHBOR
SELF-AVOIDING WALK, PERCOLATION, LATTICE

TREES AND ANIMALS

BY TAKASHI HARA1

Kyushu University

We consider nearest-neighbor self-avoiding walk, bond percolation, lat-
tice trees, and bond lattice animals on Z

d . The two-point functions of these
models are respectively the generating function for self-avoiding walks from
the origin to x ∈ Z

d , the probability of a connection from the origin to x,
and the generating functions for lattice trees or lattice animals containing the
origin and x. Using the lace expansion, we prove that the two-point function
at the critical point is asymptotic to const.|x|2−d as |x| →∞, for d ≥ 5 for
self-avoiding walk, for d ≥ 19 for percolation, and for sufficiently large d for
lattice trees and animals. These results are complementary to those of [Ann.
Probab. 31 (2003) 349–408], where spread-out models were considered. In
the course of the proof, we also provide a sufficient (and rather sharp if d > 4)
condition under which the two-point function of a random walk on Z

d is as-
ymptotic to const.|x|2−d as |x| →∞.

1. Introduction.

1.1. The models and results. In this paper, we consider nearest-neighbor self-
avoiding walk, bond percolation, lattice trees, and bond lattice animals on d-
dimensional hypercubic lattice Z

d , and prove that their critical two-point functions
exhibit the Gaussian behavior, that is,

Gpc(x)∼ const.

|x|d−2 as |x| →∞,(1.1)

when d is large.
We first define the models we consider. A bond is a pair of sites {x, y} ⊂ Z

d with
|y−x| = 1. For n≥ 0, an n-step walk from x to y is a mapping ω : {0,1, . . . , n}→
Z

d such that |ω(i+1)−ω(i)| = 1 for i = 0, . . . , n−1, with ω(0)= x and ω(n)=
y. Let W(x, y) denote the set of walks from x to y, taking any number of steps.
An n-step self-avoiding walk (SAW) is an n-step walk ω such that ω(i) �= ω(j)

for each pair i �= j . Let S(x, y) denote the set of self-avoiding walks from x to y,
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taking any number of steps. A lattice tree (LT) is a finite connected set of bonds
which has no cycles. A lattice animal (LA) is a finite connected set of bonds which
may contain cycles. Although a tree T is defined as a set of bonds, we write x ∈ T

if x is an endpoint of some bond of T , and similarly for lattice animals. Let T (x, y)

denote the set of lattice trees containing x and y, and let A(x, y) denote the set of
lattice animals containing x and y. We often abbreviate lattice trees and animals
as LTLA.

The random walk and self-avoiding walk two-point functions are defined re-
spectively by

Sp(x)= ∑
ω∈W(0,x)

p|ω|, Gp(x)= ∑
ω∈S(0,x)

p|ω|,(1.2)

where |ω| denotes the number of steps of the walk ω. For any d > 0,
∑

x Sp(x)

converges for p < (2d)−1 and diverges for p > (2d)−1, and p = (2d)−1 plays the
role of a critical point. It is well known [28] that, for d > 2,

S1/2d(x)∼ const.
1

|x|d−2 as |x| →∞.(1.3)

A standard subadditivity argument [5, 13, 19] implies that
∑

x Gp(x) converges
for p < pc and diverges for p > pc, for some finite positive critical value pc.

The lattice tree and lattice animal two-point functions are defined by

Gp(x)= ∑
T ∈T (0,x)

p|T | (lattice trees),

(1.4)
Gp(x)= ∑

A∈A(0,x)

p|A| (lattice animals),

where |T | and |A| denote the number of bonds in T and A, respectively. A standard
subadditivity argument implies that there are positive finite pc (depending on the
model) such that

∑
x Gp(x) converges for p < pc and diverges for p > pc [14,

15].
Turning now to bond percolation, we associate independent Bernoulli random

variables n{x,y} to each bond {x, y} (here |x − y| = 1), with

P
(
n{x,y} = 1

)= p, P
(
n{x,y} = 0

)= 1− p,(1.5)

where p ∈ [0,1]. A configuration is a realization of the bond variables. Given a
configuration, a bond {x, y} is called occupied if n{x,y} = 1 and otherwise is called
vacant. The percolation two-point function is defined by

Gp(x)= Pp(0 and x are connected by occupied bonds),(1.6)

where Pp is the probability measure on configurations induced by the bond vari-
ables. There is a critical value pc ∈ (0,1) such that

∑
x Gp(x) <∞ for p ∈ [0,pc)

and
∑

x Gp(x) =∞ for p ≥ pc [4]. This critical point can also be characterized
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by the fact that the probability of existence of an infinite cluster of occupied bonds
is 1 for p > pc and 0 for p < pc [2, 20].

We use Gp and pc to denote the two-point function and the critical point of
these models, although they are, of course, model-dependent. In what follows, it
will be clear from the context which model is intended.

Our main result is the following theorem.

THEOREM 1.1. For nearest-neighbor self-avoiding walk in d ≥ 5 and for per-
colation and lattice trees and animals in sufficiently high dimensions, their critical
two-point function Gpc(x) satisfies, as |x| →∞,

Gpc(x)= adA

|x|d−2 +O

(
1

|x|d−2+2/d

)
with ad = d�(d/2− 1)

2πd/2 .(1.7)

Here A is a model-dependent constant whose explicit form is given in (1.44) below,
in terms of quantities appearing in the lace expansion.

REMARK 1.2. (i) The error term of (1.7) is not optimal; the error bound in the
Gaussian lemma (Theorem 1.4) is responsible for the current estimate. However,
the author has recently succeeded in improving the error bound of Theorem 1.4.
As a result, (1.7) has now been improved to

Gpc(x)= adA

|x|d−2 +O

(
1

|x|d
)
.(1.8)

The proof of this improvement will be presented elsewhere [6].
(ii) For percolation, d ≥ 19 is sufficient for the above theorem to hold. The

restriction d ≥ 19 comes from the fact that convergence of the lace expansion
has been proved only in these dimensions. This is far from the expected limit of d

(d > 6 should be sufficient). See, for example, [7] for the role played by the critical
dimension.

(iii) The method of the present paper can also be applied to spread-out models,
and reproduces the asymptotic form proved in [7], for self-avoiding walk in d ≥ 5,
for percolation in d ≥ 11, and for lattice trees/animals in d ≥ 27. See the expla-
nations around (1.62) and (1.63) about how these restrictions on the dimension
arises.

(iv) The method of the present paper can be applied to other models, as long
as we have a suitable lace expansion. An important example is the Ising model in
sufficiently high dimensions [23].

(v) The theorem provides a necessary input for a result of Aizenman [1], who
proved, under certain assumptions on the decay of critical two-point function, that
the largest percolation cluster present in a box of side length N are of size approx-
imately N4 and are approximately Nd−6 in number. Our theorem does prove the
assumptions of Aizenman, and thus establishes his result mentioned above for the
nearest-neighbor percolation in d ≥ 19. (Similar input for spread-out models has
been provided by [7].)
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Results similar to the above have been proven in [7], where spread-out models
of self-avoiding walk, bond percolation, and lattice trees/animals were treated in a
unified manner. (Spread-out models are defined by considering all the pairs {x, y}
with 0 < |x − y| ≤ L as bonds, for some large L. This L represents the range of
the interaction, not the system size.) However, the method of [7] is not directly
applicable to nearest-neighbor models, for the following reason. Critical two-point
functions of spread-out models obey as |x| →∞ [7], Theorem 1.2:

Gpc(x)∼ adA

σ 2|x|d−2 ,(1.9)

where A is a model-dependent constant close to 1, and σ 2 is a constant which is of
the order of L2. For the spread-out model, by taking L sufficiently large (for fixed
d), we can always make the coefficient adA/σ 2 as small as we want. Therefore,
the lace expansion diagrams converge if we assume G(x) is bounded by, say, twice
of the right hand of (1.9). This makes it possible to prove convergence of the lace
expansion in a self-consistent way based on the asymptotic form; the result of [7]
was in fact proved in this manner.

In contrast, for the nearest-neighbor model, there is no σ 2 to cancel ad , which
is quite large for large d [ad ≈ (d/2)!]. This means the asymptotic form of (1.7) is
much bigger than the true behavior of G(x) for small x, and it would be difficult
to prove the convergence of the lace expansion using this asymptotic form. In this
paper, we bypass this difficulty by borrowing convergence results from previous
works, and take a different approach from that of [7].

NOTATION. For a, b ∈R, we write a∨ b=max{a, b}, and a∧ b=min{a, b}.
The greatest integer n which satisfies n≤ x is denoted by 
x�. The smallest integer
n which satisfies n≥ x is denoted by �x�.

The Euclidean norm of x ∈R
d is denoted by |x|, and we write |||x||| := |x| ∨ 1.

The indicator of an event A is denoted by I [A].
A convolution on Z

d is denoted by ∗ : (f ∗ g)(x) :=∑
y∈Zd f (x − y)g(y).

Given a function f (x) on Z
d , we define its Fourier transform as

f̂ (k) := ∑
x∈Zd

f (x)e−ik·x so that

(1.10)

f (x)=
∫
[−π,π ]d

ddk

(2π)d
eik·xf̂ (k),

when both equations make sense. When the sum defining f̂ (k) is not well defined
[i.e., when f (x)=Gpc(x)], we interpret f̂ (k) by the second identity above more
details are given in Appendix A.
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A function f (x) on Z
d is called Z

d -symmetric, if it is invariant under the Z
d -

symmetries of reflection in coordinate hyperplanes and rotation by 90◦.
We denote a positive constant by c. On each appearance c may change its value,

even in a single equation. We write f (x)≈ g(x) when there are finite and positive
constants c1, c2 such that c1g(x)≤ f (x) ≤ c2g(x) for all x. We also use large-O
and small-o notation: f (x)=O(g(x)) means f (x)/g(x) remains bounded, while
f (x)= o(g(x)) means f (x)/g(x)→ 0, as x →∞ (or x → 0, depending on the
context). Constants c and large-O/small-o’s could depend on other parameters.
We explain these dependencies on each occurrence if necessary.

We make use of the following quantities (a, b ∈ Z
d and α,β, γ ≥ 0, and the

summations run over Z
d ):

G(α)(a) := |a|αG(a),(1.11)

B(a) := ∑
y �=0

G(y)G(a − y),(1.12)

W(β,γ )(a) :=∑
y

G(β)(y)G(γ )(a − y)= (
G(β) ∗G(γ ))(a),(1.13)

T (β,γ )(a) :=∑
x,y

G(β)(x)G(γ )(y − x)G(a − y){1− I [x = y = a = 0]}
(1.14)

= (
G(β) ∗G(γ ) ∗G

)
(a)− I [a = 0 and β = γ = 0]G(0)3,

S(γ )(a) := (
G(γ ) ∗G ∗G ∗G

)
(a)− I [a = 0 and γ = 0]G(0)4,(1.15)

P(a) := (G ∗G ∗G ∗G ∗G)(a),(1.16)

H(β)(a, b) := ∑
x,y,z,u,v

G(z)G(u)G(x − u)G(β)(x)G(y − x)G(v− u)

(1.17)
×G(z+ a − v)G(y + b− v).

Diagrammatic representations for these quantities are given in Figure 1(a) of Sec-
tion 3.1. We denote suprema (over a, b ∈ Z

d ) of these quantities by bars, that
is, Ḡ(α) := supa |a|αG(a), B̄ := supa B(a), W̄ (β,γ ) := supa W(β,γ )(a), and so on.
These of course depend on p, but we usually omit the subscript p, because we
almost always consider these quantities at criticality, p = pc.

1.2. Framework of the proof. In this section, we explain the framework of the
proof of our main result, Theorem 1.1, and reduce its proof to several proposi-
tions. We give a complete proof of Theorem 1.1 for self-avoiding walk in d ≥ 5,
but only give a proof for large d (say d ≥ 30) for percolation. Results for perco-
lation in d ≥ 19 can be obtained by more detailed diagrammatic estimates which
slightly improve conditions in Lemmas 1.7 and 1.8. The extra work required for
percolation near d = 19 is essentially the same as the analysis used to prove the
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convergence of the lace expansion in d = 19 (announced in [12]), and is not repro-
duced here.

1.2.1. The lace expansion. For self-avoiding walk in d ≥ 5, for percolation in
d ≥ 19, and for lattice trees/animals in d � 1, we have a convergent expansion,
called the lace expansion, which provides a useful expression for two-point func-
tions. The literature on lace expansion has increased rapidly, and we here list only
a few which will be directly relevant for the present paper [3, 8–11, 25]. Good
reviews will be found in [12, 19, 26].

PROPOSITION 1.3. For self-avoiding walk in d ≥ 5, for percolation in d ≥ 19,
and for lattice trees/animals in sufficiently high dimensions, the two-point function
for p ≤ pc is represented as

Gp(x)=
∫
[−π,π ]d

ddk

(2π)d
eikxĜp(k), Ĝp(k) := ĝp(k)

1− Ĵp(k)
.(1.18)

Here

D(x) := 1

2d
δ|x|,1, D̂(k)=∑

x

e−ik·xD(x)= 1

d

d∑
j=1

cos kj ,(1.19)

Ĵp(k) :=
⎧⎪⎨
⎪⎩

2dpD̂(k)+ 
̂p(k), (SAW),
2dpD̂(k){1+ 
̂p(k)}, (percolation),
2dpD̂(k){Gp(0)+ 
̂p(k)}, (LTLA),

(1.20)

ĝp(k) :=
⎧⎨
⎩

1, (SAW),
1+ 
̂p(k), (percolation),
Gp(0)+ 
̂p(k), (LTLA),

(1.21)


̂p(k) :=∑
x


p(x)e−ik·x, 
p(x)=
∞∑

n=0

(−1)n
(n)
p (x),(1.22)

and 

(n)
p (x) is a nonnegative function of x. Moreover, there are positive constants

c, c1 through c4 which are independent of p and d , a constant λ ∈ (0,1) which is
independent of p, and a positive function h(n)(x), such that for p ≤ pc,

0≤

(n)
p (x)≤ h(n)(x),

∑
x

∞∑
n=0

h(n)(x)≤ c

d
,(1.23)

∑
x

|x|2|
p(x)| ≤ c

d
, c1

|k|2
d

≤ Ĵp(0)− Ĵp(k)≤ c2
|k|2
d

,(1.24)

0≤ Ĝp(k)≤ cd

|k|2 (infrared bound)(1.25)
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and

Ḡ(2)
p < λ, B̄p < λ, (SAW in d ≥ 5),(1.26)

W̄ (2,0)
p < λ, T̄ (0,0)

p < λ, H̄ (2)
p < c (percolation in d ≥ 19),(1.27)

T̄ (2,0)
p < λ, S̄(0)

p < λ, 1≤Gp(0)≤ 4 (LTLA in d � 1).(1.28)

λ satisfies

λ≤
{

0.493, (SAW in d ≥ 5),
c3

d
, (percolation in d ≥ 19 and LTLA in d � 1).(1.29)

The critical point p = pc is characterized by

Ĵpc(0)= 1,(1.30)

and satisfies

1 ≤ 2dpc ≤ 1+ c4λ (SAW/percolation),
(1.31)

1 ≤ 2dpcGpc(0)≤ 1+ c4λ (LTLA).

For self-avoiding walk, 

(0)
p (x)≡ 0 for all x, and the sum over n in (1.22) starts

from n= 1. For percolation, our 
̂p(k) is the same as that of [7], but differs from
that of [8] by the factor 2dpD̂(k) and is equal to ĝp(k) of that paper.

The above proposition is a slightly improved version of the results obtained
previously. We briefly explain how to prove the above proposition in Appendix A.

In the following, we concentrate on quantities at p = pc (except stated other-
wise), and omit the subscript p or pc altogether.

1.2.2. Gaussian lemma. Our main results are proved by making use of the fol-
lowing theorem and its corollary, which give sufficient conditions for the Gaussian
behavior, G(x) ∼ const.|x|2−d , for two-point functions of random walks and re-
lated models. For Z

d -symmetric (not necessarily positive) functions J (x) and
g(x), we define

C(x) :=
∫
[−π,π ]d

ddk

(2π)d

eik·x

1− Ĵ (k)
,

(1.32)

H(x) :=
∫
[−π,π ]d

ddk

(2π)d
eik·x ĝ(k)

1− Ĵ (k)
.

THEOREM 1.4. Let d ≥ 3. Suppose Z
d -symmetric J (x) satisfies with finite
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positive K0 through K3

Ĵ (0) :=∑
x

J (x)= 1, Ĵ (0)− Ĵ (k)≥K0
|k|2
2d

(k ∈ [−π,π ]d),(1.33)

∑
x

|x|2J (x) :=K1,
∑
x

|x|2|J (x)| ≤K2,(1.34)

|J (x)| ≤ K3

|||x|||d+2 .(1.35)

Then C(x) of (1.32) is well defined and satisfies as |x| →∞:

C(x)∼ ad

K1

1

|x|d−2 .(1.36)

Suppose further that J (x) satisfies

∑
x

|x|2+ρ |J (x)|< K ′
2, |J (x)| ≤ K ′

3

|||x|||d+2+ρ
(1.37)

with finite positive ρ,K ′
2,K

′
3. Then C(x) satisfies

C(x)= ad

K1

1

|||x|||d−2 +O

(
1

|||x|||d−2+(ρ∧2)/d

)
.(1.38)

Section 2 gives a complete proof of the theorem.

REMARK 1.5. (i) The above C(x) is the two-point function of the Gaussian
spin system whose spins at x and y interact with J (x − y). When J (x)≥ 0, C(x)

can also be interpreted as the Green’s function of the random walk whose transition
probability from x to y is given by J (x − y). We are allowing J (x) < 0, because

(x) is not necessarily positive in our lace expansion (1.18).

(ii) The pointwise bound (1.35) is sharp in d > 4, in the sense that there are
models which mildly violate this condition and which do not exhibit the Gaussian
behavior of (1.36). Details will be given in Section 2.5. For d = 4 and 5, the fact
that (1.35) is sufficient for nonnegative J ’s has been pointed out by Uchiyama
[28]. The author has recently learned that Lawler [18] has also shown that (1.35)
is sufficient for d > 4 for nonnegative J .

