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Abstract

Factor analysis provides a useful tool for exploring the covariance structure
among a set of observed random variables by construction of a smaller number
of random variables called common factors. In maximum likelihood factor analysis,
the estimates of unique or error variances can turn out to be zero or negative, which
makes no sense from a statistical point of view. In order to overcome the problem
of these so-called improper solutions, we use a Bayesian approach by specifying
a prior distribution for the variances of specific factors, i.e., we introduce a prior
distribution for the parameters to prevent the occurrence of improper solutions.
Crucial aspects of Bayesian factor analysis include the choice of adjusted parame-
ters, in particular, the hyper-parameters for the prior distribution and also choosing
an appropriate number of factors. The choice of these parameters can be viewed
as a model selection and evaluation problem. We derive a model selection criterion
for a Bayesian factor analysis model. Monte Carlo simulations are conducted to
investigate the efficiency of the proposed procedures. A real data example is also
given to illustrate our procedures.

Key Words: Bayesian approach, EM algorithm, Factor analysis, Model selection
criterion.

1 Introduction

Factor analysis is one of the most popular methods of multivariate statistical analysis,

used in the social and behavioral sciences to explore the covariance structure among ob-

served variables in terms of a smaller number of latent variables. In maximum likelihood

factor analysis, the estimates of unique variances sometimes turn out to be zero or nega-

tive. Such estimates are known as improper solutions, and many researchers have studied

these inappropriate estimates both from a theoretical point of view and also by means of

numerical examples (see, e.g., Jöreskog (1967), van Driel (1978) and Sato (1987)). In this
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paper we take a Bayesian approach to this problem by specifying a prior distribution for

the variances of specific factors. In Bayesian factor analysis, the choice of a prior distri-

bution is a fundamental issue. Some prior distributions for Bayesian factor analysis have

been proposed in the literature. Martin and Mcdonald (1975) used a prior distribution

for the elements of unique variances. Press (1982) used a natural conjugate prior distri-

bution. Akaike (1987) introduced a natural prior distribution for factor loadings to avoid

the occurrence of improper solutions. In this paper we introduce a prior distribution that

is the modification of the prior distribution given by Akaike (1987).

Another important aspect of Bayesian factor analysis is the choice of adjusted param-

eters including the hyper-parameters of the prior distribution and the number of factors;

however in most previous studies, these parameters have been assumed to be subjectively

given. Selection of these parameters can be viewed as a model selection and evaluation

problem. In this paper we derive a model selection criterion from a Bayesian viewpoint

(Konishi et al., 2004) for a Bayesian factor analysis model. The proposed method en-

ables us to choose the appropriate number of factors objectively and also to prevent the

occurrence of the improper solutions.

The remainder of this paper is organized as follows: Section 2 describes the orthogonal

factor analysis model and improper solutions. In Section 3, we introduce a proper prior

distribution based on the prior distribution given by Akaike (1987). In Section 4, we

provide the parameter estimation in Bayesian factor analysis by using EM algorithm.

Section 5 derives the model selection criterion for Bayesian factor analysis. Section 6

presents numerical results for both artificial and real datasets. We summarize our work

in Section 7.

2 Factor analysis model

2.1 Model

Let x = (x1, · · · , xp)
′ be a p-dimensional observable random vector with mean vector

µ and variance covariance matrix Σ. The fundamental equation for the orthogonal factor

analysis model is

x = µ + Λf + ε, (1)

where Λ is a p × k (k < p) matrix of factor loadings, and f = (f1, · · · , fk)
′ and ε =

(ε1, · · · , εp)
′ are unobservable random vectors. The elements of f and ε are called common
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factors and specific factors, respectively. It is assumed that f and ε are independent, with

E(f) = 0, E(ε) = 0, E(ff ′) = Ik and E(εε′) = Ψ, where Ik is the identity matrix of

order k and Ψ is a p × p diagonal matrix with i-th diagonal element ψ2
i . Under these

assumptions, the variance-covariance matrix of x is given by

Σ = ΛΛ′ + Ψ. (2)

Assume that the common factors f and the specific factors ε have multivariate normal

distributions given by

f ∼ Nk(0, Ik), ε ∼ Np(0, Ψ). (3)

Suppose that we have a random sample of N observations XN = (x1, · · · , xN)′ from

the multivariate normal population N(µ, Σ) with Σ = ΛΛ′ + Ψ. Then the log-likelihood

function is given by

log f(XN |Λ, Ψ) = −N

2

[
p log(2π) + log |Σ| + tr(Σ−1S)

]
, (4)

where f(XN |Λ, Ψ) is the likelihood function and S is the sample variance-covariance

matrix

S =
1

N

N∑
n=1

(xn − x̄)(xn − x̄)′. (5)

Here x̄ is the sample mean vector. The maximum likelihood estimates in factor analysis

model are obtained by maximizing Equation (4).

