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Abstract

In this paper, we apply a discrete fixed point theorem of [7] to the Cournot

model [1]. Then we can deal with the Cournot model where the production

of the enterprises is discrete. To handle it, we define a discrete Cournot-Nash

equilibrium, and prove its existence.
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1 Introduction

As is well known in the game theory, Kakutani’s fixed point theorem ensures

the existence of a Nash equilibrium of mixed strategies. This shows that if we

are concerned with a Nash equilibrium of pure strategies, it suffices to present

a discrete fixed point theorem. Indeed, Sato-Kawasaki [7] provided discrete

fixed point theorems, and gave a class of non-cooperative n-person games that

certainly have a Nash equilibrium of pure strategies.

On the other hand, in economics, the Cournot model [1] is a well-known mar-
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ket competition model. This is a duopoly market model that each enterprise

decides production and the market decides the price according to it.

In the Cournot model, if the production scale is small, the best production

should be integer. For example, there are two airlines connecting city A and

city B, and each airline plans how many flights run a week. In this example,

the production are the number of flights run a week. To handle this situation,

discrete fixed point theorems are useful tools. Thus, in this paper, we apply

a discrete fixed point theorem of [7] to the Cournot model, and consider the

situation where production is discrete.

Throughout this paper, i belongs to {1, 2}, {−i} means {1, 2} \ {i}, Ci (i =

1, 2) are enterprises engaged on the market, and qi ∈ Qi is production of

Ci, where Qi := {0, 1, . . . , mi} (mi ∈ N). The continuous extension of Qi

is designated by Qi, that is, Qi = [0, mi]. Also p(q) denotes the price of

production one lot, where q := q1 + q2, and ci ∈ N is the marginal cost, that

is, enterprise Ci costs ci for production one lot. Then Ci’s profit function is

πi(qi, q−i) = max{(p(q)− ci)qi, 0}.

Each enterprise maximizes its profit.

Definition 1.1 (Cournot-Nash equilibrium) We call a pair (q∗1 , q∗2) ∈ Q1×Q2

a Cournot-Nash equilibrium, if for each i ∈ {1, 2}

πi(q
∗
i , q∗−i) ≥ πi(qi, q

∗
−i), ∀qi ∈ Qi.

Here we denote by ϕ(q−i) the set of best responses of enterprise Ci to q−i,

that is,

ϕi(q−i) =

{
qi ∈ Qi ; πi(qi, q−i) = max

qi∈Qi

πi(qi, q−i)

}
.

Future, we put ϕ(q1, q2) := ϕ1(q2)× ϕ2(q1). Then q∗ := (q∗1 , q∗2) is a Cournot-

Nash equilibrium if and only if q∗ ∈ ϕ(q∗).

Definition 1.2 (Discrete Cournot-Nash equilibrium) We call a pair (q∗1 , q∗2) ∈
Q1 ×Q2 a discrete Cournot-Nash equilibrium, if for each i ∈ {1, 2}

πi(q
∗
i , q∗−i) ≥ πi(qi, q

∗
−i), ∀qi ∈ Qi.

Here we denote by φ(q−i) the set of best responses of enterprise Ci to q−i,

which is restricted to integer, that is,

φi(q−i) =

{
qi ∈ Qi ; πi(qi, q−i) = max

qi∈Qi

πi(qi, q−i)

}
.
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Future, we put φ(q1, q2) := φ1(q2) × φ2(q1). Then q∗ = (q∗1 , q∗2) is a discrete

Cournot-Nash equilibrium if and only if q∗ ∈ φ(q∗).

In this paper, we assume the following (H1)–(H5):

(H1) p(·) is piecewise continuous on some open interval which contains

[0, m1 + m2],

(H2) p(·) is monotone decreasing, and strictly monotone decreasing on the

interval {q ∈ [0, m1 + m2] ; p(q) > 0},
(H3) p(·) is twice continuous differentiable at any q = qi + q−i with

∂π(qi, q−i)/∂qi = 0,

(H4) πi(qi, q−i) is unimodal with respect to qi,

(H5) If enterprise Ci produces the upper limit mi for some q−i ∈ Qi, then

mi ∈ ϕi(q−i − ε) for any ε > 0.