(iii) For d ≤ 4, the uniform bound (1.35) will not be sharp. Sharp conditions
when J ≥ 0 are

∑
x |x|2J (x) <∞ for d < 4 [28], and

∑
x : |x|≥r J (x)= o( 1

r2 log r
)

for d = 4 [17].
(iv) The error bound in (1.38) is not optimal. However, the author has recently

succeeded in proving a better (and hopefully optimal) error bound, according to
which (1.38) is improved to

C(x)= ad

K1

1

|||x|||d−2 +O

(
1

|||x|||d−2+(ρ∧2)

)
.(1.39)
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The proof of this improvement is somewhat lengthy, and will be presented else-
where [6]. For nonnegative J ’s, the error bound like (1.39) has been obtained by
Lawler [18].

COROLLARY 1.6. Let d ≥ 3. Let J (x) and g(x) be Z
d -symmetric functions.

Suppose J (x) satisfies (1.33)–(1.35), and g(x) satisfies∑
x

|g(x)|<∞, |g(x)| ≤ K4

|||x|||d(1.40)

with finite positive K4. Then, H(x) of (1.32) is well defined and satisfies as
|x| →∞

H(x)∼
∑

y g(y)∑
y |y|2J (y)

ad

|x|d−2 .(1.41)

Suppose further J (x) satisfies (1.37) and g(x) satisfies

|g(x)| ≤ K ′
4

|||x|||d+ρ
(1.42)

with finite positive ρ,K ′
4. Then H(x) satisfies as |x| →∞

H(x)=
∑

y g(y)∑
y |y|2J (y)

ad

|x|d−2 +O

(
1

|x|d−2+(ρ∧2)/d

)
.(1.43)

Corollary 1.6 follows immediately from Theorem 1.4 and a basic property of
convolutions, Lemma B.1(iv). This is because H(x)= (C ∗g)(x), where ∗ denotes
convolution.

We intend to apply the above corollary to the representation of two-point func-
tions by the lace expansion, (1.18). If the corollary can in fact be applied (with
ρ = 2), then it proves Theorem 1.1 with

A :=
∑

y g(y)∑
y |y|2J (y)

,(1.44)

with J and g given by (1.20). The question is whether we can really apply the
proposition. For this, note that (1.33) and (1.34) follow directly from Proposition
1.3 at p = pc. Therefore, it suffices to prove pointwise x-space bound (1.35) and
(1.37). [Because J (x) and g(x) are essentially the same, (1.40) and (1.42) for g(x)

are automatically satisfied if J (x) satisfies (1.35) and (1.37).]

1.2.3. Reduction of the proof to an estimate on the two-point function. The
condition (1.35) is about the decay of J (x), but its sufficient condition can be
given in terms of G(x) with the help of the following lemma, which turns an x-
space bound on G(x) into that on 
(x).
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LEMMA 1.7. Consider SAW, percolation, or LTLA for which Proposition 1.3
holds. Suppose we have a bound

G(x)≤ β

|||x|||α(1.45)

with β > 0 and 0 < α < d . Then for x �= 0,

|
(x)| ≤

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

cβ3|||x|||−3α,

(SAW with λ < 1),
cβ2|||x|||−2α,

(percolation in d > 8 with λ� 1),
c(β2 ∨ β4)|||x|||−(4α−2d),

(LTLA in d > 10 with λ� 1, α > d/2)

(1.46)

with a λ-dependent constant c.

This lemma is proved in Sections 3.3, 3.5 and 3.7. The restriction d > 8 (for per-
colation) and d > 10 (for LTLA) is unnatural, but is present for technical reasons.
Also the exponent 4α− 2d for LTLA will not be optimal; the optimal result would
give |
(x)| =O(|||x|||3α−d), as proved for spread-out models in Proposition 1.8 of
[7]. These facts will reflect some limitations of our current method, but the lemma
still suffices for our purpose.

Employing Lemma 1.7, one can immediately conclude that a sufficient condi-
tion for (1.35) is

G(x)≤ c

|||x|||α with α =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

d + 2

3
, (SAW),

d + 2

2
, (percolation),

3d + 2

4
, (LTLA)

(1.47)

with some constant c, together with d > 4 (SAW), d > 8 (percolation), and d > 10
(LTLA) [and λ < 1 for SAW, λ � 1 for percolation/LTLA]. We now show that
this is sufficient for (1.37) as well. Once we have (1.35), Theorem 1.4 establishes
(1.36). We can then use (1.36) as an input to Lemma 1.7, and get

|
(x)| ≤
⎧⎨
⎩

c|||x|||−3(d−2), (SAW),
c|||x|||−2(d−2), (percolation),
c|||x|||−(2d−8), (LTLA).

(1.48)

This in turn implies |J (x)|, |g(x)| ≤ c|||x|||−(d+2+ρ), with

ρ =
⎧⎨
⎩

2(d − 4), (SAW),
d − 6, (percolation),
d − 10, (LTLA).

(1.49)

This establishes (1.37) with ρ = 2 (for d ≥ 5 for SAW and for sufficiently high d

for percolation/LTLA).
Our task has thus been reduced to proving (1.47).
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1.2.4. Proving the estimate (1.47) on two-point functions from two lemmas.
To prove (1.47), we use two lemmas. The first one is our second diagrammatic
lemma, which turns bounds on weighted quantities of (1.11)–(1.17) into those on∑

x |x|α|
(x)| with some power α.

LEMMA 1.8. Consider SAW, percolation or LTLA for which Proposition 1.3
holds:

(i) For SAW with λ < 1, suppose Ḡ(α) and W̄ (β,γ ) are finite for some α,β, γ ≥ 0.
Then, ∑

x

|x|α+β+γ |
(x)|<∞.(1.50)

(ii) For percolation with λ sufficiently small, suppose W̄ (β,γ ), T̄ (0,γ ) and H̄ (β)

are finite for some β,γ ≥ 0. Then,∑
x

|x|β+γ |
(x)|<∞.(1.51)

(iii) For LTLA with λ sufficiently small, suppose T̄ (β,γ ), S̄(γ ) are finite for some
β,γ ≥ 0. Then, ∑

x

|x|β+γ |
(x)|<∞.(1.52)

This lemma is proved in Sections 3.2, 3.4 and 3.6.
Our second lemma is complementary to Lemma 1.8, and turns a bound on∑
x |x|∗|
(x)| into those on Ḡ(α), W̄ (β,γ ), T̄ (β,γ ) and S̄(γ ).

LEMMA 1.9. Suppose we have the expression (1.18)–(1.22) of G in terms of
the lace expansion. Suppose further∑

x

|x|φ|
(x)|<∞(1.53)

for some φ > 1. Then, we have for nonnegative α,β, γ which are not odd integers:

Ḡ(α) <∞ if α ≤ φ and α < d − 2,(1.54)

W̄ (β,γ ) <∞ if β,γ ≤ 
φ�, β + γ < d − 4
(1.55)

and β + γ − (
β� + 
γ �) < 1,

T̄ (β,γ ) <∞ if β,γ ≤ 
φ�, β + γ < d − 6
(1.56)

and β + γ − (
β� + 
γ �) < 1,

S̄(γ ) <∞ if γ ≤ 
φ� and γ < d − 8,(1.57)

H̄ (β) <∞ if β ≤ 
φ�, β < d − 4, and d > 6.(1.58)
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Odd integers are excluded to make the proof simpler. This restriction could be
removed with some extra work, but the lemma is sufficient for our purpose in its
current form.

We now explain how to prove (1.47) based on these lemmas. The basic idea is
to use these lemmas repeatedly, and prove Ḡ(α) is finite for α required in (1.47).
Consider SAW in d � 1. From (1.24) of Proposition 1.3,

∑
x |x|2|
(x)| is finite.

We start from this and use Lemmas 1.9 and 1.8 repeatedly, and see the quantities
in the following sequence are all finite (we choose β = 0):

∑
x

|x|2|
(x)| Lem 1.9−→ Ḡ(2), W̄ (0,2) Lem 1.8−→ ∑
x

|x|4|
(x)|
(1.59)

Lem 1.9−→ Ḡ(4), W̄ (0,4) Lem 1.8−→ · · · .
The exponents φ,α, γ are doubled in each iteration, and we can continue as far
as the exponents satisfy the conditions of Lemma 1.9, that is, α < d − 2 and γ <

d − 4. For large d , α eventually exceeds d+2
3 required in (1.47), and we are done.

For small d , it may not be so clear that α can exceed d+2
3 , still satisfying γ < d−4.

In the following we give a rigorous proof, focusing on this point.

PROOF OF (1.47), ASSUMING LEMMAS 1.8 AND 1.9. We begin with SAW in
d > 4. Suppose

∑
x |x|φi |
(x)| is finite for some φi ≥ 2, and define

αi+1 = 2, γi+1 = {(d − 4)∧ 
φi�} − ε,
(1.60)

φi+1 = αi+1 + γi+1 = {(d − 2)∧ (
φi� + 2)} − ε,

with 0 < ε � 1. Then Lemma 1.9 shows that Ḡ(αi+1) and W(0,γi+1) are finite. Using
this as an input to Lemma 1.8, we see that

∑
x |x|φi+1 |
(x)| is finite as well, as

long as φi+1 is given by (1.60).
We start from φ0 = 2, and repeat the above procedure. First three iterations for

φi read:

φ0 = 2, φ1 = {(d − 2)∧ 4} − ε,
(1.61)

φ2 = {(d − 2)∧ 5} − ε, φ3 = {(d − 2)∧ 6} − ε.

As the above shows, φi is increased by one in each iteration, until it finally reaches
d − 2− ε. This in particular means

∑
x |x|φ|
(x)| is finite with φ = d − 2− ε.

Using Lemma 1.9 with φ = d − 2 − ε then implies that Ḡ(α) is finite with
α = d − 2− ε, or G(x)=O(|x|−(d−2−ε)). This is sufficient for (1.47), as long as
d+2

3 < d − 2 − ε, or d > 4 + 3ε/2. Because ε > 0 is arbitrary, this proves (1.47)
for SAW in d > 4.
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The proof proceeds in a similar fashion for percolation, using W̄ (β,γ ), T̄ (0,γ ),
and H̄ (β). We start from φ0 = 2 and choose, instead of (1.60),

βi+1 = 2, γi+1 = {(d − 6)∧ 
φi�} − ε,
(1.62)

φi+1 = βi+1 + γi+1 = {(d − 4)∧ (
φi� + 2)} − ε.

For d > 6, repeating this recursion increases φi until it reaches d − 4 − ε. Using
Lemma 1.9 with φ = d − 4− ε implies Ḡ(α) is finite with α = d − 4− ε. This is
sufficient for (1.47), as long as d+2

2 < d − 4− ε, or d > 10.
Finally we deal with LTLA, this time using T̄ (β,γ ) and S̄(γ ). We start from

φ0 = 2 and choose

βi+1 = 2, γi+1 = {(d − 8)∧ 
φi�} − ε,
(1.63)

φi+1 = βi+1 + γi+1 = {(d − 6)∧ (
φi� + 2)} − ε.

For d > 8, repeating this recursion increases φi until it reaches d − 6− ε. Lemma
1.9 now implies Ḡ(α) is finite with α = d − 6− ε. This is sufficient for (1.47), as
long as 3d+2

4 < d − 6− ε, or d > 26. �

REMARK 1.10. The condition (1.47) follows immediately (for SAW in d > 4,
for percolation in d > 6, and for LTLA in d > 10), if we can prove the x-space in-
frared bound, G(x)≤ c|||x|||2−d . Although there are models (e.g., nearest-neighbor
Ising model) for which the k-space infrared bound (1.25) does imply its x-space
counterpart ([27], Appendix A), it is not clear whether the same is true for models
considered in this paper. The argument in this subsection has been employed to
circumvent this difficulty.

2. Proof of a Gaussian lemma, Theorem 1.4. In this section, we prove The-
orem 1.4. The proof is rather long, so we first present in Section 2.1 the framework
of the proof, in particular that of (1.36), assuming some lemmas which are proven
later in Section 2.2 through Section 2.4. In Section 2.5, we give an example which
shows that the pointwise bound (1.35) is sharp in d > 4. Finally in Section 2.6, we
comment on how to prove (1.38).

2.1. Overview of the Proof of Theorem 1.4, (1.36). Here we explain the frame-
work of the proof of Theorem 1.4, in particular (1.36). The proof of (1.38) is sim-
ilar, and is briefly explained in Section 2.6.

We first introduce an integral representation for C(x), which was also used
in [7]. The integrability of {1 − Ĵ (k)}−1 by (1.33), and a trivial identity 1

A
=∫∞

0 dte−tA (A > 0) immediately imply

C(x)=
∫
[−π,π ]d

ddk

(2π)d

eik·x

1− Ĵ (k)
=

∫
[−π,π ]d

ddk

(2π)d
eik·x

∫ ∞
0

dte−t{1−Ĵ (k)}

(2.1)
=

∫ ∞
0

dtIt (x),
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with

It (x) :=
∫
[−π,π ]d

ddk

(2π)d
eik·xe−t{1−Ĵ (k)}.(2.2)

Our task is to estimate this integral in detail.
We divide (2.1) into two parts. We define, depending on x,

T := ε|x|2(2.3)

and

C<(x) :=
∫ T

0
dtIt (x), C>(x) :=

∫ ∞
T

dtIt (x)(2.4)

so that

C(x)=C<(x)+C>(x).(2.5)

In the above, ε is a small positive number, and will be sent to zero at the last step.
The choice of T is suggested by the fact that the variable t roughly corresponds
to the number of steps of random walks; compare with the method of Lawler [16],
Chapter 1.

Now, for our choice of T = ε|x|2, and for x satisfying |x| ≥ 1/ε, we have the
following estimates, which are proven in Sections 2.3 and 2.4, respectively:

C>(x)= ad

K1

1

|x|d−2 +R1(x)

(2.6)

with |R1(x)| ≤ o

(
1

|x|d−2

)
+ c1ε

−d/2+1e−c2/ε

|x|d−2 + c3ε

|x|d−2 ,

|C<(x)| ≤ c4ε

|x|d−2 .(2.7)

Here c1 through c4 (given explicitly in the proof) are finite positive constants which
can be expressed in terms of d and Ki but are independent of ε and x. The error
term o(|x|2−d) does depend on ε.

These two estimates, together with (2.5), immediately prove (1.36). That is, for
fixed ε > 0,

lim sup
|x|→∞

|x|d−2C(x)≤ ad

K1
+ [c1ε

−d/2+1e−c2/ε + c3ε+ c4ε],
(2.8)

lim inf|x|→∞ |x|d−2C(x)≥ ad

K1
− [c1ε

−d/2+1e−c2/ε + c3ε+ c4ε].
Now letting ε ↓ 0 establishes

lim sup
|x|→∞

|x|d−2C(x)= lim inf|x|→∞ |x|d−2C(x)= lim|x|→∞|x|d−2C(x)= ad

K1
.(2.9)

We in the following prove (2.6) and (2.7) step by step.
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2.2. Estimates on Ĵ (k). We start from some estimates on 1− Ĵ (k).

LEMMA 2.1. Assume (1.33)–(1.34) of Theorem 1.4 are satisfied. Then Ĵ (k)

satisfies for k ∈ [−π,π ]d

0≤ 1− Ĵ (k)≤K2
|k|2
2d

(2.10)

and

1− Ĵ (k)=K1
|k|2
2d

+ R̂2(k) with |R̂2(k)| = o(|k|2).(2.11)

In the above, o(|k|2) depends only on d and Ki’s. Also, we have∣∣∣∣ ∂

∂k1
Ĵ (k)

∣∣∣∣≤ K2

d
|k1|,

∣∣∣∣ ∂2

∂k2
1

Ĵ (k)

∣∣∣∣≤ K2

d
.(2.12)

PROOF. We first note by (1.33)

1− Ĵ (k)= Ĵ (0)− Ĵ (k)=∑
x

{1− cos(k · x)}J (x)

(2.13)

=∑
x

(k · x)2

2
J (x)+∑

x

{
1− cos(k · x)− (k · x)2

2

}
J (x).

Using 0≤ 1− cos t ≤ t2/2 and Z
d -symmetry, we have from the first line of (2.13)

0≤ 1− Ĵ (k)≤∑
x

(k · x)2

2
|J (x)| =∑

x

|k|2
2d

|x|2|J (x)| ≤ |k|2
2d

K2.(2.14)

Also, by Z
d -symmetry of J (x), the first term on the second line of (2.13) is equal

to

|k|2
2d

∑
x

|x|2J (x)=K1
|k|2
2d

.(2.15)

Next we proceed to deal with the second term of (2.13), that is, R̂2(k). We want
to show that it is of smaller order than |k|2, so we consider |k|−2R̂2(k):

R̂2(k)

|k|2 =∑
x

1− cos(k · x)− (k · x)2/2

|k|2 J (x).(2.16)

Now we note for all t ∈R ∣∣∣∣1− cos t − t2

2

∣∣∣∣≤ t2

2
∧ t4

24
.(2.17)
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The first bound of (2.17) can be used to show that the sum in (2.16) is uniformly
bounded in k:

|R̂2(k)|
|k|2 ≤∑

x

∣∣∣∣1− cos(k · x)− (k · x)2/2

|k|2 J (x)

∣∣∣∣≤∑
x

(k · x)2

2|k|2 |J (x)|
(2.18)

= 1

2d

∑
x

|x|2|J (x)| ≤ K2

2d
,

where on the second line we used Z
d -symmetry as we did in (2.14). The second

bound of (2.17) shows that the summand of (2.16) goes to zero (as |k| → 0) for
each fixed x ∈ Z

d . Therefore, by dominated convergence, the sum of (2.16) goes
to zero as |k| → 0, that is, we have the bound of (2.11).

To prove (2.12), we observe by Z
d -symmetry

∣∣∣∣ ∂

∂k1
Ĵ (k)

∣∣∣∣=
∣∣∣∣∣∑

x

x1 sin(k1x1) cos(k2x2) · · · cos(kdxd)J (x)

∣∣∣∣∣
(2.19)

≤∑
x

|k1||x1|2|J (x)| ≤ K2

d
|k1|.

Similarly, we note

∣∣∣∣ ∂2

∂k2
1

Ĵ (k)

∣∣∣∣=
∣∣∣∣∣∑

x

cos(k · x)|x1|2J (x)

∣∣∣∣∣≤∑
x

|x1|2|J (x)| ≤ K2

d
.(2.20) �

2.3. Contribution from t ≥ T : Proof of (2.6). In this section, we prove (2.6),
which gives an estimate on C>(x). The estimate itself is an immediate conse-
quence of the following lemma. Note that no pointwise bound (1.35) is needed for
this lemma.