2.2 Improper solutions

In practical situations, however, estimates of the specific variances sometimes turn out

to be zero or negative. Such estimates have been called improper solutions. van Driel

(1978) categorized the causes of improper solutions into the following three types:

(i) sampling fluctuation,

(ii) there exist no appropriate factor analysis models for extraction of beneficial inform-

ation from the data,

(iii) indefiniteness of the model.

He observed that situations of type (i) and (iii) can result in interpretable factor analysis

models whereas situations of type (ii) produce only non-interpretable models.

In order to avoid the occurrence of improper solutions, many researchers have proposed

various ways to deal with the problem, for example, estimating the parameters (A) under
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the condition that the specific variances are bounded below 0.005 (see Jöreskog (1967)),

(B) after eliminating variables which cause the improper solutions and (C) by utilizing a

Bayesian framework. Some problems remain, however, with approaches (A) and (B). With

approach (A), the variances of specific factors are provided subjectively, whereas they

should be estimated. With approach (B), we often obtain inappropriate estimates even

when variables that cause the improper solutions are eliminated. In this paper, we focus

our attention on approach (C) i.e. on a method that estimates the parameters included

in the factor analysis model with the help of Bayesian techniques, since approaches (A)

and (B) have the disadvantages mentioned above. In the Bayesian approach we need to

specify a prior distribution for the parameters Ψ = diag(ψ2
1, · · · , ψ2

p). This requirement

is discussed in the next section.

3 Bayesian approach

In the Bayesian procedure, we introduce a prior distribution for factor loadings Λ and

specific variances Ψ, and estimate parameters from a posterior distribution:

f(Λ, Ψ|XN) =
f(XN |Λ, Ψ)π(Λ, Ψ)∫ ∫

f(XN |Λ, Ψ)π(Λ, Ψ)dΛdΨ

∝ f(XN |Λ, Ψ)π(Λ, Ψ), (6)

where π(Λ, Ψ) is the density function of the prior distribution of Λ and Ψ. In this paper

we estimate parameters by obtaining a maximization (mode) of the posterior distribution

given by Equation (6). This technique can be regarded as a maximum penalized likelihood

approach. The penalized log-likelihood function is

lρ(Λ, Ψ) = log f(XN |Λ, Ψ) − ρ
N

2
H(Λ, Ψ), (7)

where ρ is a hyper-parameter and H(Λ, Ψ) is a penalty term. We observe that the second

term of the right side of Equation (7) corresponds to the prior distribution π(Λ, Ψ).

A fundamental issue in the maximum penalized likelihood method is the choice of

the penalty term H(Λ, Ψ) (i.e. the choice of a prior distribution) because estimation of

parameters depends on this term.

3.1 Prior distributions

The selection of a precise and potent prior distribution to prevent the occurrence of

improper solutions is a fundamental issue in Bayesian factor analysis. The prior dis-
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tribution presented by Akaike (1987) provides us with a guideline. In this subsection

we investigate the nature of improper solutions and the relationship between the prior

distributions proposed by Martin and Mcdonald (1975) and that of Akaike (1987), and

introduce a prior distribution according to the basic idea given by Akaike (1987).

For convenience, let us consider the quantity (see Equation (4.14) of Lawley and

Maxwell (1971))

q(Λ, Ψ) = log |Σ| + tr(Σ−1S) − log |S| − p. (8)

The maximum likelihood estimates are obtained by minimizing Equation (8) instead of

maximizing Equation (4). In maximum likelihood factor analysis, Equation (8) is rewrit-

ten as follows. (see Equation (4.16) of Lawley and Maxwell (1971))

qk(Ψ) =

p∑
i=k+1

(θi − log θi) + (p − k). (9)

Here θ1, · · · , θp are the eigenvalues of Ψ− 1
2 SΨ− 1

2 , and it is assumed that θ1 > · · · > θp.

From Equation (9) the maximum likelihood estimates of the covariance matrix of specific

factors are obtained when the values of θk+1, · · · , θp are as close to one as possible.

Akaike (1987) showed that since Equation (9) is sensitive only to the behavior of

smaller eigenvalues of Ψ− 1
2 SΨ− 1

2 , the values of θ1, · · · , θk sometimes go to infinity because

the diagonal elements of Ψ go to zero, which causes improper solutions. To avoid the

occurrence of improper solutions, we should perform the analysis under the restriction

that the values of θ1, · · · , θk are not too large.