Note that, by (H4), mappings ϕ is single-valued.

Our main theorem is the following:

Theorem 1.1 (Main theorem) Assume (H1)–(H5). Further assume that for

each i ∈ {1, 2} and for any qi ∈ (−δ, mi + δ) (δ > 0) with ∂πi(qi, q−i)/∂qi = 0,

one of the following three conditions is satisfied:

(i) p′′ < 0 and qi 6= −2p′

p′′
,

(ii) p′′ = 0,

(iii) p′′ > 0 and 0 ≤ qi ≤ −p′

p′′
.

Then there exists a discrete Cournot-Nash equilibrium. In other words, there

exists q∗ := (q∗1 , q∗2) ∈ Q such that q∗ ∈ φ(q∗).

Here we remark that the above theorem includes a classical situation where

the price function is concave, see Examples 2.1 and 2.2 below.　

2 Examples

In this section, we give some examples of the price function that satisfy the

assumption of the main theorem. We take m1 = m2 = 10 in the examples

below.

Example 2.1 If we take

p(q) =

{
−q2 + 100 if 0 ≤ q ≤ 10,

0 if 10 < q,
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and c1 = c2 = 10, then p(·) satisfies assumption (ii) and (H1)–(H5); see Fig-

ure 1 left. Figure 1 right is a graph of Ci’s profit function. It is clear that

π1(q1, q2) is unimodal with respect to q1.

q

p(q)

10

100

0

q1
q2

0

1

10 10

Fig. 1 Left: the price function, Right: C1’s profit function

Example 2.2 If we take

p(q) =





−1

5
q + 2 if 0 ≤ q ≤ 10,

0 if 10 < q,

and c1 = c2 = 1, then p(·) satisfies assumptions (i) and (H1)–(H5); see Figure 2

left.

q

p(q)

2.0

0

1010

q2
q1

1

100

Fig. 2 Left: the price function, Right: C1’s profit function
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Example 2.3 If we take

p(q) =

{
q2 − 20q + 100 if 0 ≤ q ≤ 10,

0 if 10 < q,

and c1 = c2 = 10, then p(·) satisfies assumptions (iii) and (H1)–(H5); see

Figure 3 left.

q
100

p(q)

100

0

1

q1

10

q2

10

Fig. 3 Left: the price function, Right: C1’s profit function

Example 2.4 If we take p(q) = − arctan(q − 10) + 2 and c1 = c2 = 2, then

p(·) satisfies assumptions (i)– (iii) and (H1)-(H5); see Figure 4 left.

q

p(q)

0

-arctan(-10)+2

q1

10

q2

10

1

0

Fig. 4 Left: the price function, Right: C1’s profit function
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3 Proof of Theorem 1.1

First, we quote a discrete fixed point theorem of [7], which is crucial in the

proof of Theorem 1.1. Throughout this section, V ⊂ Zn, (V,≺=) is a partially

ordered set and f : V → V is a nonempty set-valued mapping. Also, the

symbol x ¹ y means x ≺= y and x 6= y.

Proposition 3.1 ([7, Theorem 2.2]) Assume that there exists a sequence

{xk}k≥0 in V such that xk ≺
= xk+1 ∈ f(xk) for any k ≥ 0 and {x ∈ V ; x0 ≺

= x}
is finite. Then, f has a fixed point x∗ ∈ f(x∗).

In proving Theorem 1.1, we need the following two lemmas:

Lemma 3.1 Assume that there exists q0
−i ∈ (−δ, m−i + δ) such that 0 ∈

ϕi(q
0
−i). Then we have ϕi(q

0
−i + ε) = {0} for every positive ε.

Proof. By 0 ∈ ϕi(q
0
−i) and (H2), we get

p(0 + q0
−i + ε) < p(0 + q0

−i) ≤ ci,

that is, p(0 + q0
−i + ε) < ci. Therefore, Ci does not produce. Thus, it is holds

that ϕi(q
0
−i + ε) = {0}. �

Lemma 3.2 Assume that ϕi(q−i) ≥ ϕi(q−i + 1) for some q−i ∈ Q−i. Then

we have φi(q−i) ≥ φi(q−i + 1).