LEMMA 2.2. Fix ε > 0 and assume (1.33)–(1.34) of Theorem 1.4. Then we
have for t ≥ 1/ε

It (x)=
(

d

2πK1t

)d/2

exp
(
−d|x|2

2tK1

)
+R3(t)

(2.21)
with |R3(t)| ≤ o(t−d/2)+ c5e

−c2/εt−d/2.

In the above, c5 := 2(d/πK0)
d/2 and c2 := K0/(4d). The term o(t−d/2) may

depend on ε.

PROOF OF (2.6), ASSUMING LEMMA 2.2. We just integrate (2.21) from t =
T := ε|x|2 to t = ∞. (We can apply Lemma 2.2 because of our choice of |x|
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and T .) The integral of R3(t) is bounded as∣∣∣∣
∫ ∞
T

dtR3(t)

∣∣∣∣ ≤
∫ ∞
T

dt[o(t−d/2)+ c5e
−c2/εt−d/2]

= o(T −d/2+1)+ 2c5e
−c2/ε

d − 2
T −d/2+1

(2.22)
= ε−d/2+1o

(|x|−(d−2))+ c1ε
−d/2+1e−c2/ε|x|−(d−2),

c1 := 2c5

d − 2
,

where on the second line, we used our choice of T , (2.3). On the other hand, the
first term of (2.21) gives∫ ∞

T
dt

(
d

2πK1t

)d/2

exp
(
−d|x|2

2tK1

)

=
∫ ∞

0
dt (· · ·)−

∫ T

0
dt (· · ·)

(2.23)

= �(d/2− 1)d

2πd/2K1
|x|2−d −

∫ T

0
dt

(
1

2πK1t

)d/2

exp
(
−d|x|2

2tK1

)

=: �(d/2− 1)d

2πd/2K1
|x|2−d −R4(x).

For the integrand of R4(x), we use an inequality

y−βe−α/y ≤
(

β

αe

)β

(valid for α,β, y > 0)(2.24)

with α = d|x|2/(2K1), β = d/2 and y = t . The result is

[integrand of R4(x)] ≤
(

1

2πK1

)d/2

×
(

K1

e|x|2
)d/2

=
(

1

2πe|x|2
)d/2

,(2.25)

and thus, R4(x) is bounded as

R4(x)≤ T ×
(

1

2πe|x|2
)d/2

=
(

1

2πe

)d/2 ε

|x|d−2 :=
c3ε

|x|d−2 .(2.26)

Combining (2.22)–(2.26), we get (2.6). �

PROOF OF LEMMA 2.2. We introduce kt > 0 by

kt := (εt)−1/2, (≤ 1)(2.27)

and divide It (x) into four parts:

It (x)= It,1(x)+ It,2(x)+ It,3(x)+ It,4(x),(2.28)
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with

It,1(x) :=
∫

Rd

ddk

(2π)d
eik·x−tK1|k|2/(2d),(2.29a)

It,2(x) := −
∫
|k|>kt

ddk

(2π)d
eik·x−tK1|k|2/(2d),(2.29b)

It,3(x) :=
∫
|k|≤kt

ddk

(2π)d
eik·x{e−t{1−Ĵ (k)} − e−tK1|k|2/(2d)},(2.29c)

It,4(x) :=
∫
|k|>kt ,k∈[−π,π ]d

ddk

(2π)d
eik·xe−t{1−Ĵ (k)}.(2.29d)

Integrals It,1(x) through It,3(x) sum up to contributions to It (x) from |k| ≤ kt , and
It,4(x) represents the contribution from |k|> kt , k ∈ [−π,π ]d . The choice of kt is
motivated so that we can use (1.33) for It,3(x) (because of our choice t ≥ 1/ε, we
have |k| ≤ kt ≤ 1). We estimate the above integrals one by one.

The first integral It,1(x) gives the main contribution, and is calculated exactly
by completing the square:

It,1(x)=
(

d

2πK1t

)d/2

exp
(
−d|x|2

2tK1

)
.(2.30)

Second, for It,3(x), we first change the integration variable from k to l := √
tk

to obtain

It,3(x)= t−d/2
∫
|l|2≤1/ε

dd l

(2π)d
exp

(
il · x√

t

)

×
{

exp
(
−t

{
1− Ĵ

(
l√
t

)})
(2.31)

− exp
(
−t

K1|l|2
2dt

)}
=: t−d/2Ĩt,3(x).

Now the integral Ĩt,3(x) is seen to be o(1) as t →∞, as follows. (i) We can get a
uniform bound as

|Ĩt,3(x)| ≤
∫
|l|2≤1/ε

dd l

(2π)d

[
exp

(
−K0|l|2

2d

)
+ exp

(
−K1|l|2

2d

)]
<∞,(2.32)

where we used the lower bound (1.33) for the first term. (ii) For each fixed l ∈R
d ,

the integrand of Ĩt,3(x) goes to zero (as t →∞). This is because we can write
[recalling the definition (2.11) of R̂2]

Ĩt,3(x)=
∫
|l|2≤1/ε

dd l

(2π)d
exp

(
il · x√

t
− K1|l|2

2d

)
(2.33)

×
{

exp
(
−tR̂2

(
l√
t

))
− 1

}
.
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Then, in view of our bound of (2.11), the integrand goes to zero as t →∞ for
fixed l. By (i) and (ii) above, we can use the dominated convergence theorem to
conclude that the integral Ĩt,3(x) of (2.31) is o(1) as t →∞ [this o(1) can depend
on ε], and therefore

It,3(x)= o(t−d/2) [o(t−d/2) can depend on ε].(2.34)

Finally we estimate It,2(x) and It,4(x). By definition,

|It,2(x)| ≤
∫
|k|>kt

ddk

(2π)d
e−tK1|k|2/(2d).(2.35)

For It,4(x), we use (1.33) to bound Ĵ (0)− Ĵ (k) for k ∈ [−π,π ]d as

|It,4(x)| :=
∣∣∣∣

∫
|k|>kt

k∈[−π,π ]d

ddk

(2π)d
eik·xe−t{Ĵ (0)−Ĵ (k)}

∣∣∣∣
(2.36)

≤
∫

|k|>kt

k∈Rd

ddk

(2π)d
e−tK0|k|2/(2d).

Therefore, using K0 ≤K1 and

∫
|k|≥b

ddk

(2π)d
e−a|k|2 ≤

(
1

2πa

)d/2

e−ab2/2 (valid for a, b > 0),(2.37)

we get

|It,2(x)+ It,4(x)| ≤ 2
(

d

πK0t

)d/2

e−tK0k
2
t /(4d)

(2.38)

= 2
(

d

πK0

)d/2

t−d/2e−K0/(4dε) =: c5t
−d/2e−c2/ε.

The above (2.30), (2.34) and (2.38) establish (2.21) and prove the lemma. �

2.4. Contribution from t < T : Proof of (2.7). In this section, we prove (2.7),
which gives an estimate on C<(x). This is the place where we have to make use
of our assumption on pointwise x-space bound on J (x), (1.35). We do need some-
thing like this, to exclude pathological examples which violate (2.7) for infinitely
many x’s (see, e.g., page 32 of [19] and Section 2.5 of the present paper).

The estimate (2.7) itself is an immediate consequence of the following lemma.
To state the lemma, we introduce some notation. For a function f (x) on Z

d , we
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write f (∗n) for the n-fold convolution of f and use
∏n

�=1
(∗)f� to denote the con-

volution of functions f�, �= 1,2, . . . , n:

f (∗n)(x) := (f ∗ f ∗ · · · ∗ f︸ ︷︷ ︸
n

)(x),

(2.39)
n∏

�=1

(∗)f� := (f1 ∗ f2 ∗ f3 ∗ · · · ∗ fn)(x).

Also, in this subsection and for the function J (x) only, we define for j, � =
1,2, . . . , d ,

Jj (x) := xjJ (x), Jj,�(x) := xjx�J (x).(2.40)

J
(∗n)
j denotes the n-fold convolution of Jj , not xj times J (∗n).

LEMMA 2.3. Under the assumption of Theorem 1.4, we have for integers m ∈
[0, d] and n1, n2, . . . , nd ≥ 0∣∣∣∣∣

(
It ∗

d∏
j=1

(∗)J (∗nj )

j

)
(x)

∣∣∣∣∣≤ c6(m, �n)
t−(d+n−m)/2

|||x|||m with n :=
d∑

j=1

nj ,(2.41)

where c6(m, �n) is a calculable constant depending on Ki, d,m and �n := (n1, n2,

. . . , nd).

PROOF OF (2.7), GIVEN LEMMA 2.3. This is easy. By (2.41) with �n= �0 and
m = d , we have |It (x)| ≤ c6(d, �0)|||x|||−d . Integrating this from t = 0 to t = T

gives

|C<(x)| ≤ T × c6(d, �0)

|||x|||d = c6(d, �0)ε

|||x|||d−2 ,(2.42)

where the last equality follows from our choice of T , (2.3). This proves (2.7), with
c4 = c6(d, �0). �

PROOF OF LEMMA 2.3. We first prove the lemma for m = 0 by estimating
Fourier integrals directly. We then proceed to prove the lemma for m≥ 1 by induc-
tion in m. To simplify notation, we abbreviate the left-hand side of (2.41) (without
the absolute value) as F�n(x; t).

The case m= 0. In terms of Fourier transform, we have

F�n(x; t)=
∫
[−π,π ]d

ddk

(2π)d
eikxe−t{1−Ĵ (k)}

d∏
j=1

{i∂j Ĵ (k)}nj ,(2.43)
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where (and in the following) ∂j denotes ∂/∂kj . Using bounds (1.33) and (2.12),
we can bound (2.43) as

|F�n(x; t)| ≤
(

K2

d

)n ∫
Rd

ddk

(2π)d
e−tK0|k|2/(2d)|k|n

(2.44)

= ct−(d+n)/2, n :=
d∑

j=1

nj

with some constant c. This proves (2.41) for m= 0, if we take c6(0, �n)≥ c.
The case x = 0. The above (2.44) also proves the lemma for x = 0, t ≥ 1 and

for all m ≥ 0, because in this case the right-hand side of (2.41) increases as m

increases and thus the bound for m= 0 takes care of those for m > 0 as well.
For x = 0 and t ≤ 1, we first note a trivial bound

|F�n(0)| ≤
(

K2

d

)n ∫
[−π,π ]d

ddk

(2π)d
e−tK0|k|2/(2d)|k|n ≤

(
πK2√

d

)n

,(2.45)

where we just bounded the exponential by 1 and |k|n by (
√

dπ)n. Multiplying the
right-hand side by t−(d+n−m)/2 ≥ 1 (valid for 0 ≤ m ≤ d + n) proves (2.41) for
x = 0, t < 1 and 0≤m≤ d + n.

We have thus proved (2.41) for x = 0 and n≥ 0, m ∈ (0, d + n]. Having treated
x = 0, we in the following focus on x �= 0.

The case m≥ 1. Suppose we have proved (2.41) for m− 1; we now prove it for
m by induction. With the help of Fourier transform, we see for l = 1,2, . . . , d:

xlF�n(x)= in+1
∫
[−π,π ]d

ddk

(2π)d
eikx∂l

[
e−t{1−Ĵ (k)}

d∏
j=1

{∂j Ĵ (k)}nj

]

= in+1
∫
[−π,π ]d

ddk

(2π)d
eikxe−t{1−Ĵ (k)}

×
[
t{∂lĴ (k)}nl+1

∏
j �=l

{∂j Ĵ (k)}nj(2.46)

+
d∑

p=1

np{∂pĴ (k)}np−1{∂l∂pĴ (k)} ∏
j �=p

{∂j Ĵ (k)}nj

]

= tF�n′(x)+
d∑

p=1

np(F�n′′ ∗ Jp,l)(x),

where �n′ = (n1, n2, . . . , nl−1, nl + 1, nl+1, . . .) and �n′′ = (n1, n2, . . . , np−1, np −
1, np+1, . . .). The first term on the right-hand side is simply bounded by our in-
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ductive assumption as (note: now
∑

j n′j = n+ 1)

|tF�n′(x)| ≤ t × c6(m− 1, �n′) t
−(d+n+1−m+1)/2

|||x|||m−1

(2.47)

= c6(m− 1, �n′) t
−(d+n−m)/2

|||x|||m−1 .

For the second term, we again use our inductive assumption on F�n′′ (now
∑

j n′′j =
n− 1):

|F�n′′(x)| ≤ c6(m− 1, �n′′) t
−(d+n−1−m+1)/2

|||x|||m−1

(2.48)

= c6(m− 1, �n′′) t
−(d+n−m)/2

|||x|||m−1 .

We have to take the convolution with Jp,l , and we argue separately for m= 1 and
m > 1. For m= 1, we estimate as

|(F�n′′ ∗ Jp,l)(x)| ≤ c6(0, �n′′)t−(d+n−1)/2
∑
y

|Jp,l(y)|

≤ c6(0, �n′′)t−(d+n−1)/2
∑
y

|y|2|J (y)|(2.49)

≤ c6(0, �n′′)t−(d+n−1)/2 ×K2,

where we used our assumption (1.34) in the last step. For m > 1, we take the
convolution of (2.48) with

|Jp,l(x)| ≤ K3|xpxl|
|||x|||d+2 ≤ K3

|||x|||d ,(2.50)

which satisfies
∑

x |Jp,l(x)| ≤∑
x |x|2|J (x)| < ∞. The power (m− 1) of (2.48)

is not changed by the convolution as long as 0 < m− 1 < d [see Lemma B.1(iii)],
and we get

|(F�n′′ ∗ Jp,l)(x)| ≤ cc6(m− 1, �n′′) t
−(d+n−m)/2

|||x|||m−1(2.51)

with some constant c arising from convolution. Thus for both m= 1 and 1 < m≤
d , we get a bound of the form of (2.51) for the second term of (2.46).

Combining (2.47) and (2.51), we get

|xlF�n(x)| ≤ c6(m, �n)′ t
−(d+n−m)/2

|||x|||m−1 or

(2.52)

|F�n(x)| ≤ c6(m, �n)′ t
−(d+n−m)/2

|xl||||x|||m−1
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with c6(m, �n)′ = c6(m− 1, �n′)+ cc6(m− 1, �n′′). Because the above holds for all
l = 1,2, . . . , d , we can replace |xl| by ‖x‖∞ in the above, and we get (2.41) for
m [increase c6(m, �n)′ appropriately in order to turn ‖x‖∞ into |||x|||]. The proof is
complete. �

2.5. We cannot do better than |J (x)| ≤ c|x|−(d+2): An example. We here
present a “counterexample,” which mildly violates the pointwise bound |J (x)| ≤
c|x|−(d+2) and which does not exhibit the Gaussian asymptotic form of (1.36). The
pointwise bound is not a necessary condition, but the following example shows that
it is rather sharp for d > 4.

The author is grateful to Kôhei Uchiyama concerning the proof of Proposition
2.4.

PROPOSITION 2.4. Fix d > 4 and 0 < ε < (d−4)/4, and let g(x) be a slowly
varying, nonnegative, Z

d -symmetric function which diverges as |x| →∞. Define

h(x)= g(x)−(1+ε)/d,(2.53)

and subsets of Z
d as

E := {±lnej |1≤ j ≤ d,n≥ 1},
(2.54)

Ẽ := {y ∈ Z
d |∃x ∈ E , |y − x| ≤ h(x)|x|},

where ej is the unit vector in the j th coordinate axis. Finally define

J (x) := 1− δ

2d
I [|x| = 1] + g(x)

|x|d+2 I [x ∈ Ẽ ],(2.55)

where δ is determined so that
∑

x J (x)= 1. Then by choosing a sequence ln which
diverges to infinity sufficiently rapidly (depending on g), we can achieve

lim sup
|x|→∞

|x|d−2C(x)=∞.(2.56)

That is, the model does not exhibit the Gaussian asymptotic form of Theorem 1.4.

PROOF. We choose ln which diverges sufficiently rapidly as n→∞, so that
(1) J (x)≥ 0 for all x ∈ Z

d , and (2)
∑

x |x|2J (x) <∞. We prove, for x ∈ E with
sufficiently large |x|,

C(x)≥ c

|x|d−2 g(x)h(x)4 exp{−c′g(x)h(x)d}(2.57)

with finite positive constants c, c′ which are independent of x. This immediately
implies

lim|x|→∞
x∈E

C(x)|x|d−2 ≥ lim|x|→∞
x∈E

cg(x)(d−4−4ε)/d exp{−c′g(x)−ε} =∞,(2.58)
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because of our choice of g and h. In the following, we explain how to get (2.57).
First choose arbitrary but large n and define a = ln. We prove (2.57) for x = ae1,

which is sufficient. Define

qa(y) := J (y)

d∑
j=1

{I [|y + aej | ≤ ah(a)] + I [|y − aej | ≤ ah(a)]},
(2.59)

pa(y) := J (y)− qa(y).