For this reason, we add a penalty term ρ
∑k

i=1 θi to Equation (8) and consider mini-

mizing the following equation with respect to Λ and Ψ.

q∗(Λ, Ψ) = q(Λ, Ψ) + ρ
k∑

i=1

θi. (10)

The additive term prevents the occurrence of improper solutions because it does not allow

the values of θ1, · · · , θk to be infinite. If we introduce the constraint

Λ′Ψ−1Λ = ∆, (11)

where ∆ is a diagonal matrix (see, e.g., Anderson (2003)), the penalty term ρ
∑k

i=1 θi is

equal to ρtr(Λ′Ψ−1Λ + Ik). This term leads to a prior distribution proposed by Akaike

(1987), which is given by

K exp

{
−N

2
ρ tr (Ψ− 1

2 ΛΛ′Ψ− 1
2 )

}
, (12)
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where K denotes the normalizing constant. However, this prior distribution cannot be

correctly normalized because the normalizing constant K diverges.

We propose adding a penalty term ρ
∑p

i=1 θi to Equation (8) and then the estimates

are obtained by minimizing

q∗∗(Λ, Ψ) = q(Λ, Ψ) + ρ

p∑
i=1

θi (13)

= q(Λ, Ψ) + ρtr (Ψ− 1
2 SΨ− 1

2 ). (14)

It is not unreasonable to add the term
∑p

i=k+1 θi to
∑k

i=1 θi since the values of θk+1, · · · , θp

are close to one and so can be ignored in comparison to the large values of θ1, · · · , θk.

Minimizing Equation (14) is equivalent to maximizing Equation

log f(XN |Λ, Ψ) − Nρ

2
tr(Ψ− 1

2 SΨ− 1
2 ). (15)

The prior distribution is then given by

K exp

{
−Nρ

2
tr(Ψ− 1

2 SΨ− 1
2 )

}
(16)

= K

p∏
i=1

exp

{
−Nρsii

2
ψ−2

i

}
, (17)

where sii is the i-th diagonal elements of the sample variance-covariance matrix S. We

assume that the inverses of the elements of Ψ have an exponential distribution and then

the normalizing constant K is given by
∏p

i=1 Nρsii/2.

Our proposed prior distribution and the prior distribution proposed by Martin and

Mcdonald (1975) are closely related. The prior distribution proposed by Martin and

Mcdonald (1975) is given by

K

p∏
i=1

exp

{
−Nαi

2
ψ−2

i

}
, (18)

where α1, · · · , αp are hyper-parameters of the prior distribution. However, it is difficult

to specify these hyper-parameters because p is large. Martin and Mcdonald (1975) rec-

ommended restricting these hyper-parameters by requiring that

α1 = · · · = αp = siiα. (19)

If we assume Equation (19), the proposed prior distribution given by (17) coincides with

the prior distribution given by Martin and Mcdonald (1975). They subjectively selected a
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hyper-parameter α which controls the trade off between the log-likelihood and the penalty

term.

For a complete specification of the Bayesian model, it is necessary to define a prior

distribution for Λ. However, we have no prior convictions about Λ in exploratory factor

analysis because Λ has a rotational indeterminacy. For this reason Martin and Mcdonald

(1975) suggested not assigning a prior distribution to the elements of Λ. In this paper we

also do not assign a prior distribution to Λ.

The proposed prior distribution given by (17) has two advantages. Firstly, the prior

distribution avoids the occurrence of improper solutions naturally because the additive

term ρ
∑k

i=1 θi does not allow the values of θ1, · · · , θk to be infinite. Secondly, we can con-

sider the model selection criterion from a Bayesian viewpoint (Konishi et al. (2004)) with

this prior distribution since the normalizing constant K is not infinite. While the prior

distribution proposed by Akaike (1987) prevents the occurrence of improper solutions, we

cannot apply a Bayesian model selection criterion because K is infinite.

4 Estimation

4.1 EM algorithm

We use a numerical iterative algorithm to obtain the penalized maximum likelihood

estimates. Since the solutions cannot be expressed in closed form, we use some iterative

procedure. In maximum likelihood factor analysis, some numerical algorithms have been

proposed by earlier researchers (see, e.g., Jöreskog (1967) and Jennrich and Robinson

(1969)). Rubin and Thayer (1982) proposed using EM algorithms for maximum likelihood

factor analysis. The advantage of EM algorithms is that even if the likelihood of the initial

points is not convex, the estimates converge to a maximum of the likelihood estimates.

Furthermore, the EM algorithm can easily be adapted to apply to the penalized maximum

likelihood.