Proof. By the unimodality of πi with respects to qi, we have

φi(q−i) =





{dϕi(q−i)e}
if πi(dϕ(q−i)e, q−i) > πi(bϕ(q−i)c, q−i),

{dϕi(q−i)e, bϕi(q−i)c}
if πi(dϕ(q−i)e, q−i) = πi(bϕ(q−i)c, q−i),

{bϕi(q−i)c}
if πi(dϕ(q−i)e, q−i) < πi(bϕ(q−i)c, q−i)

for any q−i ∈ Q−i, where d·e and b·c are rounding up and rounding down to the

nearest integer, respectively. Thus, under the case where ϕi(q−i)−ϕi(q−i+1) >

1, we can immediately show φi(q−i) ≥ φi(q−i + 1).
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Assume that b + 1 ≥ ϕi(a) ≥ ϕi(a + 1) ≥ b for some a, b ∈ N ∪ {0}. Further

assume that φi(a) = dϕi(a)e = b and φi(a + 1) = bϕi(a + 1)c = b + 1. Since

φi(a) = b is the best response, we have

πi(φi(a), a) ≥ πi(b + 1, a). (1)

Moreover, since φi(a + 1) = b + 1 is the best response, we have

πi(φi(a + 1), a + 1) ≥ πi(b, a + 1). (2)

By (1) and (2), we easily see that

(
p(a + b + 2)− p(a + b + 1)

)
(b + 1) +

(
p(a + b)− p(a + b + 1)

)
b ≥ 0,

which contradicts assumption (H2). �

We are ready to prove Theorem 1.1

Proof of Theorem 1.1.

We define the following sets:

R−−i :=

{
q−i ∈ Q−i ; p′′(q) < 0, qi ∈ argmax

r∈(−δ,mi+δ)

π(r, q−i)

}
,

R0
−i :=

{
q−i ∈ Q−i ; p′′(q) = 0, qi ∈ argmax

r∈(−δ,mi+δ)

π(r, q−i)

}
,

R+
−i :=

{
q−i ∈ Q−i ; p′′(q) > 0, qi ∈ argmax

r∈(−δ,mi+δ)

π(r, q−i)

}
.

Here we note that the above sets can be empty.

For any q−i ∈ (−δ, m−i + δ), if we take qi ∈ ϕi(q−i), then (I) qi ∈ (0, mi) or

(II) qi = 0 or (III) qi = mi, because of qi ∈ [0, mi].

(I) The case where qi ∈ (0, mi): Production qi is a solution of the following

equation:
∂πi

∂qi
= p′(q)qi + p(q)− ci = 0. (3)

We put h(qi) := p′(q)qi +p(q)− ci. Here we note that h′(qi) = p′′(q)qi +2p′(q)

and also h′(·) = ∂π2
i /∂2qi.

(I-i) The case where q−i ∈ R−−i: By assumption (i), p′′(q)qi + 2p′(q) 6= 0,

that is, h′(qi) 6= 0. Therefore, by the implicit function theorem, (3) is uniquely

solved on a neighborhood of (q−i, ci), say U(q−i), such that qi = qi(q−i).

Namely,

p′(qi(q−i) + q−i)qi + p(qi(q−i))− ci = 0. (4)
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Differentiating (4) with respect to q−i, we have

p′′(q)
(

∂qi

∂q−i
+ 1

)
qi + p′(q)

∂qi

∂q−i
+ p′(q)

(
∂qi

∂q−i
+ 1

)
= 0,

which is equivalent to

∂qi

∂q−i
= − p′′(q)qi + p′(q)

p′′(q)qi + 2p′(q)
. (5)

Since p′′(q)qi + 2p′(q) < p′′(q)qi + p′(q) < 0 is satisfied, it follows that

p′′(q)qi + p′(q) < 0 and p′′(q)qi + 2p′(q) < 0. (6)

By (5) and (6), we have ∂qi/∂q−i < 0 in U(q−i) and ∂2πi/∂q2
i < 0.