[With an abuse of notation, we write g(a) and h(a) for g(aej ) and h(aej ).] Be-
cause both pa and qa are nonnegative, we get a lower bound on C(x) by discarding
some terms as

C(x)=
∞∑

n=0

(pa + qa)(∗n)(x)

(2.60)

≥
∞∑

n=0

n
(
(pa)(∗(n−1)) ∗ qa)(x)= (qa ∗Ca ∗Ca)(x)

where we introduced locally

Ca(y) :=
∞∑

n=0

(pa)(∗n)(y).(2.61)

We further get a lower bound of (2.60) by restricting the sum arising from the
convolution:

C(x)≥ ∑
y : |y−ae1|≤ah(a)

qa(y)(Ca ∗Ca)(x − y)

(2.62)

≥ g(a)

2ad+2

∑
|z|≤ah(a)

(Ca ∗Ca)(z),

where in the last step we used g(y)≥ g(a)/2, because g(x) is slowly varying.
To get a nice lower bound on (Ca ∗ Ca)(z), we use the following integral rep-

resentation

(Ca ∗Ca)(z)=
∫ ∞

0
dt t

∫
[−π,π ]d

ddk

(2π)d
eikze−t (1−p̂a(k))

(2.63)

≥
∫ T2

T1

dt t

∫
[−π,π ]d

ddk

(2π)d
eikze−t (1−p̂a(k)),

where T1 := |z|2, T2 := 2|z|2. In the last step we used the fact that the integrand
[inverse Fourier transform of e−t (1−p̂a(k))] is nonnegative. This fact can be seen by
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writing it as∫
[−π,π ]d

ddk

(2π)d
eikze−t (1−p̂a(k)) = e−t

∫
[−π,π ]d

ddk

(2π)d
eikz

∞∑
n=0

tn

n! (p̂
a(k))n

(2.64)

= e−t
∞∑

n=0

tn

n!(p
a)(∗n)(z),

and use the fact that pa(z) is nonnegative by its definition, (2.59). Because we have
p̂a(0) < 1 now, we bound the right-hand side of (2.63) as

(Ca ∗Ca)(z)≥
∫ T2

T1

dt te−t (1−p̂a(0))I a
t (z)≥ e−T2(1−p̂a(0))

∫ T2

T1

dt tI a
t (z)(2.65)

with

I a
t (z) :=

∫
[−π,π ]d

ddk

(2π)d
eikze−t (p̂a(0)−p̂a(k)).(2.66)

The first exponent of (2.65) can be bounded as

T2
(
1− p̂a(0)

)= T2q̂
a(0)= T2

∑
y : |y±aej |≤ah(a)

g(y)

|y|d+2

(2.67)
≤ cT2g(a)h(a)da−2 ≤ cg(a)h(a)d,

with some constant c, where in the last step we used |z| ≤ ah(a)≤ a.
The remaining integral of I a

t (z) can be estimated as we did in Section 2.3. By
Lemma 2.2, we have

I a
t (z)=

(
d

2πK ′
1t

)d/2

exp
(
−d|z|2

2tK ′
1

)
+ o(t−d/2)+ c5e

−c2/εt−d/2(2.68)

with K ′
1 ≈ K1 for ε > 0 and t > 1/ε. For ε sufficiently small and for t ≥ |z|2

sufficiently large depending on ε, the first term of (2.68) dominates the rest. So we
have ∫ T2

T1

dt tI a
t (z)≥

∫ T2

T1

dt t
1

2

(
d

2πK ′
1t

)d/2

exp
(
−d|z|2

2tK ′
1

)
≥ c′′

|z|d−4(2.69)

for sufficiently large z.
Combining (2.65), (2.67) and (2.69), we have for sufficiently large |z|

(Ca ∗Ca)(z)≥ c|z|4−d exp{−c′g(a)h(a)d}(2.70)

with positive constants c, c′. Going back to (2.62) yields, for sufficiently large
ah(a),

C(x) ≥ c
g(a)

ad+2 ×
∑

L<|z|≤ah(a)

c|z|4−d exp{−c′g(a)h(a)d}
(2.71)

= c exp{−c′g(a)h(a)d}g(a)h(a)4

ad−2 .
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This proves (2.57). �

2.6. Proof of (1.38). We here explain briefly how to prove (1.38). The frame-
work of the proof is the same as that of (1.36), except that we choose different
T and that we use explicit error bounds instead of Riemann–Lebesgue lemma.
Concretely, we proceed as follows.

First, instead of (2.3), we now choose

T := |x|2−(ρ∧2)/d ,(2.72)

and use the decomposition (2.4) and (2.5).
Improved bound (1.37) on J (x) improves several estimates concerning con-

tributions from t > T . First, the error term R̂2(k) of Lemma 2.1 now obeys

|R̂2(k)| ≤ K ′
2

2 |k|2+(ρ∧2). Taking kt = t−1/(2+ρ∧2) and using this new bound on

R̂2(k) improves Lemma 2.2’s error bound as |R3(t)| ≤ ct−(d+ρ∧2)/2. This leads,
with the new choice of T , (2.72), to

C>(x)= ad

K1
|x|2−d +O

(|x|−(d−2+(ρ∧2)/d)).(2.73)

Not much is improved for t < T , and we use Lemma 2.3 in its current form, that
is, It (x)=O(|x|−d). Because of the new choice of T , (2.72), this leads to slightly
improved

C<(x)=O
(|x|−(d−2+(ρ∧2)/d)).(2.74)

Combining (2.73) and (2.74) yields (1.38), and completes the proof.

3. Diagrammatic estimates. Here we prove several diagrammatic estimates,
Lemmas 1.8 and 1.7 for 
 of the lace expansion. These estimates are model de-
pendent, and have to be proved individually for each model.

3.1. Brief notes on diagrammatic estimates. We first introduce some graphical
notation and briefly explain basic techniques of diagrammatic estimates. These
methods have been extensively used in previous works. Consult [12, 19, 26] for
reviews on the lace expansion and diagrammatic estimates involved.

For self-avoiding walk, 
(0)(x) is identically zero and 
(1)(x) is nonzero only
at x = 0. Next few terms of 
(n)(x) are bounded as follows:


(2)(x)≤G(x)3, 
(3)(x)≤ ∑
y : y �=0,x

G(y)2G(x − y)2G(x),

(3.1)

(4)(x)≤ ∑

y : y �=0
z : z �=x

G(y)2G(x − y)G(z)G(x − z)2G(y − z).

We introduce diagrammatic expression to represent quantities on the right-hand
side. In the diagram, a line connecting x and y represents G(x− y), and unlabeled
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vertices with degree ≥ 2 are summed over. Bounds on 
(n)(x) (n = 2,3,4) are
thus represented as


(2)(x)≤ , 
(3)(x)≤ ,

(3.2)


(4)(x)≤∑
y,z

= .

Diagrammatic representation for quantities defined in (1.11)–(1.17) are shown in
Figure 1(a), using the above convention.

Special care is required for vertices of degree one. Vertices of degree one are
not usually summed over, unless they appear in a pair—we sometimes sum over
two vertices x and x + a, while keeping a fixed. Two examples appear in the dia-
grammatic representation for H(β)(a, b) of Figure 1(a), where the constant vector
a and b are represented by dashed arrows.

We next turn to our basic techniques in diagrammatic estimates, which are used
to estimate sums like

∑
x 
(n)(x) and

∑
x |x|2
(n)(x). We perform this task by

breaking the sum into products of basic units, using a simple inequality

∑
x

f (x)g(x)≤
[
sup
x

f (x)

][∑
x

g(x)

]
,(3.3)

which is valid for any nonnegative functions f,g. Here x could be a group of
variables.

How to use this inequality in decomposing a diagram into two small compo-
nents, and finally into a product of (open) bubbles, B(a), is illustrated in Figure
1(c). [In these diagrams, all horizontal lines could be of length zero; other (slant)

FIG. 1. (a) Diagrammatic representation of quantities defined in (1.12)–(1.17) for a �= 0. Lines
weighted with |x|β and |x|γ are represented by thick shadowed lines. Two dashed arrows in
H(β)(a, b) mean that we sum over these vertices, keeping displacement vectors a, b fixed. (b) Di-
agrams for 
(n)(x) (n = 2,3,4) for self-avoiding walk. (c) Using our basic inequality, (3.3). All
unlabeled vertices with degree ≥ 2 are summed over.



DECAY OF CORRELATIONS 557

lines’ lengths are greater than zero. Therefore, open bubbles are nothing but B(a)

with some a.] Graphically, we can just “peel off” open bubbles from right or left.
Arguing this way, we can bound

∑
x 
(n)(x) by a product of open bubbles, as

∑
x


(n)(x)≤
(

sup
x �=0

G(x)

)(
sup
a

B(a)

)n−1

≤
(

sup
x �=0

G(x)

)
B̄n−1.(3.4)

Estimates like these will be extensively used in what follows.

3.2. Proof of Lemma 1.8 for self-avoiding walk. We start from the proof of
Lemma 1.8 for self-avoiding walk, which is the simplest of our diagrammatic es-
timates. We will prove for N ≥ 3∑

x

|x|α+β+γ 
(N) ≤ cNα+β+γ+2λN−3(3.5)

with a finite constant c which is independent of N . Summing this over N ≥ 3 (the
sum converges as long as λ < 1) and noting that lowest order (N = 2) is bounded
by

∑
x |x|α+β+γ G(x)3 =∑

x G(α)(x)×G(β)(x)×G(γ )(x)≤ Ḡ(α)W̄ (β,γ ) =O(1)

proves the lemma. In the following, we explain how to prove (3.5).
Step 1. Distributing the weight |x|α+β+γ . A typical lace expansion diagram for

self-avoiding walk is shown in Figure 2(a). We want to multiply it with |x|α+β+γ

and sum over all the vertices (except 0). For this purpose, we first distribute the
weight |x|α+β+γ over suitable line segments of the diagram. Because there are
three distinct lines connecting 0 and x (the uppermost line, the lowermost line,
and the zigzag line), we pick a long segment out of each line.

Concretely, we proceed as follows.

• First pick the longest segment from the lowermost line connecting 0 and x. To
be concrete, suppose this is ab in Figure 2(a). Because the number of segments
of the lowermost line is 
N/2�, this longest segment ab is at least as long as
|x|/
N/2� ≥ 2|x|/N .

FIG. 2. (a) A typical lace diagram for self-avoiding walk. “Long” segments are indicated by thick
shadowed lines. (b) After extracting Ḡ from the diagram (a), decompose at g. (c) How to decompose
the first factor of (b) into little bubbles and W(β,γ ). Here all the unlabeled vertices with degree ≥ 2
are summed over.



558 T. HARA

• Next consider the triangle which contains this longest segment. In Figure 2(a),
this is triangle abc. Because the edge ab is longer than 2|x|/N , at least one
of ac or bc must be longer than |x|/N (by the triangle inequality). Choose the
longer one of ac and bc as our second “long” segment. (To be concrete, suppose
this is ac.)

• Finally, choose the longest segment in the uppermost line connecting 0 and x.
This is our third “long segment.” Because the number of segments of the up-
permost line is �N/2�, the longest segment is at least as long as |x|/�N/2� ≥
|x|/N . For concreteness, suppose this is ef in Figure 2(a).

By the above choice, all three long segments are at least as long as |x|/N . We use
this relation to bound the factor |x|α+β+γ = |x|α · |x|β · |x|γ . In our example, we
have

|x|α+β+γ ≤Nα+β+γ × |e− f |α|a − b|β |a − c|γ .(3.6)

Step 2. Decomposition of the diagram. Now we control the sum over all vertices
of the diagram. In this example of Figure 2(a), we first peel off Ḡ(α) from the edge
ef . This just leaves the diagram with this edge removed (and the summation over
vertices are the same as before); the result is the diagram on the left-hand side
of Figure 2(b). This is further bounded as in Figure 2(b), by decomposing it at
vertex g. Here, the right factor looks like the one of Figure 1(c) (with more loops),
and is bounded by a product of open bubbles as explained in (3.4). (For the right
factor, we fix g and sum over x.)

What remains is to bound the left factor, which is decomposed as shown in
Figure 2(c). As shown, this is bounded by a product of open bubbles B(a), together
with W(β,γ )(a). There are (N − 2) open bubbles (each of which is bounded by λ),
so the example is bounded by

λ−(N−2)Ḡ(α)

(
sup
a

W(β,γ )(a)

)
= λ−(N−2)Ḡ(α)W̄ (β,γ ) ≤ cλ−(N−2).(3.7)

Other diagrams occur, depending on which line segment is the longest—even
for the diagram in Figure 2(a), we encounter W̄ (β,0)W̄ (0,γ ) instead of W̄ (β,γ ) alone,
if we pick bc instead of ac. These can be bounded in the same way, and all possible
cases are bounded by cλ−(N−3). This is because each bubble is bounded by λ, and
there are at least (N − 3) of them. (The diagram consists of N -loops, and at most
three of them are used as Ḡ(α) and W̄ ’s.)

Step 3. Summary of the above. Each of the weighted N -loop 
 diagrams is
bounded from above by

Nα+β+γ × [
Ḡ(α)W̄ (β,γ ) or Ḡ(α)W̄ (β,0)W̄ (0,γ )]× cλ−(N−3).(3.8)

The number of choices of long segments is bounded by 
N/2� × 2 × �N/2� ≤
N2. Thus, the N -loop contribution is bounded by cN2 ×Nα+β+γ × λ(N−3). This
proves (3.5), and proves the lemma.
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3.3. Proof of Lemma 1.7 for self-avoiding walk. The proof proceeds in the
same spirit as that of Lemma 1.8. The diagrams look the same, but different meth-
ods are required because we are now fixing x.

Step 1. Picking and extracting “long” segments. We illustrate by a typical dia-
gram of Figure 3(a). We first pick and extract three “long” segments exactly as we
did in the proof of Lemma 1.8. The result is that we get three factors of

Gx,N := sup
y : |y|≥|x|/N

G(y)≤ β

(
N

|x|
)α

,(3.9)

and a remaining diagram, which is shown on the left of Figure 3(b). Our remaining
task is to bound this diagram by O(λN−3).

Step 2. Decomposition of the diagram. We decompose the resulting diagram as
shown on the right of Figure 3(b). The left and right factors are further decomposed
into open bubbles easily (recall that we are now fixing 0 and x), and are bounded
by suitable powers of λ. Our remaining task is to bound the middle factor.

Step 3. Bounding the middle factor. Consider the middle factor on the right of
Figure 3(b) as a summation over y, z ∈ Z

d of the product of two factors, and use
the Schwarz inequality as in Figure 3(c). The second factor on the right of (c) is
just the bubble squared—to be more precise, one of them has nonzero lines and is
bounded by λ, another is O(1).

The first factor on the right of (c) is more complicated. But here we fix only one
vertex of this diagram and sum over all others. Using translation invariance, we
can move the fixed vertex from c to 0 as shown on the left of Figure 3(d). Having
moved c, we can now decompose this into open bubbles as shown. (Here we are
using our convention that no vertices of degree one are summed over.)

Step 4. Summary. We have seen that extracting three “long” lines yields
(Gx,N)3, while the remaining diagram is bounded by O(λN−3). We have to sum

FIG. 3. (a) A typical lace diagram for self-avoiding walk and long segments. (b) Diagram of (a)
after extracting three long segments, and how to bound it by decomposing into three factors. (c) How
to use the Schwarz inequality: vertices c, g are fixed. (d) How to decompose the first factor of (c).
Vertices of degree one are not summed over.
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over all the possible choices of the long segments. As shown in the proof of Lemma
1.8, the number of choices of long segments is bounded by N2. Using our assump-
tion on the decay of G, we thus have


(N)(x) ≤ cN2 × λN−3 × (Gx,N)3 ≤ cN2λN−3
(

β

(|x|/N)α

)3

(3.10)

= cN2+3αλN−3 β3

|x|3α

with a finite constant c. Summing this over N ≥ 3 (the sum converges as long as
λ < 1), and noting that the lowest order (N = 2) is bounded by G(x)3 ≤ β3/|x|3α

proves the lemma.

3.4. Proof of Lemma 1.8 for percolation. This is proven along the same line as
for self-avoiding walk, but we encounter more complicated percolation diagrams
[8]. Although we have to consider general N -loop diagrams, details are explained
by using 4-loop diagrams as examples. General cases will be extrapolated rather
easily.

Diagrams of 
(4) look like those of Figure 4(a), plus 14 others. [In general,
there are 2N diagrams for 
(N).] Dealing with the right diagram (and 14 others)
is easier, and we only explain how to deal with the left one.

Before going into details we explain about a special feature of percolation
diagrams. In percolation diagrams, we encounter x y , which represents
2dp(D ∗ G)(y − x) [8]. This is almost the same as G(y − x) for large |y − x|,
because

2dp(D ∗G)(y − x)= 2dp
∑

z : |z−x|=1

1

2d
G(y − z)

(3.11)

≤ (1+ c4λ)
∑

z : |z−x|=1

1

2d
G(y − z).

Some care is needed when |y − x| = 1 can happen. For example, the rightmost
factor of Figure 4(d) is

2dp
∑
|u|=1

1

2d

(
G(γ ) ∗G ∗G

)
(f − u)

= p
∑
|u|=1

(
G ∗G(γ ) ∗G

)
(f − u)(3.12)

= p
∑
|u|=1

{
T (0,γ )(f − u)+ δγ,0δf−u,0

}
.



DECAY OF CORRELATIONS 561

FIG. 4. (a) Typical four loop diagrams of 
(4)(x) for percolation. (b) Possible choices of “long”
segments, indicated by shadowed thick lines. (c) How to decompose some cases of (b) into simple
components. Note that the left and right factors can be further decomposed into (open) triangles, and
produce powers of λ. (d) How to decompose a factor appearing in (c) into a triangle and a weighted
triangle, T̄ (0,γ ). The second equality follows from translation invariance. The rightmost factor is not
exactly equal to, but is bounded by a constant multiple of, T̄ (0,γ ) as explained around (3.13). (e) How
to decompose the middle factor of (b-3) into basic components. (f) How to decompose the middle
factor of (b-7) into basic components. The leftmost diagram is new and is bounded by a constant
multiple of H̄ (β).

When |f | �= 1, the above is bounded by 2dpT̄ (0,γ ) ≤ (1 + c4λ)T̄ (0,γ ). But when
|f | = 1, f − u can be zero for one u. In this case we get

2dp
∑
|u|=1

1

2d

(
G(γ ) ∗G ∗G

)
(f − u)

≤ p
[
(2d − 1)T̄ (0,γ ) + (

1+ T̄ (0,γ ))](3.13)

≤ (1+ c4λ)

[
T̄ (0,γ ) + 1

2d

]
.

We can thus conclude that the rightmost factor of Figure 4(d) is bounded by (3.13).
Step 1. Distributing the weight |x|β+γ . To deal with |x|β+γ , we first note that

there are two (upper and lower) disjoint paths which connect 0 and x. Out of each
line, we pick up the longest segment, as we did for self-avoiding walk. Because
there are at most (2N + 1) segments for each of the upper and lower lines of a
N -loop diagram, these “long” segments are not shorter than |x|/(2N +1). Various
choices of these elements are illustrated as Figure 4(b), where long segments are
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indicated by thick shadowed lines. Suppose for concreteness that |x|β is on the
upper line, and |x|γ is on the lower line.

Step 2. Decomposition of the diagram. Next we control the sum over all vertices
of the diagram. This procedure is illustrated in Figure 4(c). We can peel off (open)
triangles from left and right, leaving |x|β -, |x|γ -weighted parts in the middle.

For (b-2), the middle factor is nothing but W(β,γ ), which is assumed to be finite,
and we are done.

The case (b-3) is explained in Figure 4(e). (We have increased the number of
loops in the middle, to illustrate more general N -loop diagrams.) As shown, we
can peel off W(β,0) from the left, decompose the middle part into triangles, and are
left with the right factor. The right factor itself is decomposed as in Figure 4(d),
and is bounded by the product of a triangle and T (0,γ ).