We give the expectation and maximization steps for the Bayesian factor analysis model

within a general framework for EM algorithms. We consider the common factors f as a

latent variable, and maximize the complete-data log-likelihood using a posterior distribu-

tion for the latent variable.
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The iterative procedure is given by

Λ̂ = (SΨ−1Λ)(Ik + M−1Λ′Ψ−1SΨ−1Λ)−1,

Ψ̂ = diag
[
S − 2SΨ−1ΛM−1Λ̂′ + Λ̂M−1Λ̂′ + Λ̂M−1Λ′Ψ−1SΨ−1ΛM−1Λ̂′ + ρS

]
.

The derivation of the procedure is detailed in Appendix A.

4.2 Constraint on factor loading

It is well known that all factor loadings obtained from the initial loadings by orthogonal

transformation have the same ability to reproduce the covariance matrix, so the analysis

should proceed by imposing conditions on the factor loadings. In maximum likelihood

factor analysis, it is convenient to use the constraint given by Equation of (11). However,

this constraint is not appropriate for the EM algorithm and the model selection criterion

in a Bayesian context. For this reason, we use the constraint on factor loadings given by

the following equation (Anderson and Rubin (1956)).

Λ =



λ11 0 0 · · · 0 0

λ21 λ22 0 · · · 0 0

λ31 λ32 λ33 · · · 0 0
...

...
...

. . .
...

...

λk−1,1 λk−1,2 λk−1,3 · · · λk−1,k−1 0

λk,1 λk,2 λk,3 · · · λk,k−1 λk,k

...
...

...
. . .

...
...

λp,1 λp,2 λp,3 · · · λp,k−1 λp,k


. (20)

5 Model selection criterion

The generalized Bayesian information criterion (GBIC), proposed by Konishi et al.

(2004), enables us to choose adjusted parameters including a hyper-parameter ρ and also

the number of factors k by extending the Bayesian information criterion (BIC) proposed

by Schwarz (1978). The basic idea of BIC is to select a model from a set of candidate

models by maximizing the posterior probability. BIC only deals with models estimated by

the maximum likelihood method, whereas the model selection criterion GBIC also applies

to models estimated by the maximum penalized likelihood method.

Suppose that θ is the parameter of a Bayesian factor analysis. The model selection
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criterion GBIC for Bayesian factor analysis is given by

GBIC = −p∗ log(2π) + p∗ log N + log |Jρ(θ̂p∗)| + N
{

p log(2π) + log |Σ̂| + tr(Σ̂−1S)
}

−2

p∑
i=1

log

(
Nρsii

2

)
+ Nρ

p∑
i=1

(siiψ̂
−2
i ), (21)

where p∗ is the number of parameters, θ̂p∗ , Σ̂ and ψ̂2
i are the posterior modes of parameters

and Jρ(θ̂p∗) is

Jρ(θ̂p∗) = − 1

N

[
∂2

∂θ∂θ′

{
log f(XN |θ) + log π(θ|ρ)

} ∣∣∣∣
„̂p∗

]
. (22)

Here log f(XN |θ) is a log-likelihood function given by Equation (4) and π(θ|ρ) is the

density of the prior distribution of Equation (17). We choose optimum values of the

hyper-parameter ρ and the number of factors k which minimize the value of the model

selection criterion given by Equation (21). The derivation of GBIC is detailed in Appendix

B.

6 Numerical Examples

6.1 Simulation results

For our first simulation study we consider two factors for a seven dimensional problem

generating fifty observations: k = 2, p = 7 and N = 50. The datasets are generated by

using ε ∼ N(0, 0.64 I7), where I7 is the identity matrix of order 7 and

Λ′ =

(
0.6 0.0 0.6 0.6 0.0 0.0 0.0

0.0 0.6 0.0 0.0 0.6 0.6 0.6

)
. (23)

When the 100 different datasets were generated by Equation (1), improper solutions were

obtained for 30 out of 100 datasets. We investigate one of the datasets that causes

improper solutions. First, maximum likelihood estimates of factor loadings and specific

variances are given by

Λ̂′ =

(
0.397 0.340 0.530 0.977 0.027 −0.070 0.187

0.109 0.791 0.316 −0.203 0.589 0.671 0.552

)
, (24)

diagΨ̂ =
(
0.831 0.259 0.619 0.000 0.652 0.545 0.660

)
. (25)

The estimate of ψ2
4 goes to zero, which is the inappropriate estimate.
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Table 1: The values of ρ corresponding to the minimum values of GBIC for each number
of factors

k = 1 k = 2 k = 3

ρ 0.0316 0.0251 0.0199

GBIC 982.84 974.73 977.43
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Figure 1: The model selection criterion GBIC for varying values of the hyper-parameter
ρ. On the left side k = 1, in the center k = 2 and on the right side k = 3

To prevent the occurrence of improper solutions, the model is estimated by using the