The case (b-7) is more complicated. Decomposing as before, we encounter the
leftmost component of Figure 4(f). [Other parts can be decomposed into triangles
and T (0,γ ), and are controlled well.] This is nothing but H(β)(a, b) of (1.17), and
is finite by the assumption of the lemma.

Step 3. Summary. Proceeding this way, we see all the cases of weighted N -loop

 diagrams are bounded above by

(2N + 1)β+γ × [
W̄ (β,γ ) or W̄ (β,0)T̄ (0,γ ) or H̄ (β)T̄ (0,γ )]× (triangles).(3.14)

The diagram consists of N nontrivial loops, and at most two of them are used as
W̄ (β,γ ), W̄ (β,0), H̄ (β) and/or T̄ (0,γ ). So there are at least (N − 2) open triangles,
each of which is bounded by 2dp(λ+ 1

2d
) (≤ 2λ for sufficiently large d and small

λ). In addition, we have small triangles which are bounded by (1+ λ) [8]. So the
triangles contribute (cλ)N−2 with some c.

The number of choices of “long” segments are bounded by (2N + 1)2, because
there are at most (2N + 1) segments for upper and lower lines. Also, there are 2N

diagrams for 
(N). The N -loop contribution is thus bounded by

c2N ×N2 × (2N + 1)β+γ × (c′λ)N−2 = cN2+β+γ (2c′λ)N−2.(3.15)

Summing this over N ≥ 2 and taking care of N = 0,1 separately proves (3.5) and
the lemma. (The cases of N = 0,1 are rather simple, and the details are omitted.)

3.5. Proof of Lemma 1.7 for percolation. The basic idea is the same as for
the self-avoiding walk. We extract two (cf. three for self-avoiding walk) factors of
long G from the upper and lower lines connecting 0 and x, and bound the rest by
(cλ)N−3.

As for self-avoiding walk, we first pick “long” segments. We have a segment of
length ≥ |x|/(2N + 1) on the upper and lower sides of the diagram connecting 0
and x. These long segments can be any lines which lie on the upper and lower sides
of the diagram, so the total number of choices are bounded by (2N + 1)2. Several
different cases are shown in Figure 5(b), where the shaded thick lines represent
these long segments. These cases are grouped into two.
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FIG. 5. (b) Several cases of “long” lines for the diagram of Figure 4(a) on the left. (c) Diagrams
of (b), after extracting two long lines, and how to decompose them into smaller components. (d)
Typical nasty diagrams of case 2. (d-1) is bounded by the Schwarz inequality, and the result is further
decomposed as shown in (d-2). (d-3) is decomposed into triangles, squares, and two G’s. (d-4)
is decomposed into triangles, squares, and a factor of (d-5), which is further decomposed into a
triangle and bubbles.

Case 1. This is when (i) we have these “long” segments on two lines on a rec-
tangle (or triangle) facing each other, like Figure 5(b-1) and (b-2), or (ii) we have
long lines on adjacent rectangles, like Figure 5(b-3). In either case, we just bound
the diagram by extracting two factors of

Gx,N := sup
y : |y|≥|x|/(2N+1)

G(y)≤ β(2N + 2)α

|x|α ,(3.16)

where the second inequality follows from our assumption (1.45) of the lemma on
G(x).

The effect of extracting these G’s is nothing but erasing these two lines in the
diagram, so the case (b-2) is bounded by (c-2), after extracting two factors of Gx,N .
The remaining components in (c-2) as well as in (c-1) are easily bounded in terms
of triangles, because 0 and x are now fixed.

The case (b-3) is similar. By peeling off from left and right, we get (c-3). Now
the factor in the middle is easily seen to be bounded by two triangles (just extract
the small triangle first).

To summarize, case 1 can be bounded by G2
x,N times convergent diagrams,
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which are bounded by some powers of triangles. By counting the number of non-
trivial loops, we see that these triangles are bounded by a O((cλ)N−2), just as in
the proof of Lemma 1.8.

Case 2. There remain more complicated cases, but the basic idea is the same. As
shown in Figure 5(c-4) through Figure 5(c-7), we decompose into the component
in the middle which is hard to deal with, and the left and the right components
which can be easily decomposed into triangles. We now concentrate on the com-
ponent in the middle.

There are essentially three kinds of these, which are shown in Figure 5(d), as
(d-1), (d-3) and (d-4). The case (d-3) has two lines at each end of the diagram,
while the case (d-1) has only one line. The case (d-4) is a kind of “cross-term” of
these two.

This is where we have to impose the restriction d > 8 even if we assume λ� 1.
It is natural that the lemma holds for d > 6, but currently we cannot control the
middle factor in 6 < d ≤ 8. In d > 8, we can bound the middle factor by decompos-
ing it into open triangles and a square S̄(0), as shown in Figure 5(d). The infrared
bound (1.25) guarantees that S̄(0) is finite in d > 8.

The factor of Figure 5(d-1) is bounded by the Schwarz inequality as has been
done for self-avoiding walk diagrams, as shown in the right-hand side of Figure
5(d-1). The resulting components are further bounded by B̄, T̄ and S̄ as shown
in Figure 5(d-2). The factor of Figure 5(d-3) is bounded as shown, in terms of
open triangles, squares, and two G’s. The factor of Figure 5(d-4) is decomposed
as shown, and its first factor is further decomposed as in (d-5).

In all these cases, we can collect at least (N−3) factors of cλ and two factors of
Gx,N for each diagram. Multiplying by the number of different choices of “long”
segments [which is O(N2)], and summing over N proves the lemma.

3.6. Proof of Lemma 1.8 for lattice trees and animals. The proof proceeds
along the same line as for self-avoiding walk and percolation, and we will be brief.

Typical diagrams for 
(7)(x) of lattice trees are given in Figure 6(a). In general,
diagrams for 
(N)(x) consist of N small squares, with an extra vertex on each
inner square. These inner extra vertices (and x itself) can appear on either (upper
and lower) side of the diagram, and there are 2N−1 diagrams for 
(N)(x).

As in the percolation diagrams, there are two (upper and lower) disjoint paths
which connect 0 and x. Out of each line, we pick the longest segment, as we did for
self-avoiding walk. Because there are at most 2N segments for each of the upper
and lower lines of a N -loop diagram, these “long” segments are not shorter than
|x|/(2N). Several choices of these segments are illustrated in Figure 6(b), where
long segments are represented by thick shadowed lines. Suppose for concreteness
that |x|β is on the upper line, and |x|γ is on the lower line.

Next we control the sum over all vertices of the diagram. This procedure is
illustrated in Figure 6(c). We peel off S(0)(a), S(γ )(a), or T (β,γ )(a) from right to
left. For (b-1), we peel off open squares from the right, and the remaining leftmost
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FIG. 6. (a) Two examples of diagrams of 
(7)(x) for lattice trees. (b) Possible choices of “long”
segments, represented by shadowed thick lines, for the left diagram of (a). (c) How to decompose
three cases of (b) into basic components. (d) A typical diagram of 
(7)(x) for lattice animals. The
only difference between lattice trees and animals is that we have an extra triangle on the left (at 0).

factor is bounded by T̄ (β,γ ). For (b-2), we proceed similarly, but encounter S̄(γ )

and T̄ (β,0) in the process. For (b-3), we encounter T̄ (β,γ ).
Proceeding this way, we see that all the cases of weighted N -loop 
 diagrams

are bounded above by

(2N)β+γ × [
T̄ (β,γ ) or T̄ (β,0)S̄(γ )]× (squares).(3.17)

The diagram consists of N nontrivial loops, and at most two of them are used as
T̄ (β,γ ), T̄ (β,0), and/or S̄(γ ). So there are at least (N − 2) open squares, each of
which is bounded by λ.

The number of choices of “long” segments are bounded by (2N)2, because there
are at most 2N segments for upper and lower lines. Also, there are 2N diagrams
for 
(N). The N -loop contribution is thus bounded by

c2N × (2N)2 × (2N)β+γ × (λ)N−2 = cN2+β+γ (2λ)N−2.(3.18)

Summing this over N ≥ 2 and considering N = 1 separately proves (3.5) and the
lemma for lattice trees.

Diagrams for lattice animals are almost the same as those for lattice trees, except
that there is an extra triangle at 0, as shown in Figure 6(d). (Diagrams in Figure
6(d) incorporate an improvement achieved in [7] over the analysis in [9].) These
can be handled in the same way as for lattice trees.

3.7. Proof of Lemma 1.7 for lattice trees and animals. The basic idea is again
the same as for self-avoiding walk and percolation, and we will be brief. We illus-
trate for a typical example of the left of Figure 6(a). As for percolation, we extract



566 T. HARA

FIG. 7. (b) Several cases of “long” segments for a lattice tree diagram. Vertices 1 through 8 are
summed over; they are here just for the explanation in the main text. (c) Diagrams of (b), after
extracting two long segments. (d) How to decompose the middle factor (with more loops) of (c-2).

two factors of long segments from the upper and lower lines connecting 0 and x,
and bound the rest by (cλ)N−3. However, we now consider the convolution G ∗G

appearing in the diagram as one segment. Three typical choices of long segments
are shown in Figure 7(b). Here each of 0-1-2, 3-4-5, and 6-7-8 is considered to be
a single segment.

Because of our modified definition of line segments, there are N segments for
upper and lower lines connecting 0 and x. Therefore, each long segment is at least
as long as |x|/N , and there are N2 choices of these long segments.

We now extract contributions of “long” segments from upper and lower lines.
Because of our modified definition of line segments, factors extracted will be either
Gx,N := sup|y|≥|x|/N G(y) (as before), or

sup
|y|≥|x|/N

(G ∗G)(y)≤ cβ2
(

N

|x|
)2α−d

(if 0 < 2α− d < d)(3.19)

(which is new), where the inequality comes from our assumption (1.45) and a basic
property of convolution, Lemma B.1 (a). Contributions from two long segments
are thus bounded by

cβ2
(

N

|x|
)2α

∨ cβ4
(

N

|x|
)4α−2d

.(3.20)

Examples of remaining factors are shown in Figure 7(c). Of these, (c-1) and
(c-3) are easily decomposed into (open) squares, and pose no problem. The middle
factor of (c-2) is more complicated, like several middle factors of Figure 5(c) for
percolation.

For this (and similar middle factors) we use the Schwarz inequality as we did
for percolation. Concretely (we increased the number of loops to illustrate more
complicated typical cases), we proceed as in Figure 7(d). We first use the Schwarz
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inequality to get two diagrams on the right of (d-1). The second factor is bounded
by S̄(0) + 1. The first factor is bounded by decomposing it into open squares and
pentagons P̄ , as shown in (d-2). Existing bound (1.25) guarantees that P̄ is finite
in d > 10.

In all these cases, we can collect at least (N − 3) factors of cλ and a factor of
(3.20) for each diagram. Multiplying by the number of different choices of “long”
segments (which is N2) and the number of N -loop diagrams (which is 2N ), and
summing over N proves the lemma.

The proof for lattice animals proceeds similarly and is omitted.

4. Proof of Lemma 1.9. In this section, we prove Lemma 1.9. The basic idea
of the proof is simple, but technical details can be complicated (especially for
noninteger exponents). Therefore, we first explain the framework of the proof in
Section 4.1, and give details in later sections.

4.1. Framework of the proof of Lemma 1.9.

4.1.1. Reduction of the proof to certain integrability conditions. Our goal is
to prove that G(α)(a), W(β,γ )(a), . . . , H(β)(a, b) are finite uniformly in a, b ∈ Z

d .
However, it is cumbersome to deal with |x|α-weighted quantities, especially when
α is not an even integer. We thus define (j, l = 1,2, . . . , d)

G
(α)
j (a) := |aj |αG(a), W

(β,γ )
j l (a) := (

G
(β)
j ∗G

(γ )
l

)
(a),(4.1)

T
(β,γ )
j l (a) := (

G
(β)
j ∗G

(γ )
l ∗G

)
(a),

(4.2)
S

(γ )
j (a) := (

G
(γ )
j ∗G ∗G ∗G

)
(a),

and similarly H
(β)
j (a, b). In view of an elementary inequality

|x|α =
(

d∑
j=1

x2
j

)α/2

≤ cα

d∑
j=1

|xj |α with

(4.3)

cα =
{

dα−1, (α ≥ 1),

dα, (0 < α < 1)

it suffices to prove that G
(α)
j (a), W

(β,γ )
j l (a), . . . ,H

(β)
j (a, b) are finite uniformly in

a, b ∈ Z
d .

Now, these quantities are represented in Fourier space as

G
(α)
j (a)=

∫
[−π,π ]d

ddk

(2π)d
eikaĜ

(α)
j (k),(4.4)
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W
(β,γ )
j l (a)=

∫
[−π,π ]d

ddk

(2π)d
eikaĜ

(β)
j (k)Ĝ

(γ )
l (k),(4.5)

T
(β,γ )
j l (a)=

∫
[−π,π ]d

ddk

(2π)d
eikaĜ

(β)
j (k)Ĝ

(γ )
l (k)Ĝ(k),(4.6)

S
(γ )
j (a)=

∫
[−π,π ]d

ddk

(2π)d
eikaĜ

(γ )
j (k)Ĝ(k)3,(4.7)

H
(β)
j (a, b)=

∫ ∫ ∫
[−π,π ]3d

ddk

(2π)d

ddl

(2π)d

ddp

(2π)d
ei(ka+lb)

× Ĝ
(β)
j (p)Ĝ(k)2Ĝ(l)2(4.8)

× Ĝ(p− k)Ĝ(p+ l)Ĝ(k+ l).

Therefore, if we have a good control over Ĝ
(α)
j (k), Ĝ

(β)
j (k), . . . , so that we can

prove integrability of Ĝ
(α)
j , Ĝ

(β)
j Ĝ

(γ )
l , . . . , we are done.

4.1.2. Proof of Lemma 1.9 for even integer exponents. The above scenario
works perfectly when α,β, γ are even integers, because when n is a positive inte-
ger (∂j := ∂

∂kj
),

G
(2n)
j (x) = |xj |2nG(x)= (−1)n

∫
[−π,π ]d

ddk

(2π)d
eik·x(∂j )

2nĜ(k)

(4.9)
�⇒ Ĝ

(2n)
j (k)= (−1)n(∂j )

2nĜ(k),

and a good bound on the derivative is given by the following lemma.

LEMMA 4.1. Suppose we have∑
x

|x|M |
(x)|<∞(4.10)

for a positive integer M . Then, Ĝ(k) of (1.18)–(1.22) satisfies, for all 1 ≤m≤M

and j = 1,2, . . . , d ∣∣∣∣ ∂m

∂km
j

Ĝ(k)

∣∣∣∣≤ c

|k|2+m
(4.11)

with a possibly m-dependent constant c.

PROOF OF LEMMA 1.9 WHEN α,β, γ ARE EVEN INTEGERS, ASSUMING

LEMMA 4.1. Lemma 1.9 for even integer exponents can now be proved, by
counting powers of k and checking integrability. When α (resp. β , γ ) is an even
positive integer which satisfies α ≤ φ (resp. β ≤ 
φ�, γ ≤ 
φ�), the assumption
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of the lemma (1.53) guarantees that (4.10) holds with M = α (resp. β , γ ). This
allows us to use (4.9) and (4.11) to get |Ĝ(m)

j (k)| ≤ c|k|−2−m (m= α, or β , or γ ).
This implies

G
(α)
j (a)≤

∫
[−π,π ]d

ddk

(2π)d

∣∣Ĝ(α)
j (k)

∣∣≤ ∫
[−π,π ]d

ddk

(2π)d

c

|k|2+α
,(4.12)

which is finite for 2+ α < d . Similarly, by (4.4) and (4.6),

W
(β,γ )
j l (a)≤

∫
[−π,π ]d

ddk

(2π)d

c

|k|2+β |k|2+γ
,

(4.13)

S
(γ )
j (a)≤

∫
[−π,π ]d

ddk

(2π)d

c

|k|2+γ |k|6 .

The first integral is finite if 4+ β + γ < d . The second integral is finite if 2+ γ +
6 < d . T

(β,γ )
j l (a) is handled in exactly the same way.

H
(β)
j (a, b) requires more care. Using (4.8), we have

H
(β)
j (a, b)≤

∫ ∫ ∫
[−π,π ]3d

ddk

(2π)d

ddl

(2π)d

ddp

(2π)d
(4.14)

× c

|p|2+β |k|4|l|4|p− k|2|p+ l|2|k+ l|2 .

This 3d-dimensional integral is seen to be finite by elementary power counting. In
short, these integrals are finite, as long as singularities at the origin are integrable
when some (or all) integral variables are sent to zero simultaneously (see [21,
22] for details). In our case, this is satisfied if 2 + β < d , 2 + β + 4 + 2 < 2d ,
2+ β + 14 < 3d . These conditions are satisfied when d > 6 and 4+ β < d . �

4.1.3. Proof of Lemma 1.9 for noninteger exponents, α < 
φ�. When α,β, γ

are not even integers, the Fourier transform of G
(α)
j (x)= |xj |αG(x) is not a simple

derivative of Ĝ(k). [When α is an odd integer, Fourier transform of (xj )
αG(x) is

given by a simple derivative; this is not true for |xj |αG(x).] The answer is given in
terms of fractional derivatives, which is explained in Section 4.3. As a result, we
get:

LEMMA 4.2. Suppose we have∑
x

|x|M |
(x)|<∞(4.15)

for a positive integer M . Then G of (1.18)–(1.22) satisfies, for any integer n ∈
[1,M ∧ (d − 2)] and for 0 < ε < 1,

|x1|n−εG(x)=G
(n−ε)
1 (x)=

∫
[−π,π ]d

ddk

(2π)d
eikxĜ

(n−ε)
1 (k)(4.16)
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with ∣∣Ĝ(n−ε)
1 (k1, �k)

∣∣≤ c

|k1|1−ε|�k|n|k| ,(4.17)

where c may depend on ε. Here k = (k1, �k) and |k| := (|k1|2 + |�k|2)1/2.

PROOF OF LEMMA 1.9 FOR NONINTEGER EXPONENTS, ASSUMING LEMMA

4.2. Thanks to Lemma 4.2, we have the bound (4.17) for 1≤ n≤ 
φ� ∧ (d − 2).
We estimate our quantities of interest one by one, using the above bound.

We start from Ḡ(α) when α < 
φ�. In this case, 1 ≤ n ≤ 
φ� is satisfied if we
write α = n− ε with ε ∈ (0,1). Therefore, the bound (4.17) allows us to conclude

G
(n−ε)
1 (a)≤

∫
[−π,π ]d

ddk

(2π)d

∣∣Ĝ(n−ε)
1 (k)

∣∣≤ ∫
[−π,π ]d

ddk

(2π)d

c

|k1|1−ε|�k|n|k| .(4.18)

Dividing the integration region according to |k1| > |�k| or not, we can easily see
that the above integral is finite as long as 1− ε < 1, n < d − 1, and 2+ n− ε < d .
(These conditions are equivalent to 2 + α < d .) This proves the lemma for Ḡ(α),
for α < 
φ�∧ (d−2). We need a separate argument to deal with Ḡ(α) for α > 
φ�,
to which we will come back later.

Controlling S̄(γ ) and H̄ (β) is similar. By Z
d -symmetry, it suffices to show that

S̄
(γ )
1 and H̄

(β)
1 are finite. 1 ≤ n ≤ 
φ� is satisfied for noninteger γ satisfying

γ ≤ 
φ�, if we write γ = n − ε with ε ∈ (0,1). Using (4.17) and the Fourier
representation (4.6), we have

S
(γ )
1 (a)≤

∫
[−π,π ]d

ddk

(2π)d

∣∣Ĝ(n−ε)
1 (k)Ĝ(k)3∣∣

(4.19)

≤
∫
[−π,π ]d

ddk

(2π)d

c

|k1|1−ε|�k|n|k| ×
1

|k|6 .

The integral on the right is finite as long as n < d − 1 and n + 8 − ε < d , or
equivalently, γ +8 < d . Similarly, writing β =m− δ, using (4.17) and the Fourier
representation (4.8), we have

H
(β)
1 (a, b)≤

∫ ∫ ∫
[−π,π ]3d

ddk

(2π)d

ddl

(2π)d

ddp

(2π)d

c

|p1|1−δ| �p|m|p|
(4.20)

× c

|k|4|l|4|p− k|2|p+ l|2|k+ l|2 .

This integral is finite as long as d > 6, m − δ + 4 < d , and m < d − 1. This
condition is satisfied if β < d − 4 and d > 6. These prove Lemma 1.9 for S̄(γ ) and
H̄ (β).
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Next we move on to W(β,γ ). By Z
d -symmetry, it suffices to show that W

(β,γ )
11

and W
(β,γ )
12 are finite. Writing β = m − δ and γ = n − ε, using (4.17) and the

Fourier representation (4.4),

W
(β,γ )
11 (a)≤

∫
[−π,π ]d

ddk

(2π)d

c

|k1|1−δ|�k|m|k| ×
c

|k1|1−ε|�k|n|k| .(4.21)

This integral is finite as long as n+m < d − 1, 2− ε− δ < 1, and (n+m+ 2)+
(2 − ε − δ) < d . These conditions are equivalent to β + γ < d − 4 and β + γ −
(
β� + 
γ �) < 1.

W
(β,γ )
12 is similar. By Z

d -symmetry, Ĝ
(γ )
2 obeys the same bound as Ĝ

(γ )
1 , if we

interchange k1 and k2. Writing k for k3, k4, . . . , kd , and using the Fourier repre-
sentation (4.4), we have

W
(β,γ )
12 (a)≤

∫
[−π,π ]d

ddk

(2π)d

c

|k1|1−δ(|k2|2 + |k|2)m/2|k|
(4.22)

× c

|k2|1−ε(|k1|2 + |k|2)n/2|k| .

This integral is seen to be finite if β+γ < d−4, by exhausting six cases depending
on the lengths of |k1|, |k2|, and |k|. We have thus proved Lemma 1.9 for W̄ (β,γ ).
Proof for T̄ (β,γ ) proceeds in exactly the same way and is omitted. �

4.1.4. Proof of Lemma 1.9 for noninteger α > 
φ�. Finally, we control Ḡ(α)

for α > 
φ�. This is the most complicated of all the cases relevant for Lemma 1.9.
In this case, n exceeds 
φ� if we write α = n − ε. Thus the assumption of the
lemma is not sufficient to guarantee the finiteness of ∂n

1 Ĝ(k), and we cannot rely
on the bound (4.17), which has been so useful in previous cases.

To overcome this difficulty, we proceed as follows. Instead of directly control-
ling the Fourier transform of G

(n−ε)
1 (a), we treat this quantity by considering it as

a product of |a1|1−ε and (a1)
n−1G(a). When n is even, this product has a different

sign from |a1|n−ε , but this suffices for our purpose.
The Fourier transform of (a1)

n−1G(a) is given by (i∂1)
n−1Ĝ(k). Using the

explicit differentiation formula [i.e., (4.31) in the proof of Lemma 4.1], we see that
terms in (i∂1)

n−1Ĝ(k) can be grouped into two: (1) terms with (n− 1) derivatives
on a single function [i.e., terms with ∂n−1

1 Ĵ (k) or ∂n−1
1 ĝ(k)], and (2) terms which

contain lower order derivatives of Ĵ and ĝ. We call the first group P̂ (k), and the
second Q̂(k). Explicitly,

P̂ (k)= ĝ(k)(i∂1)
n−1Ĵ (k)

{1− Ĵ (k)}2 + (i∂1)
n−1ĝ(k)

1− Ĵ (k)
,

(4.23)
Q̂(k)= (i∂1)

n−1Ĝ(k)− P̂ (k).
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We denote their inverse Fourier transforms by P(a) and Q(a), so that

G(a)= P(a)+Q(a) and
(4.24)

|a1|1−εG(a)= |a1|1−εP (a)+ |a1|1−εQ(a).

Our task is to show that two quantities on the right are finite uniformly in a.
We begin with |a1|1−εP (a). We introduce P̂1(k), P̂2(k), ψ̂1 and ψ̂2 as

P̂1(k) := ĝ(k)(i∂1)
n−1Ĵ (k)

{1− Ĵ (k)}2 := ψ̂1(k)(i∂1)
n−1Ĵ (k),

(4.25)

P̂2(k) := (i∂1)
n−1ĝ(k)

1− Ĵ (k)
:= ψ̂2(k)(i∂1)

n−1ĝ(k).

We only consider P1, because dealing with P2 is similar and easier.
Consider P1 in x-space, which reads

P1(a)=∑
y

(y1)
n−1J (y)ψ1(a − y).(4.26)

Multiply both sides by |a1|1−ε , and on the right-hand side use |a1|1−ε ≤ c(|a1 −
y1|1−ε + |y1|1−ε) with some constant c. As a result, we get two terms:

|a1|1−ε|P1(a)| ≤ c
∑
y

|y1|n−ε|J (y)| × |ψ1(a − y)|

+ c
∑
y

|y1|n−1|J (y)| × |a1 − y1|1−ε|ψ1(a − y)|
(4.27)

≤ c

[∑
y

|y1|n−ε|J (y)|
][

sup
x
|ψ1(x)|

]

+ c

[∑
y

|y1|n−1|J (y)|
][

sup
x
|x1|1−ε|ψ1(x)|

]
.

Our task is to show that the four factors are all finite.
First

∑
y |y1|n−ε|J (y)| is finite, because of our assumption (recall n− ε = α ≤

φ). This also shows that
∑

y |y1|n−1|J (y)| is finite.
To prove that supx |x1|1−ε|ψ1(x)| is finite, we use the following fact which is

proved in Section 4.4 using fractional derivatives:

|x1|1−εψ1(x)=
∫
[−π,π ]d

ddk

(2π)d
eikxψ̂

(1−ε)
1 (k) with

(4.28) ∣∣ψ̂(1−ε)
1 (k)

∣∣ ≤ c

|k1|1−ε|�k|3|k| .
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ψ̂
(1−ε)
1 (k) is integrable if d > 5− ε, and supx |x1|1−ε|ψ1(x)| and supx |ψ1(x)| are

finite [ψ1(0) is easily seen to be finite in d > 4 by (4.74)]. We have therefore shown
that (4.27) is finite uniformly in a.

We now turn to |a1|1−εQ(a)=Q
(1−ε)
1 (a). We will prove in Section 4.4:

|x1|1−εQ1(x)=
∫
[−π,π ]d

ddk

(2π)d
eikxQ̂

(1−ε)
1 (k) with

(4.29) ∣∣Q̂(1−ε)
1 (k)

∣∣ ≤ c

|k1|1−ε|�k|n|k| .

Q̂
(1−ε)
1 (k) is integrable in k, and thus |a1|1−εQ(a) is finite, as long as 2+ n− ε <

d , or α+ 2 < d .
We have thus shown that both |a|1−εP (a) and |a|1−εQ(a) are finite uniformly

in a, and the proof is complete.
In the following, we prove Lemma 4.1, Lemma 4.2, (4.28), and (4.29), one by

one.

4.2. Proof of Lemma 4.1. By Z
d -symmetry, it suffices to prove (4.11) for

j = 1, and we abbreviate ∂m for ∂m

∂km
1

. We first note that (4.10) implies

|∂mĝ(k)|, |∂mĴ (k)|<∞ for all m≤M.(4.30)

By explicit differentiation, we see from (1.18) that

∂mĜ(k)= ∂m

(
ĝ(k)

1− Ĵ (k)

)
=

m∑
p=0

(
m

p

)
(∂m−pĝ(k))∂p

(
1

1− Ĵ (k)

)
(4.31)

= ∂mĝ(k)+
m∑

p=1

(
m

p

)
(∂m−pĝ(k))

p+1∑
q=2

∑
�r

C�r
∏

�≥1[∂�Ĵ (k)]r�
{1− Ĵ (k)}q .

In the above, �r = {r�}�≥1 is a vector of nonnegative integers, C�r is a coefficient
which depends on �r . The vector �r satisfies∑

�≥1

�r� = p,
∑
�≥1

r� = q − 1,(4.32a)

r� = 0 for �+ q ≥ p+ 3.(4.32b)

Because ∂�Ĵ (k) are all finite (for relevant values of �) and because Ĵ (k) is even
in kj , we have for odd � satisfying �+ 1≤M

|∂�Ĵ (k)| ≤ sup
k

|∂�+1Ĵ (k)||k| = c|k|.(4.33)

By (4.32a), ∑
�≥2

(�− 1)r� =
∑
�≥1

�r� −
∑
�≥1

r� = p− q + 1(4.34)
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and we have

r1 =
∑
�≥1

r� −
∑
�≥2

r� ≥
∑
�≥1

r� −
∑
�≥2

(�− 1)r�

(4.35)
= q − 1− (p− q + 1)= 2q − p− 2.

We now combine (4.33) and (4.35), dividing into two cases:
(i) For q sufficiently large such that 2q > p + 2, we have r1 > 0 by (4.35).

We have at least r1 powers of |k| in the numerator, and the terms in (4.31) with
2q > p+ 2 are bounded as

|case (i) of (4.31)| ≤ c
|k|r1

|k|2q
= c|k|2q−p−2−2q = c|k|−p−2.(4.36)

(ii) For 2q ≤ p+ 2, it may happen that there is no first derivative in the numera-
tor. But we at least know that the numerator is finite. We simply bound these terms
as

|case (ii) of (4.31)| ≤ c

|k|2q
≤ c

|k|p+2 .(4.37)

Combining these two cases, we get (for m≤M)

|∂mĜ(k)| ≤ c

m∑
p=0

[|k|−p−2 + |k|−p−2] ≤ c

|k|m+2 .(4.38)

This proves (4.11). �

4.3. Fourier analysis of fractional powers. One way to prove that a given
function f (x) decays at least as fast as |x|−n when |x| →∞, where n is a pos-
itive integer, is to show that the nth-derivative of its Fourier transform f̂ (k) is
integrable. However, there are cases where the nth-derivative is not integrable,
whereas suitably defined (n − ε)th-derivative is, for some 0 < ε < 1. We then
expect that f (x) decays at least as fast as |x|−(n−ε). In this subsection, we sum-
marize results which will be useful in such cases. The subject is closely related to
fractional derivatives and can be considered as a special case of Weyl fractional
derivatives ([24], Section 19) if we consider f (x) as the “Fourier coefficient” of
f̂ (k).

In this subsection, f (x) : Zd → R always denotes a Z
d -symmetric function,

which is represented as

f (x)=
∫
[−π,π ]d

ddk

(2π)d
eikxf̂ (k) with f̂ (k) ∈ L1([−π,π ]d)(4.39)

and f̂ (k) is periodic in each kj (k = 1,2, . . . , d) with period 2π . We treat the first
component k1 of k differently from k2, k3, . . . , kd , and write k = (k1, �k). Also, we
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write ∂1f̂ (k) for the partial derivative with respect to the first argument of f̂ . We
define

sgnx1 =
⎧⎨
⎩

1, (x1 > 0),
0, (x1 = 0),
−1, (x1 < 0),

(4.40)

and (α ∈R)

f
(α)
1 (x) := |x1|αI [x1 �= 0]f (x), f ′

1
(α)

(x) := |x1|α(sgnx1)f (x).(4.41)

Note that the prime on f ′
1
(α)

(x) does not mean a derivative. We introduce for 0 <

ε < 1

Lo,ε(p1) := 1

2πi�(ε)

∫ ∞
0

dt tε−1 sinp1

cosh t − cosp1
,

(4.42)

Le,ε(p1) := 1

2π�(ε)

∫ ∞
0

dt tε−1 cosp1 − e−t

cosh t − cosp1
.

These are Fourier transforms of |x1|−ε(sgnx1) and |x1|−εI [x1 �= 0] respectively,
in the sense that

|x1|−ε(sgnx1)=
∫ π

−π
dp1e

ip1x1Lo,ε(p1),

(4.43)
|x1|−εI [x1 �= 0] =

∫ π

−π
dp1e

ip1x1Le,ε(p1)

hold. These identities can be proved, for example, by interchanging the order of t

and p1 integrations and using residue calculus.
We begin with the following proposition which represents f

(−ε)
1 (x) and

f ′
1
(−ε)

(x) in terms of Fourier transforms for 0 < ε < 1. The proposition looks
almost obvious in view of (4.43); it is a special case of a well-known fact that the
Fourier transform of f (x)g(x) is given by f̂ ∗ ĝ.

PROPOSITION 4.3. Suppose f (x) is represented by (4.39), and define for 0 <

ε < 1

f̂
(−ε)
1 (k) :=

∫ π

−π
Le,ε(p1)f̂ (k1 − p1, �k) dp1,

(4.44)
f̂ ′(−ε)

1 (k) :=
∫ π

−π
Lo,ε(p1)f̂ (k1 − p1, �k) dp1.

Then we have

f
(−ε)
1 (x)=

∫
[−π,π ]d

ddk

(2π)d
eikxf̂

(−ε)
1 (k),

(4.45)

f ′
1
(−ε)

(x)=
∫
[−π,π ]d

ddk

(2π)d
eikxf̂ ′

1
(−ε)

(k).
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For f
(α)
1 (x) with α > 0, which is of our main interest, several representations

with differing conditions of applicability can be obtained. Of these, the following
will be useful for our analysis.

PROPOSITION 4.4. Suppose f (x) is represented by (4.39). Let m be a positive
integer, 0 < ε < 1, and assume (∂1)

mf̂ (k) is integrable in k1 for each �k �= �0. Define

f̂
(m−ε)
1 (k1, �k) :=

∫ π

−π
L∗,ε(p1){(i∂1)

mf̂ (k1 − p1, �k)}dp1,(4.46)

where L∗,ε =Lo,ε if m is odd, and L∗,ε = Le,ε if m is even. Then,

f
(m−ε)
1 (x)= lim

δ↓0

∫
[−π,π ]d−1

|�k|>δ

dd−1�k
(2π)d−1

∫ π

−π

dk1

2π
eikxf̂

(m−ε)
1 (k).(4.47)

If we further assume f̂
(m−ε)
1 ∈ L1([−π,π ]d), then

f
(m−ε)
1 (x)=

∫
[−π,π ]d

ddk

(2π)d
eikxf̂

(m−ε)
1 (k).(4.48)

As for the integral kernels, we have:

PROPOSITION 4.5. Fix 0 < ε < 1. Lo,ε(p1) is pure imaginary, odd in p1, and
satisfies for p1 ∈ [−π,π ]

|Lo,ε(p1)| ≤ 1
2 |p1|ε−1, |∂Lo,ε(p1)| ≤ |p1|ε−2.(4.49)

Le,ε(p1) is real-valued, even in p1, and satisfies for p1 ∈ [−π,π ]

− log 2

π
≤ Le,ε(p1)≤ |p1|ε−1

π(1− ε)
, |∂Le,ε(p1)| ≤ |p1|ε−2

π
.(4.50)

The above bounds on the derivatives of Lo,ε and Le,ε are not optimal, in the
sense that the coefficients on the right-hand side can be multiplied by 1− ε. How-
ever, the current bounds suffice for our purpose.

We in the following briefly prove these propositions, in this order. Because
Proposition 4.5 can be proved independently of the rest, we use its result (espe-
cially the integrability of L∗,ε) in the proofs of Propositions 4.3 and 4.4.

SKETCH OF THE PROOF OF PROPOSITION 4.3. The proof is almost identical
for f

(−ε)
1 and f ′

1
(−ε), and we only treat f

(−ε)
1 . Note first that f̂

(−ε)
1 is well defined

and is integrable, thanks to the integrability of Le,ε and f̂ . We calculate (4.45)
using the definition of Le,ε . Starting from∫
[−π,π ]d

ddk

(2π)d
eikxf̂

(−ε)
1 (k)=

∫
[−π,π ]d

ddk

(2π)d
eikx

∫ π

−π
dp1Le,ε(p1)f̂ (k1−p1, �k),
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we write the d-dimensional integral as an iterated integral (guaranteed by the in-
tegrability of Le,ε and f̂ ) and then change variables from k1,p1 to k′1 = k1 −
p1,p

′
1 = p1. By the periodicity of f̂ , we get∫

[−π,π ]d−1

dd−1�k
(2π)d−1 ei�k�x

∫ π

−π

dk1

2π
eik1x1

∫ π

−π
dp1Le,ε(p1)f̂ (k1 − p1, �k)

=
∫
[−π,π ]d−1

dd−1�k
(2π)d−1 ei�k�x

∫ π

−π

dk′1
2π

×
∫ π

−π
dp′1ei(k′1+p′1)x1Le,ε(p

′
1)f̂ (k′1, �k)(4.51)

=
∫
[−π,π ]d

ddk

(2π)d
eikxf̂ (k1, �k)

∫ π

−π
dp1e

ip1x1Le,ε(p1)

= f (x)

∫ π

−π
dp1e

ip1x1Le,ε(p1).