EM algorithm with a prior distribution given by Equation (17). We choose the adjusted

parameters including hyper-parameter of prior distribution and the number of factors

using the model selection criterion given by (21). Figure 1 plots the model selection

criterion against the hyper-parameter ρ. Table 1 gives the minimum value of GBIC and

the value of the hyper-parameter ρ estimated by using GBIC when the number of factors

is fixed. Table 1 shows that the value of GBIC is a minimum when k = 2 and ρ = 0.0251,

and the estimates of factor loadings Λ and specific variances Ψ are given by

Λ̂′ =

(
0.407 0.344 0.595 0.811 0.065 −0.090 0.151

0.106 0.750 0.297 0.155 0.581 0.689 0.577

)
, (26)

diagΨ̂ =
(
0.848 0.345 0.583 0.344 0.683 0.542 0.669

)
. (27)

Unlike the maximum likelihood estimates, the estimate of ψ2
4 obtained by the proposed

method does not go to zero. As a result, the model selection criterion results in choice of an

appropriate number of factors and adjusted hyper-parameter ρ to prevent the occurrence

of improper solutions.
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Table 2: Four types of datasets

dataset (a) dataset (b) dataset (c) dataset (d)

i Λ diag(Ψ) Λ diag(Ψ) Λ diag(Ψ) Λ diag(Ψ)

1 0.6 0.0 0.64 0.9 0.0 0.19 0.9 0.0 0.19 0.9 0.0 0.19

2 0.0 0.6 0.64 0.0 0.6 0.64 0.0 0.8 0.36 0.0 0.8 0.36

3 0.6 0.0 0.64 0.6 0.0 0.64 0.7 0.0 0.51 0.7 0.0 0.51

4 0.6 0.0 0.64 0.6 0.0 0.64 0.6 0.0 0.64 0.6 0.0 0.64

5 0.0 0.6 0.64 0.0 0.6 0.64 0.0 0.6 0.64 0.0 0.7 0.51

6 0.0 0.6 0.64 0.0 0.6 0.64 0.0 0.6 0.64 0.0 0.5 0.75

7 0.0 0.6 0.64 0.0 0.6 0.64 0.0 0.6 0.64 0.0 0.9 0.19

6.2 Numerical comparison

In a second simulation study we investigate the efficiency of the proposed procedure

by comparing various model selection criteria. We use four types of factor loadings Λ

and specific variances Ψ, which are given in Table 2, and two variants for the number of

observations, N = 30 and N = 50.

Each dataset was generated 100 times and improper solutions were obtained as shown:

N = 30: (a): 57 times, (b): 49 times, (c): 48 times, (d): 50 times,

N = 50: (a): 30 times, (b): 44 times, (c): 37 times, (d): 28 times.

We counted the number of times that each k-factor model achieved the lowest value of

model selection criteria, which are summarized in Table 3. For example, AIC selected the

one factor model 34 times out of 100 datasets at dataset (a) when N = 30. We compared

the model selection criteria AIC, BIC obtained by maximum likelihood estimates with

GBIC obtained by maximum penalized likelihood estimates. AIC and BIC are given by

AIC = −2 log f(XN |Λ̂, Ψ̂) + 2p∗,

BIC = −2 log f(XN |Λ̂, Ψ̂) + p∗ log N,

where Λ̂ and Ψ̂ are the maximum likelihood estimates and p∗ is the number of parameters,

which is given by p(k + 1) − k(k − 1)/2. Table 3 shows that, for each dataset, the model

selection criterion GBIC performs well in the sense that our proposed procedure most

often selects an optimal number of factors.
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Table 3: Comparisons of model selection criteria for simulated datasets.

dataset (a):

N k AIC BIC GBIC

N = 30

1 34 80 26

2 56 19 67

3 10 1 7

N = 50

1 9 59 9

2 77 41 86

3 14 0 5

dataset (b):

N k AIC BIC GBIC

N = 30

1 13 61 18

2 75 38 76

3 12 1 6

N = 50

1 0 26 2

2 85 74 97

3 15 0 1

dataset (c):

N k AIC BIC GBIC

N = 30

1 3 25 6

2 83 74 94

3 14 1 0

N = 50

1 0 26 1

2 85 74 98

3 15 0 1

dataset (d):

N k AIC BIC GBIC

N = 30

1 1 16 3

2 85 83 96

3 14 1 1

N = 50

1 0 3 0

2 87 97 98

3 13 0 2
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6.3 Job application dataset

This dataset is illustrated in Kendall (1980). There are 48 applicants for a certain job,

who have been scored on p = 15 variables regarding their acceptability. The variables are

(1) Form of letter application, (2) Appearance, (3) Academic ability,

(4) Likeability, (5) Self confidence, (6) Lucidity,

(7) Honesty, (8) Salesmanship, (9) Experience,

(10) Drive, (11) Ambition, (12) Grasp,

(13) Potential, (14) Keenness to join, (15) Suitability.