Now the last integral is |x1|−εI [x1 �= 0] by (4.43). �

SKETCH OF THE PROOF OF PROPOSITION 4.4. We deal with even m only—
odd m can be treated in the same way. Because Le,ε is integrable and (i∂1)

mf̂ (k)

is integrable in k1 for �k �= �0, we can interchange the p1-integral and (i∂1)
m to get

f̂
(m−ε)
1 (k1, �k)= (i∂1)

m
∫ π

−π
Le,ε(p1)f̂ (k1 − p1, �k) dp1

(4.52)
= (i∂1)

mf̂
(−ε)
1 (k1, �k)

for �k �= �0. Using this, the right-hand side of (4.47) can be calculated as

lim
δ↓0

∫
[−π,π ]d−1

|�k|>δ

dd−1�k
(2π)d−1

∫ π

−π

dk1

2π
eikxf̂

(m−ε)
1 (k)

= lim
δ↓0

∫
[−π,π ]d−1

|�k|>δ

dd−1�k
(2π)d−1

∫ π

−π

dk1

2π
eikx{(i∂1)

mf̂
(−ε)
1 (k1, �k)

}
(4.53)

= (x1)
m lim

δ↓0

∫
[−π,π ]d−1

|�k|>δ

dd−1�k
(2π)d−1

∫ π

−π

dk1

2π
eikxf̂

(−ε)
1 (k1, �k)

= (x1)
m

∫
[−π,π ]d

ddk

(2π)d
eikxf̂

(−ε)
1 (k1, �k).

Here the second equality follows from integration by parts with respect to k1,
and the last equality follows because f̂

(−ε)
1 is integrable in k. In view of Proposi-
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tion 4.3, the integral on the far right is nothing but f
(−ε)
1 (x) for even m, and we

get (4.47). Now (4.48) follows trivially. �

SKETCH OF THE PROOF OF PROPOSITION 4.5. That iLo,ε(p1) is odd in p1
and is positive for p1 > 0 is easily seen from its integral representation (4.42). The
integral can be performed exactly by residue calculus, and we get for 0 < p1 < π

iLo,ε(p1)
(4.54)

= csc((π/2)ε)

2�(ε)

[
pε−1

1 −
∞∑

n=1

{(2πn− p1)
ε−1 − (2πn+ p1)

ε−1}
]
.

As the summand is positive, we immediately get for 0 < p1 < π

0≤ iLo,ε(p1)≤ csc((π/2)ε)

2�(ε)
pε−1

1 = Co,εp
ε−1
1

(4.55)

with Co,ε := csc((π/2)ε)

2�(ε)
.

The coefficient Co,ε is increasing in ε for 0 < ε ≤ 1 and is bounded by its value at
ε = 1: Co,ε ≤ 1/2. We thus get the first half of (4.49).

Differentiating (4.54), we get

i∂Lo,ε(p1)
(4.56)

=−Co,ε(1− ε)

[
pε−2

1 +
∞∑

n=1

{(2πn− p1)
ε−2 + (2πn+ p1)

ε−2}
]
.

This is even in p1 and is obviously negative. To get its lower bound, we bound the
summation by its value at p1 = π (because the summand is increasing in |p1|), to
get

∞∑
n=1

{(2πn− p1)
ε−2 + (2πn+ p1)

ε−2}

≤
∞∑

n=1

{(2πn− π)ε−2 + (2πn+ π)ε−2}(4.57)

= πε−2

[
1+ 2

∞∑
n=1

(2n+ 1)ε−2

]
.

Because (2x + 1)ε−2 is convex, we can bound the sum as

∞∑
n=1

(2n+ 1)ε−2 ≤
∫ ∞

1/2
(2x + 1)ε−2 dx = 2ε−1

2(1− ε)
= 2ε−2

1− ε
.(4.58)
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As a result, we get

−i∂Lo,ε(p1)≤ Co,ε(1− ε)pε−2
1 +Co,επ

ε−2(1− ε+ 2ε−1)
(4.59)

≤ 1− ε

2
pε−2

1 + 1

2π
.

In the last step above, we used Co,ε ≤ 1/2 and the fact that πε−2(1− ε+ 2ε−1) is
increasing in ε and is bounded by its value at ε = 1, that is, by 1/π .

As for Le,ε(p1), we start from an integral representation of its derivative:

∂Le,ε(p1)=− sinp1

2π�(ε)

∫ ∞
0

dt
tε−1 sinh t

(cosh t − cosp1)2

=− sinp1

2π�(ε)
lim
δ→0

[
δε−1

cosh δ− cosp1
(4.60)

+ (ε− 1)

∫ ∞
δ

dt
tε−2

cosh t − cosp1

]
,

where in the second step we integrated by parts. The first line of (4.60) shows that
∂Le,ε(p1) is negative. The integral on the second line can be performed by residue
calculus, and leads to the following representation:

∂Le,ε(p1)=−Ce,ε

[
pε−2

1 −
∞∑

n=1

{(2πn− p1)
ε−2

(4.61)

− (2πn+ p1)
ε−2}

]
,

with Ce,ε = (1 − ε) sec(π
2 ε)/{2�(ε)}. The coefficient Ce,ε is increasing in ε for

0 < ε < 1 and is bounded by its limiting value at ε = 1−: Ce,ε ≤ 1/π . Because the
summand in (4.61) is positive, we get

∂Le,ε(p1)≥−Ce,εp
ε−2
1 ≥− 1

π
pε−2

1 .(4.62)

Finally, we turn to Le,ε(p1). Because ∂Le,ε(p1) is negative, we can get a lower
bound on Le,ε(p1) as

Le,ε(p1) ≥ Le,ε(π)=− 1

π�(ε)

∫ ∞
0

tε−1

et + 1
dt

(4.63)

= 1

π

∞∑
n=1

(−1)n

nε
≥− log 2

π
,



580 T. HARA

where in the last step we bounded the sum by its value at ε = 1−. To get an upper
bound, we integrate (4.61) from p1 to π , to get

Le,ε(p1)= Ce,ε

1− ε

[
pε−1

1 − πε−1

+
∞∑

n=1

{(2πn− p1)
ε−1 + (2πn+ p1)

ε−1(4.64)

− (2πn− π)ε−1 − (2πn+ π)ε−1}
]
+Le,ε(π).

The sum in the above is negative because (2πn − p)ε−1 + (2πn + p)ε−1 is in-
creasing in p. Because Le,ε(π)≤ 0 as is seen in (4.63), we get an upper bound

Le,ε(p1)≤ Ce,ε

1− ε
(pε−1

1 − πε−1)≤ Ce,ε

1− ε
pε−1

1 ≤ 1

π(1− ε)
pε−1

1 .(4.65) �

4.4. Bounds on the Fourier transform of “fractionally weighted” two-point
functions and related quantities. In this subsection, we make use of the represen-
tation obtained in the previous subsection and prove bounds on the Fourier trans-
form of G

(α)
j (x), Lemma 4.2, and two bounds (4.28) and (4.29). We start from the

following simple lemma concerning one-dimensional convolution, whose proof is
postponed to the end of this section.

LEMMA 4.6. Fix 0 < ε < 1 and ρ > 1, and suppose

|f (k1, �k)| ≤ 1

|k|ρ , |∂1f (k1, �k)| ≤ 1

|k|ρ+1(4.66)

and

|g(p1)| ≤ |p1|ε−1, |∂1g(p1)| ≤ |p1|ε−2.(4.67)

Then the 1-dimensional convolution

(∂1f ∗ g)(k1, �k)=
∫ π

−π
g(p1)∂1f (k1 − p1, �k) dp1(4.68)

obeys

|(∂1f ∗ g)(k1, �k)| ≤ c×
{ |k1|ε−1|�k|−ρ (for |k1| ≤ |�k|)
|k1|ε−2|�k|1−ρ (for |k1| ≥ |�k|)

}
(4.69)

≈ c

|k1|1−ε|�k|ρ−1|k|
with a possibly ε-dependent constant c.
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PROOF OF LEMMA 4.2. We consider only positive k1; bounds on negative k1
follow by Z

d -symmetry. We start from the following expression for the Fourier
transform suggested by (4.46):

Ĝ
(n−ε)
1 (k)=

∫ π

−π
L∗,ε(p1){(i∂1)

nĜ(k1 − p1, �k)}dp1,(4.70)

where L∗,ε = Lo,ε if n is odd, and L∗,ε = Le,ε if n is even. [We will soon check
that the above Ĝ

(n−ε)
1 (k) in fact satisfies (4.16).] Lemma 4.1 gives

|∂n
1 Ĝ(k)| ≤ c|k|−2−n for n≤M,(4.71)

and Proposition 4.5 gives

|L∗,ε(p)| ≤ c|p|ε−1, |∂L∗,ε(p)| ≤ c|p|ε−2.(4.72)

We combine these and estimate (4.70) by the following lemma, by setting f (k)=
∂n−1

1 Ĝ and ρ = n+ 1. (We can apply the lemma, because ρ > 1 thanks to n≥ 1).
The result turns out to be (4.17).

The proof is complete if we show that Ĝ
(n−ε)
1 (k) of (4.70) does satisfy (4.16)

for 1 ≤ n≤M ∧ (d − 2). For this, note that (4.71) guarantees the integrability of
∂n

1 Ĝ(k) in k1 for fixed �k �= �0. Also, (4.17) means Ĝ
(n−ε)
1 (k) is integrable in k, for

n under consideration. Therefore Proposition 4.4 can be applied and (4.48) holds
for G, which is nothing but (4.16). �

PROOF OF (4.28). As we did for G
(n−ε)
1 , we start from the following expres-

sion for the Fourier transform suggested by (4.46):

ψ̂
(1−ε)
1 (k)=

∫ π

−π
Lo,ε(k1 − p1)∂1ψ̂1(p1, �k) dp1.(4.73)

By Ĵpc(0)= 1, the estimate (1.24), and the fact that Ĵ (k) is even in k1, it is easily
seen that ψ̂1(k) obeys the bound

|ψ̂1(k)| ≤ c|k|−4, |∂1ψ̂1(k)| ≤ c|k|−5.(4.74)

So Lemma 4.6 implies the desired bound,

|ψ̂(1−ε)
1 (k)| ≤ c

|k1|1−ε|�k|3|k| .(4.75)

The proof is complete if we show that the inverse Fourier transform of ψ̂
(1−ε)
1 (k) is

equal to |x1|1−εψ1(x), but this can be done in exactly the same way as for Ĝ(n−ε).
�

PROOF OF (4.29). The proof for |a1|1−εQ(a)=Q
(1−ε)
1 (a) is similar. We start

from

Q̂
(1−ε)
1 (k)=

∫ π

−π
Lo,ε(k1 − p1)∂1Q(p1, �k) dp1.(4.76)
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We first note that the total number of differentiations appearing in each term of
Q̂(k) is n − 1, and that of ∂1Q̂(k) is n. Second, we note that all the derivatives
appearing in the expression of ∂1Q̂(k) are finite; this is because the highest order
of differentiation in Q̂(k) is n− 2, and thus the highest order of differentiation in
∂1Q̂(k) is n− 1≤ 
φ�. So the expression for ∂1Q̂(k) now reads [cf. (4.31)]:

∂1Q̂(k)=
n∑

p=1

(
n

p

)(
∂

n−p
1 ĝ(k)

)p+1∑
q=2

∑
�r

C�r
∏

�≥1[∂�
1 Ĵ (k)]r�

{1− Ĵ (k)}q ,(4.77)

but C�r = 0 if p = n and q = 2 (i.e., only � < n is allowed in the numerator).
Arguing as in the proof of Lemma 4.1 and counting powers of |k| of each term, we
get

|Q̂(k)| ≤ c|k|−(1+n), |∂1Q̂(k)| ≤ c|k|−(2+n).(4.78)

Therefore, estimating (4.76) using Lemma 4.6 leads to∣∣Q̂(1−ε)
1 (k)

∣∣≤ c

|k1|1−ε|�k|n|k| .(4.79)

Finally, we can show that the inverse Fourier transform of the above Q̂
(1−ε)
1 (k) is

in fact |x1|1−εQ(x), just as we did for Ĝ
(n−ε)
1 (k). �

PROOF OF LEMMA 4.6. We first rewrite (4.68), dividing the integration region
and integrating by parts as follows. To simplify notation, we write a := k1 and
b := |�k|:

(∂1f ∗ g)(k)=
∫
|p1|<a/2

g(a − p1)∂1f (p1, �k) dp1

+
∫
a/2<|p1|<π

g(a − p1)∂1f (p1, �k) dp1

= [g(a − p1)f (p1, �k)]a/2
−a/2(4.80)

+
∫
|p1|<a/2

∂1g(a − p1)f (p1, �k) dp1

+
∫
a/2<|p1|<π

g(a − p1)∂1f (p1, �k) dp1.

The integration by parts was done only for the interval [−a/2, a/2]—this is jus-
tified because there is no singularity of g(p1) in this interval. We estimate these
terms one by one.

The first and second terms are simple. For the first term, we have

|[g(a − p1)f (p1, �k)]a/2
−a/2| ≤

∣∣∣∣g
(

a

2

)
f

(
a

2
, �k

)∣∣∣∣+
∣∣∣∣g

(
3a

2

)
f

(
−a

2
, �k

)∣∣∣∣
(4.81)

≤ caε−1 × (a2 + b2)−ρ/2.
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For the second term, we have∣∣∣∣
∫
|p1|<a/2

∂g(a − p1)f (p1, �k) dp1

∣∣∣∣
≤ c

∫
|p1|<a/2

|a − p1|ε−2(p2
1 + b2)−ρ/2 dp1

(4.82)

≤ caε−2
∫ a/2

−a/2
(p2

1 + b2)−ρ/2 dp1

≤ caε−2 × (a ∧ b)b−ρ = caε−1b1−ρ(a ∨ b)−1.

The third term is bounded and divided as∣∣∣∣
∫
a/2<|p1|<π

g(a − p1)∂1f (p1, �k) dp1

∣∣∣∣
≤ c

∫
a/2<|p1|<π

|a − p1|ε−1(p2
1 + b2)−(ρ+1)/2 dp1

(4.83)

=
∫ −a/2

−π
(· · ·) dp1 +

∫ 3a/2

a/2
(· · ·) dp1 +

∫ π

3a/2
(· · ·) dp1

:= (I )+ (II)+ (III).

In (I) and (III), we have |a−p1| ≥ |p1|/3 and |a−p1|ε−1 ≤ 31−εpε−1
1 . Therefore,

we can bound them as

(I )+ (III)≤ c

∫ ∞
a/2

(p2
1 + b2)−(ρ+1)/2pε−1

1 dp1.(4.84)

This integral can be bounded in two ways. First, by neglecting b2 in the integrand,

(I )+ (III)≤ c

∫ ∞
a/2

(p2
1 + b2)−(ρ+1)/2pε−1

1 dp1

(4.85)
≤

∫ ∞
a/2

p
ε−1−ρ−1
1 dp1 = caε−ρ−1.

Also, extending the integration region to p1 ≥ 0 and changing the variable to q1 =
p1/b,

(I )+ (III)≤ c

∫ ∞
a/2

(p2
1 + b2)−(ρ+1)/2pε−1

1 dp1

(4.86)
≤ bε−ρ−1

∫ ∞
0

(1+ q2
1 )−(ρ+1)/2qε−1

1 dq1.

For 0 < ε < ρ + 1, the last integral is finite. We have thus shown (I ) + (III) ≤
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c(a ∨ b)ε−ρ−1. Now in (II), p2
1 + b2 is of the same order as a2 + b2. Thus

(II) ≤ c(a2 + b2)−(ρ+1)/2
∫ 3a/2

a/2
|a − p1|ε−1 dp1

(4.87)
= c(a2 + b2)−(ρ+1)/2aε.

We can thus conclude

(I )+ (II)+ (III)≤ c(a ∨ b)ε−ρ−1 + c(a2 + b2)−(ρ+1)/2aε

(4.88)
≤ c(a ∨ b)ε−ρ−1.

Combining (4.81), (4.82) and (4.88), we get

|(∂1f ∗ g)(k1, �k)|
≤ c[aε−1(a ∨ b)−ρ + aε−1b1−ρ(a ∨ b)−1 + (a ∨ b)ε−ρ−1](4.89)

≤ c

{
aε−1b−ρ (a < b),
aε−2b1−ρ (a ≥ b),

which proves the lemma [note that (a ∨ b)≤ |k| ≤ 2(a ∨ b)]. �

APPENDIX A: QUANTITIES AT p = pc

Proposition 1.3 is a slightly improved version of corresponding results obtained
in previous works: [10, 11] (SAW), [8] (percolation), and [9] (LTLA). It is slightly
improved, in the sense that original works mainly dealt with quantities for p < pc

(although all the estimates were uniform in p). More precisely, estimates (1.24)
and (1.26)–(1.28), the Fourier representation (1.18), and the bound (1.25) are
proved for p < pc; the critical point pc is characterized by

lim
p↑pc

Ĵp(0)= 1(A.1)

instead of (1.30). We in this Appendix show how to extend these results to p = pc,
so that we have Proposition 1.3.

1. We first explain how to extend estimates (1.24) and (1.26)–(1.28) to p = pc.
Note that Gp(x) is left continuous and increasing in p; this is because Gp(x) can
be realized as an increasing limit (finite sum/volume approximation) of a func-
tion which is continuous and increasing in p. [In fact Gp(x) for percolation is
continuous in p for all p ([4], page 203), although we do not need this fact.] The
left continuity of Gp(x) in p and the dominated convergence theorem establish
(1.26)–(1.28) at p = pc. Diagrammatic bounds of the lace expansion and the dom-
inated convergence theorem now guarantee absolute convergence of the sums over
x and n defining 
̂p(k) at p = pc. [We are not using continuity of 
̂p(k) here; we
just bound each term of 
̂pc(k) in terms of quantities appearing in (1.26)–(1.28)
at p = pc.] Therefore (1.24) holds even at p = pc.
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2. Moreover, (1.23) is now proved, where h(n)(x) is obtained by bound-
ing diagrams for 


(n)
pc (x) in terms of (products of) critical two-point func-

tion Gpc . Finally, both equations of (1.10) hold even at p = pc for f (x) =

pc(x), gpc(x), Jpc(x).

3. We will, later in this Appendix, show that 
̂p(k) and ĝp(k) are left continu-
ous at p = pc. Equation (1.30) now follows from (A.1) by the left-continuity.

4. Finally, we deal with (1.18) and (1.25) at p = pc. This is rather subtle, be-
cause Gpc(x) is not summable as Theorem 1.1 implies. To make sense of (1.18), let
p ↑ pc on both sides of (1.18). By the left continuity of Gp(x) in p, the left-hand
side of (1.18) goes to Gpc(x). On the right-hand side, the integrand is integrable
in k uniformly in p < pc, thanks to the infrared bound (1.25) (recall that we are
considering d > 2).

Therefore, by the dominated convergence theorem and the left-continuity of

̂p(k) and ĝp(k) stated above,

Gpc(x)= lim
p↑pc

Gp(x)= lim
p↑pc

∫
[−π,π ]d

ddk

(2π)d
eikx ĝp(k)

1− Ĵp(k)

=
∫
[−π,π ]d

ddk

(2π)d
eikx

(
lim
p↑pc

ĝp(k)

1− Ĵp(k)

)
(A.2)

=
∫
[−π,π ]d

ddk

(2π)d
eikx ĝpc(k)

1− Ĵpc(k)
.

Thus, we still have the Fourier representation (1.18) and the infrared bound (1.25)
at p = pc, with the understanding that Ĝpc(k) is defined by the integrand of the
right-hand side of (A.2).

5. Our remaining task is to prove the left-continuity of Ĵp(k) and ĝp(k) at
p = pc. The proof is based on the following lemma:

LEMMA A.1. Consider SAW, percolation, or LTLA for which Proposition 1.3
holds. 


(n)
p (x) is continuous in p for p < pc, and is left-continuous at p = pc.

PROOF THAT 
̂p(k) IS CONTINUOUS IN p FOR p ≤ pc , ASSUMING LEMMA

A.1. Equation (1.23) implies the double sum
∑

x

∑
n(−1)n


(n)
p (x)e−ikx is ab-

solutely and uniformly convergent for p ≤ pc, and Lemma A.1 claims the sum-
mand is continuous in p for p < pc and is left-continuous at p = pc. Because the
uniform convergent limit of a continuous function is continuous, 
̂p(k) is contin-
uous in p for p < pc, and is left-continuous at p = pc. Ĵp(k) and ĝp(k) are now
left-continuous at p = pc, as is easily seen from their definition. �

In the rest of this Appendix, we prove Lemma A.1 above.
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A.1. Proof of Lemma A.1 for SAW and LTLA. For self-avoiding walk and
lattice trees/animals, Lemma A.1 follows rather easily. 


(n)
p (x) of these mod-

els are, by definition, power series in p with positive coefficients: 

(n)
p (x) =∑∞

m=0 am(n, x)pm. Equation (1.23) guarantees that the radius of convergence of
this series is at least pc, and that the series converges absolutely at p = pc. The
finite sum fM(p) := ∑M

m=0 am(n, x)pm is of course continuous in p. Therefore,



(n)
p (x), being a uniformly convergent limit of a continuous function fM(p), is

thus continuous in p for p < pc and is left-continuous at p = pc.

A.2. Proof of Lemma A.1 for percolation. Proving Lemma A.1 for perco-
lation is more subtle, because finite volume approximation to 


(n)
p (x) does not

seem to be either increasing or decreasing in p. To overcome this difficulty, we
decompose 
p(x) further, and express it in terms of increasing/decreasing events.

Step 1. We begin by recalling the definitions of 

(n)
p (x). Because the following

description is very brief, the reader is advised to consult [8, 12, 26] for details.

• Given a set of sites A ∈ Z
d and a bond configuration, two sites x and y are

connected in A if there is a path of occupied bonds from x to y having all of
its sites in A, or if x = y ∈ A. The set of all sites which are connected to x is
denoted by C(x). [This C(x) has nothing to do with C(x) of Theorem 1.4.]

• Given a set of sites A ∈ Z
d and a bond configuration, two sites x and y are

connected through A if they are connected but they are not connected in Z
d\A.

• Given a bond configuration and a bond {u, v}, we define C̃{u,v}(x) to be the
set of sites which remain connected to x in the new configuration obtained by
setting {u, v} to be vacant.

For x, y ∈ Z
d and A ⊂ Z

d , let E0(x, y) be the event that x and y are doubly
connected, and let E2(x, y;A) be the event that x is connected to y through A

and there is no pivotal bond for the connection from x to y whose first endpoint is
connected to x through A. We now define


(0)
p (x) := E[I [E0(0, x)]](A.3)

and for n≥ 1


(n)
p (x) := ∑

(y1,y
′
1)

p
∑

(y2,y
′
2)

p · · · ∑
(yn,y′n)

p
(n)
p (x;y1, y

′
1, y2, y

′
2, . . . , yn, y

′
n).(A.4)

Here the sums are over all directed pairs of nearest neighbor sites, and


(n)
p (x;y1, y

′
1, . . . , yn, y

′
n)

(A.5)
:= E0

[
I0E1

[
I1E2

[
I2 · · ·En−1

[
In−1En[In]] · · ·]]],

where we abbreviated I0 = I [E0(0, y1)], Ij = I [E(y′j , yj+1; C̃j−1)] with C̃j−1 =
C̃
{yj ,y′j }(y′j−1) and yn+1 = x, and Ej ’s represent nested expectations.
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Step 2. We in the following prove that 

(0)
p (x) and 


(n)
p (x;y1, y

′
1, . . . , yn, y

′
n)

are continuous in p for p < pc and are left continuous at p = pc. Once this is
done, continuity of 


(n)
p (x) follows easily as follows. In the proof of Proposition

1.3, one proves that there is a function h(n)(x;y1, y
′
1, . . . , yn, y

′
n) which satisfies


(n)
p (x;y1, y

′
1, . . . , yn, y

′
n)≤ h(n)(x;y1, y

′
1, . . . , yn, y

′
n) (p ≤ pc),(A.6)

and ∑
(y1,y

′
1)

p
∑

(y2,y
′
2)

p . . .
∑

(yn,y′n)

ph(n)(x;y1, y
′
1, . . . , yn, y

′
n) <∞.(A.7)

This bound guaranties that the sum over (yj , y
′
j ) (j = 1,2, . . . , n) in (A.4) con-

verges uniformly and absolutely for p ≤ pc. This implies the limit 

(n)
p (x) is con-

tinuous for p < pc and is left continuous at p = pc.
Our task has thus been reduced to proving continuity of 


(0)
p (x) and 


(n)
p (x;y1,

y′1, . . . , yn, y
′
n). We consider 


(n)
p (x;y1, y

′
1, . . . , yn, y

′
n) only, because 


(0)
p (x) is

(much) easier.
Step 3. To prove continuity of 


(n)
p (x;y1, y

′
1, . . . , yn, y

′
n), we express it in terms

of increasing/decreasing events. For A⊂ Z
d , we define:

• F1(x, y;A): the event that x and y are connected in Z
d\A.

• F2(x, y;A): the event that x and y are connected, and x and z are connected in
Z

d\A, where z is the first endpoint of the last pivotal bond for the connection
from x to y. (When there is no pivotal bond for the connection from x to y, F2
is simply the event that x and y are connected.)

Note that F1(x, y;A) ⊂ F2(x, y;A) and E2(x, y;A) = F2(x, y;A)\F1(x, y;A).
So, abbreviating I

(ε)
j = I [Fε(y

′
j , yj+1; C̃j−1)] (for ε = 1,2), we have Ij = I

(2)
j −

I
(1)
j . Using this, we can decompose as


(n)
p (x;y1, y

′
1, . . . , yn, y

′
n)=

∑
�ε

(−1)
∑n

j=1 εj 
(n,�ε)
p (x;y1, y

′
1, . . . , yn, y

′
n),(A.8)

where �ε stands for (ε1, ε2, . . . , εn), the sum over �ε runs over all choices of εj =
1,2, and


(n,�ε)
p (x;y1, y

′
1, . . . , yn, y

′
n)

(A.9)
:= E0

[
I0E1

[
I

(ε1)
1 E2

[
I

(ε2)
2 · · ·En−1

[
I

(εn−1)

n−1 En

[
I (εn)
n

]] · · ·]]].
We in the following prove that 


(n,�ε)
p is continuous in p for every choice of εj =

1,2 (1≤ j ≤ n). Continuity of 

(n)
p in p immediately follows from this.

Step 4. Continuity of 

(n,�ε)
p is proved by considering its finite volume approx-

imations which are increasing/decreasing in the volume. Let � be a finite set of
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sites in Z
d , and write ∂� for its boundary sites. We define for A ⊂ � and for

ε = 1,2:

• Ẽ0,�(x, y) :=E0(x, y)∩ {C(x)∩ ∂�=∅},
• ˜̃

E0,�(x, y) :=E0(x, y)∪ {C(x)∩ ∂� �=∅},
• F̃ε,�(x, y;A) := Fε(x, y;A)∩ {C(x)∩ ∂�=∅},
• ˜̃

Fε,�(x, y;A) := Fε(x, y;A)∪ {C(x)∩ ∂� �=∅}.
Now define 
̃

(n,�ε)
p,� by replacing E0 and Fε by Ẽ0,� and F̃ε,� in the definition of



(n,�ε)
p ; also define ˜̃



(n,�ε)
p,� by replacing E0 and Fε by ˜̃

E0,� and ˜̃
Fε,�.


̃
(n,�ε)
p,� and ˜̃



(n,�ε)
p,� converge to 


(n,�ε)
p in the infinite volume limit as long as the

percolation density is zero (which has been proven to be the case for p ≤ pc in high
dimensions). Thanks to their definition, 
̃

(n,�ε)
p,� is increasing in the volume, while

˜̃



(n,�ε)
p,� is decreasing in the volume. Moreover, these functions are continuous in p

for p ≤ pc; this is because events with tildes and double tildes are essentially finite
volume events.

The (increasing) infinite volume limit of a continuous function 
̃
(n,�ε)
p,� is lower

semicontinuous in p for p ≤ pc. The (decreasing) infinite volume limit of a con-

tinuous function ˜̃



(n,�ε)
p,� is upper semicontinuous in p for p ≤ pc. Their common

limit, 

(n,�ε)
p , is thus continuous in p for p < pc and is left-continuous at p = pc.

APPENDIX B: BASIC PROPERTIES OF CONVOLUTION

LEMMA B.1. (i) Let f,g be functions on Z
d which satisfy

|f (x)| ≤ 1

|||x|||α , |g(x)| ≤ 1

|||x|||β ,(B.1)

with α,β > 0. Then there exists a constant C depending on α,β, d such that

|(f ∗ g)(x)| ≤
{

C|||x|||−(α∧β), (α > d or β > d),
C|||x|||−(α+β−d), (α,β < d and α + β > d).

(B.2)

(ii) Let d > 2 and let f,g be Z
d -symmetric functions on Z

d , which satisfy

f (x)= A

|||x|||d−2 +O

(
B

|||x|||d−2+ρ

)
, |g(x)| ≤ C

|||x|||d+ρ
(B.3)

with positive A,B,C and 0 < ρ < 2. Then

(f ∗ g)(x)= A
∑

y g(y)

|||x|||d−2 +O

(
C(A+B)

|||x|||d−2+ρ

)
,(B.4)

where the constants in the error term depend on d and ρ.
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(iii) Let f,g be functions on Z
d which satisfy

|f (x)| ≤ 1

|||x|||α ,
∑
x

|g(x)| =K, |g(x)| ≤ K

|x|d(B.5)

with positive K and 0 < α < d . Then, there exists a constant C depending on α,d

such that

|(f ∗ g)(x)| ≤ CK

|x|α .(B.6)

(iv) Let f,g be functions on Z
d which satisfy

f (x)∼ A

|x|α , (|x| ↑∞),

(B.7) ∑
x

|g(x)| =K, |g(x)| ≤ K

|x|d
with positive A,K and 0 < α < d . Then,

(f ∗ g)(x)∼ A
∑

y g(y)

|x|α (|x| ↑∞).(B.8)

PROOF. Parts (i) and (ii) are Proposition 1.7 of [7], and their proofs are omit-
ted. We now prove (iii) and (iv). The case x = 0 is trivial, so we only consider
x �= 0.

(iii) Divide the sum defining f ∗ g into two, (f ∗ g)(x)= T1 + T2, with

T1 :=
∑

y : |y|<|x|/2

f (y)g(x − y), T2 :=
∑

y : |y|≥|x|/2

f (y)g(x − y).(B.9)

For T1, note that |x − y| ≥ |x|/2. Therefore,

|T1| ≤
∑

y : |y|<|x|/2

1

|||y|||α
K

|x − y|d
(B.10)

≤ K

(|x|/2)d

∑
y : |y|<|x|/2

1

|||y|||α ≤ C′K2d |x|−α

with some constant C′. On the other hand, using |y| ≥ |x|/2 for T2, we have

|T2| ≤
∑

y : |y|≥|x|/2

1

|||y|||α |g(x − y)|
(B.11)

≤ 1

(|x|/2)α

∑
y

|g(x − y)| ≤ 2d |x|−α ×K.

Combining the above two proves (iii).
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(iv) Fix 0 < ε � 1, and divide the sum defining f ∗ g into three parts, (f ∗
g)(x)= S1 + S2 + S3, with

S1 :=
∑

y : |y|<ε|x|
f (x − y)g(y),

S2 :=
∑

y : |x−y|<ε|x|
f (x − y)g(y),(B.12)

S3 := (f ∗ g)(x)− S1 − S2.

In the following, we prove

S1 = A

|x|α
∑
y

g(y)+ o(|x|−α)+ εO(|x|−α),

(B.13)
S2 = εd−αO(|x|−α), S3 = ε−αo(|x|−α),

where O(|x|−α) does not, but o(|x|−α) may, depend on ε. These give, for fixed
0 < ε � 1,

lim sup
|x|→∞

|x|α(f ∗ g)(x)≤A
∑
y

g(y)+ [C′ε+C′′εd−α],(B.14)

lim inf|x|→∞ |x|α(f ∗ g)(x)≥A
∑
y

g(y)− [C′ε+C′′εd−α](B.15)

with some C′,C′′. Letting ε ↓ 0 yields lim|x|→∞ |x|α(f ∗ g)(x)= A
∑

y g(y) for
α < d , and proves the lemma. In the following, we prove (B.13).

We first note that the asymptotic condition (B.7) implies

∀ε > 0 ∃M > 0 s.t.
A− ε

|x|α ≤ f (x)≤ A+ ε

|x|α for |x| ≥M.(B.16)

We also note that by taking M ′ large, we can have a uniform bound for all x ∈ Z
d :

|f (x)| ≤ M ′

|||x|||α .(B.17)

We fix 0 < ε � 1, and choose M,M ′ as above. We only consider sufficiently large
|x| depending on M,M ′ and ε.

Dealing with S1. We further divide S1 as

S1 =
∑

y : |y|<ε|x|

A

|x|α g(y)+ ∑
y : |y|<ε|x|

[
A

|x|α −
A

|x − y|α
]
g(y)

(B.18)

+ ∑
y : |y|<ε|x|

[
f (x − y)− A

|x − y|α
]
g(y)=: S11 + S12 + S13.
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For S11, we have

S11 :=
∑

y : |y|<ε|x|

A

|x|α g(y)=
[ ∑

y∈Zd

g(y)

]
A

|x|α −
[ ∑
|y|≥ε|x|

g(y)

]
A

|x|α
(B.19)

= A

|x|α
∑
y

g(y)+ o(|x|−α),

where we used the fact that
∑

|y|≥ε|x| |g(y)| goes to zero as |x| → ∞, because∑
y |g(y)|<∞. Here o(|x|−α) may depend on ε.
For S12, note that |x−y|−α = (1+O(ε))|x|−α for |y| ≤ ε|x|. So, for 0 < ε � 1,

|S12| ≤
∑

y : |y|<ε|x|

∣∣∣∣ A

|x|α −
A

|x − y|α
∣∣∣∣|g(y)|

(B.20)

≤O(ε)
A

|x|α
∑

y : |y|<ε|x|
|g(y)| = εO(|x|−α).

For S13, we use (B.16) to conclude

|S13| :=
∣∣∣∣∣ ∑
y : |y|<ε|x|

[
f (x − y)− A

|x − y|α
]
g(y)

∣∣∣∣∣
≤ ∑

y : |y|<ε|x|

ε

|x − y|α |g(y)|(B.21)

≤ ε

(1− ε)α|x|α
∑

y : |y|<ε|x|
|g(y)| ≤ ε

(1− ε)α|x|α ×K.

As a result, we have

S1(x)= A

|x|α
∑
y

g(y)+ o(|x|−α)+ εO(|x|−α).(B.22)

Dealing with S2. Note first that |y| ≥ (1 − ε)|x| if |x − y| < ε|x|. So using
(B.17) to bound f and the pointwise bound on g of (B.7), we get

|S2(x)| :=
∣∣∣∣∣ ∑
y : |x−y|<ε|x|

f (x − y)g(y)

∣∣∣∣∣
≤

( ∑
y : |x−y|<ε|x|

|f (x − y)|
)
×

(
sup

y : |x−y|<ε|x|
|g(y)|

)
(B.23)

≤
( ∑

y : |x−y|<ε|x|

M ′

|||x − y|||α
)
× C′

|x|d = εd−αO(|x|−α).
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Dealing with S3. We use (B.16) (we only consider those x’s satisfying ε|x| ≥
M) and calculate as

|S3(x)| :=
∣∣∣∣∣ ∑
y : |x−y|≥ε|x|

|y|≥ε|x|

f (x − y)g(y)

∣∣∣∣∣≤ ∑
y : |x−y|≥ε|x|

|y|≥ε|x|

A+ ε

|x − y|α |g(y)|

≤ ∑
y : |x−y|≥ε|x|

|y|≥ε|x|

A+ ε

(ε|x|)α |g(y)|(B.24)

≤ A+ ε

εα|x|α ×
∑

|y|≥ε|x|
|g(y)| = ε−αo(|x|−α).

The last equality follows again because |g(y)| is summable, and o(|x|−α) may
depend on ε. �
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