We compared the model selection criteria AIC, BIC for maximum likelihood estimates

with GBIC for penalized maximum likelihood estimates, and the results are shown in Table

4. The model selection criterion GBIC selected 4 factors; we obtained improper solutions

for this case with maximum likelihood factor analysis. AIC and BIC also selected a model

that resulted in improper solutions.

It is important to identify the cause of the improper solutions. The maximum like-

lihood estimates of Ψ and the standard deviation σ̂ψ2
i

of
√

Nψ2
i /sii (see Equation (5.50)

of Lawley and Maxwell (1971)) for k = 2 to 6 are shown in Table 5. We were not able

to calculate the standard deviation σ̂ψ2
i

at k = 5 and k = 6. For k = 4, the maximum

likelihood estimates ψ̂2
1, ψ̂2

3, ψ̂2
7, ψ̂2

13, ψ̂2
14 were less than the corresponding estimates for

k = 3. These results for the estimates of specific variances seem to suggest that we have

identified some new common factors. The standard deviation σ̂ψ2
i

of
√

Nψ2
i /sii is not

especially large when k = 4. For these reasons, the improper solutions might be due to

sampling fluctuations rather than indefiniteness of the model.

The estimates of factor loadings Λ and specific factors Ψ obtained using the proposed

method are given in Table 6. The estimates of factor loadings Λ are obtained by Varimax

rotation. Table 6 shows that our proposed model can prevent the occurrence of improper

solutions. Moreover, in earlier research, Press and Shigemasu (1989) and Fokoue (2004)

also suggested four factors for this dataset. For these reasons, we claim that, at least in

these cases, our approach results in efficient model estimates.
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Table 4: The values of AIC, BIC obtained by maximum likelihood estimates and ρ cor-
responding to the minimum values of GBIC for varying numbers of factors for Kendall’s
dataset. The right side column of ”improper solutions?” indicates whether the maximum
likelihood estimates are proper or improper.

k AIC BIC GBIC ρ improper solutions?

1 1660.54 1716.68 1741.90 0.01585 proper

2 1605.39 1687.72 1708.77 0.01259 proper

3 1562.46 1669.11 1689.79 0.01259 proper

4 1532.43 1661.54 1682.31 0.01000 improper

5 1525.34 1675.04 1697.00 0.00794 improper

6 1521.25 1689.66 1716.17 0.00794 improper

7 1510.83 1696.08 1730.84 0.00631 improper

8 1510.96 1711.18 1749.20 0.00631 improper

9 1519.14 1732.46 1764.02 0.00631 improper

10 1528.35 1752.90 1780.21 0.00631 improper

Table 5: Maximum likelihood estimates of specific variances and the standard derivations
of

√
Nψ2

i /sii for k = 2 to 6 using Kendall’s dataset.

k = 2 k = 3 k = 4 k = 5 k = 6

i ψ̂2
i σ̂ψ2

i
ψ̂2

i σ̂ψ2
i

ψ̂2
i σ̂ψ2

i
ψ̂2

i σ̂ψ2
i

ψ̂2
i σ̂ψ2

i

1 0.546 0.834 0.535 0.816 0.444 0.757 0.467 — 0.394 —

2 0.717 0.779 0.701 0.777 0.688 0.777 0.668 — 0.625 —

3 0.951 0.449 0.945 0.473 0.523 0.779 0.508 — 0.494 —

4 0.741 0.772 0.000 0.717 0.199 0.566 0.196 — 0.200 —

5 0.139 0.340 0.109 0.291 0.112 0.249 0.113 — 0.128 —

6 0.191 0.382 0.196 0.381 0.194 0.350 −0.072 — −0.056 —

7 0.795 0.757 0.445 0.771 0.341 0.800 0.294 — 0.254 —

8 0.171 0.346 0.144 0.304 0.133 0.263 0.132 — 0.145 —

9 0.366 0.766 0.360 0.747 0.360 0.756 0.360 — 0.365 —

10 0.247 0.460 0.238 0.447 0.225 0.403 0.232 — 0.020 —

11 0.178 0.361 0.157 0.325 0.140 0.271 0.113 — 0.043 —

12 0.192 0.377 0.204 0.390 0.153 0.285 0.163 — 0.152 —

13 0.208 0.404 0.183 0.357 0.089 0.195 0.080 — 0.088 —

14 0.600 0.779 0.420 0.671 −0.000 0.001 0.051 — 0.064 —

15 0.190 0.553 0.188 0.534 0.250 0.569 0.242 — 0.264 —

14



Table 6: The estimates of factor loading Λ and specific variances Ψ obtained by the
proposed method for k = 4 using Kendall’s dataset.

i factor 1 factor 2 factor 3 factor 4 specific variances

1 0.717 0.130 −0.107 0.118 0.453

2 0.154 0.449 0.131 0.255 0.703

3 0.116 0.072 0.735 −0.018 0.451

4 0.242 0.226 −0.053 0.848 0.178

5 −0.092 0.915 −0.083 0.149 0.135

6 0.120 0.837 0.063 0.303 0.200

7 −0.211 0.248 −0.019 0.740 0.356

8 0.238 0.893 −0.072 0.084 0.144

9 0.777 0.090 0.180 −0.051 0.363

10 0.386 0.767 −0.052 0.174 0.240

11 0.180 0.899 −0.056 0.107 0.154

12 0.267 0.790 0.180 0.348 0.161

13 0.343 0.730 0.261 0.428 0.109

14 0.366 0.430 −0.509 0.549 0.130

15 0.781 0.362 0.103 0.059 0.254
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7 Concluding Remarks

In maximum likelihood factor analysis models, there arise situations in which the

estimates of unique variances go to zero or become negative. To avoid the occurrence

of such improper solutions, we used a Bayesian approach by specifying a proper prior

distribution for variances of specific factors. In practice, an optimal choice of the number

of factors is also of importance for exploring the covariance structure. We derived the

model selection and evaluation criterion from a Bayesian point of view, and used it to

choose adjusted parameters that include a hyper-parameter for a prior distribution and

the number of factors. Monte Carlo simulations and a real data example showed that the

proposed procedure performs well in various situations. We would recommend our factor

analysis modeling procedure based on the proper prior distribution of exponential type

and the Bayesian model selection criterion.

Appendix

Appendix A: The derivation of the EM algorithm for Bayesian
factor analysis

To apply the EM algorithm, we consider the common factors fn to be missing data

and maximize the complete-data penalized log-likelihood. The complete-data penalized

log-likelihood is given by

lCρ =
N∑

n=1

log{f(xn, fn)π(θ|ρ)}, (28)

where f(xn, fn) is the density of the complete-data distribution and π(θ|ρ) is the prior

distribution given by Equation (17).

To derive the posterior mean of the log-likelihood, we use the conditional distribution of

common factors f given the observed x. It is well known that the conditional distribution

is given (see, e.g., Anderson (2003)) by

f |x ∼ N(M−1Λ′Ψ−1x,M−1), (29)

where M = Λ′Ψ−1Λ+Ik. Therefore the values for E[Fn|xn] and E[FnF
′
n|xn] in the E-step

are

E[Fn|xn] = M−1Λ′Ψ−1xn, (30)

E[FnF ′
n|xn] = M−1 + E[Fn|xn] E[Fn|xn]′. (31)
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In the M-step, the expectation of the complete log-likelihood with respect to the distri-

butions of Equation (28) is

E[lCρ ] = −
N∑

n=1

[
p

2
log(2π) +

p

2
log |Ψ| + 1

2
tr {E[FnF

′
n]} +

1

2
tr

{
Ψ−1xnx′

n

}
−E[Fn]′Λ′Ψ−1xn +

1

2
tr(Λ′Ψ−1ΛE[FnF ′

n]) +
ρ

2
tr(Ψ− 1

2 SΨ− 1
2 )

]
,

(32)

where E[Fn] = E[Fn|xn] and E[FnF ′
n] = E[FnF ′

n|xn]. Under these assumptions, the new

parameter estimates are obtained by maximizing E[lCρ ] with respect to Λ and Ψ, resulting

in

Λ̂ =

{
N∑

n=1

xnE[Fn]′

}{
N∑

n=1

E[FnF
′
n]

}−1

, (33)

Ψ̂ =
1

N
diag

[
N∑

n=1

{
xnx

′
n − 2xnE[Fn]′Λ̂′ + Λ̂E[FnF ′

n]Λ̂′
}

+ NρS

]
. (34)

The maximum likelihood estimates are given by calculating the conditional distribu-

tion of Equation (30) and (31) and the revised estimates are given by Equation (33) and

(34). We can construct an efficient algorithm by substituting (30) and (31) into (33) and

(34) , and then the new parameters are

Λ̂ = (SNΨ−1Λ)(Ik + M−1Λ′Ψ−1SNΨ−1Λ)−1,

Ψ̂ = diag
[
SN − 2SNΨ−1ΛM−1Λ̂′ + L̂M−1Λ̂′ + Λ̂M−1Λ′Ψ−1SNΨ−1ΛM−1Λ̂′ + ρS

]
.

The two equations are iterated until the estimates of the parameters converge.

Appendix B: The derivation of GBIC for Bayesian factor analysis
model

This section derives the model selection criterion for a Bayesian factor analysis model.

Suppose that θ is the parameter and p∗ is the number of parameters. Considering the

constraint on factor loadings given by Equation (20), the number of parameters of p∗ is

p(k + 1) − k(k − 1)/2, and the parameter θ is

θ = (λ′
.1, λ

′
.2, · · · , λ′

.k, diag(Ψ)′)′, (35)

where λ.i = (λi,i, λi+1,i, · · · , λp,i).
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Let us consider selecting a model from a set of candidate models M1, · · · ,Mr. The

model Mt has the probability density ft(x|θt), and θt has a prior density πt(θt|ρt), where

ρt is a hyper-parameter. The Bayesian procedure for selecting a model is to choose the

model with the largest posterior probability, which is given by

P (Mt|x) ∝ P (Mt)

∫ r∏
t=1

f(xn|θt)π(θt|ρt)dθt (36)

=: P (Mt)pt(xn|ρt), (37)

where P (Mt) is the prior probability for model Mt. If it is assumed that the prior prob-

ability P (Mt) is the same for all models, it follows that the model that maximizes the

marginal likelihood pt(xn|ρt) of the data must be selected. The model selection criterion

GBIC (Konishi et al. (2004)) is obtained by minimizing −2 log pt(xn|ρt) with the use of

Laplace approximation (Tierney and Kadane (1986)), and GBIC is written as follows (see

Equation (10) of Konishi et al. (2004)) :

GBIC = −p∗ log(2π) + p∗ log N + log |Jρ(θ̂p∗)| − 2
{

log f(XN |θ̂p∗) + log π(θ̂p∗|ρ)
}

, (38)

where Jρ(θ̂p∗) is given by

Jρ(θ̂p∗) = − 1

N

[
∂2

∂θ∂θ′

{
log f(XN |θ) + log π(θ|ρ)

} ∣∣∣∣
„̂p∗

]
, (39)

log f(XN |θ) is a log-likelihood function and π(θ|ρ) is the density of the prior distribution,

which is written as follows (see Equations (4) and (17)) :

log f(XN |θ) = −N

2

[
p log(2π) + log |Σ| − tr

{
Σ−1S

}]
, (40)

π(θ|ρ) =

p∏
i=1

Nρsii

2
exp

{
−Nρsii

2
ψ−2

i

}
. (41)

By substituting Equation (40) and (41) into (38), we obtain a model selection criterion

for Bayesian factor analysis which can be expressed as

GBIC = −p∗ log(2π) + p∗ log N + log |Jρ(θ̂p∗)| + N
{

p log(2π) + log |Σ̂| + tr(Σ̂−1S)
}

−2

p∑
i=1

log

(
Nρsii

2

)
+ Nρ

p∑
i=1

(siiψ̂
−2
i ).

The matrix Jρ(θ) consists of the elements of ∂2lρ
∂λab∂λcd

, ∂2lρ
∂ψ2

i ∂λcd
and ∂2lρ

∂ψ2
i ∂ψ2

j
, which are given
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by

∂2lρ
∂λab∂λcd

= N

{
(Σ−1)(a,c)(Λ

′Σ−1Λ)(b,d) + (Σ−1Λ)(a,d)(Σ
−1Λ)(c,b)

−(Σ−1SΣ−1)(a,c)(Λ
′Σ−1Λ)(b,d) − (Σ−1Λ)(a,d)(Σ

−1SΣ−1Λ)(c,b)

−(Σ−1)(a,c)(Λ
′Σ−1SΣ−1Λ)(b,d) − (Σ−1SΣ−1Λ)(a,d)(Σ

−1Λ)(c,b)

−(Σ−1)(a,c)(Ik)(b,d) + (Σ−1SΣ−1)(a,c)(Ik)(b,d)

}
,

∂2lρ
∂ψ2

i ∂λcd

= N

{
(Σ−1)(c,i)(Σ

−1Λ)(i,d) − (Σ−1SΣ−1)(c,i)(Σ
−1Λ)(i,d)

−(Σ−1)(c,i)(Σ
−1SΣ−1Λ)(i,d)

}
,

∂2lρ
∂ψ2

i ∂ψ2
j

=
N

2

{
(Σ−1)2

(i,j) − 2(Σ−1)(i,j)(Σ
−1SΣ−1)(i,j) − 2ρ(Ψ−3)(i,j)S(i,i)

}
,

where (X)(α,β) is the (α, β)-th element of the matrix X.
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