(I-ii) The case where q−i ∈ R0
−i: By assumptions (ii) and (H2), 2p′(q) <

p′(q) < 0 holds, and also h′(q) 6= 0 and ∂2πi/∂q2
i < 0 hold. Thus, by similar

discussion of the case where q ∈ R−−i, we have ∂qi/∂q−i < 0 in U(q−i).

(I-iii) The case where q−i ∈ R+
−i: By assumptions (iii) and (H2), it follows

that 0 ≥ qip
′′(q) + p′(q) > qip

′′(q) + 2p′(q). Thus, we have h′(q) 6= 0 and

∂2πi/∂q2
i < 0. Therefore, by similar discussion of the case where q ∈ R−−i, we

have ∂qi/∂q−i ≤ 0 in U(q−i).

Since {U(q−i) ; 0 ≤ q−i ≤ m−i} is an open covering of [0, m−i], there exists

a finite subcovering {Uj}m
j=1, where Uj := Uj(q−i). Also, by the uniqueness of

the implicit function in neighborhood Uj , we get

∃qi = qi(q−i) s.t.
∂qi

∂q−i
≤ 0 in [0, m−i].

Finally, since, by the unimodality of πi with respects to qi, local maximum

implies global maximum, we get qi(q−i) = ϕi(q−i).

(II) The case where qi = 0: There exists q0
−i ∈ (−δ, m−i + δ) such that

ϕi(q
0
−i) = 0. Therefore, by Lemma 3.1, we get ϕi(q−i) = 0 for all q−i with

q0
−i < q−i ≤ m−i.

(III) The case where qi = mi: There exists qM
−i ∈ (−δ, m−i + δ) such that

ϕi(q
M
−i) = mi. Therefore, by (H5), we get ϕi(q−i) = mi for all q−i with

0 ≤ q−i < qM
−i.

By (I)–(III), ϕi(q−i) is monotone decreasing with respect to q−i.
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Now we modify ϕ1(q2) and ϕ2(q1) so that they are integers, and define

sequences {qn
i }n≥0 ⊂ Qi (i = 1, 2):

qn
i :=





dϕi(q
n
−i)e

if πi(dϕ(qn
−i)e, qn

−i) ≥ πi(bϕ(qn
−i)c, qn

−i),

bϕi(q
n
−i)c

if πi(dϕ(qn
−i)e, qn

−i) < πi(bϕ(qn
−i)c, qn

−i).

Then the following holds:

• qn
1 ∈ φ1(q

n
2 ) and qn

2 ∈ φ2(q
n
1 ) for all n ∈ Z,

• by Lemma 3.2, if qn
2 < qn+1

2 then qn
1 ≥ qn+1

1 , and if qn
1 < qn+1

1 then

qn
2 ≥ qn+1

2 for all n ∈ Z.

We define the partial order (q1
1 , q1

2) ≺= (q2
1 , q2

2) for (q1
1 , q1

2), (q2
1 , q2

2) ∈ Q := Q1 ×
Q2 by q1

1 ≤ q2
1 and q2

1 ≥ q2
2 . Then there exists a sequence {(qn

1 , qn
2 )}n≥0 ⊂ Q

satisfying (qn
1 , qn

2 ) ≺= (qn+1
1 , qn+1

2 ) ∈ φ(qn) for all n ≥ 0. Finally, applying

Proposition 3.1 to (V, f) = (Q, φ), we conclude that φ has a discrete fixed

point, which is a discrete Cournot-Nash equilibrium. �

4 Concluding remarks

It is not hard to calculate a discrete Cournot-Nash equilibrium for each exam-

ple in Section 2. Indeed, (3, 4), (1, 2), (2, 2) and (3, 5) are a discrete Cournot-

Nash equilibrium of Examples 2.1, 2.2, 2.3 and 2.4, respectively. Although

Theorem 1.1 shows the existence of a discrete Cournot-Nash equilibrium, it

does not mention the way to compute it, which is another important research

theme.

By the way, there are several studies on discretized market competition mod-

els. We close this paper with introducing two types of these studies. One is

based on discrete convex analysis proposed by Murota [6], and the other is

based on discrete fixed point theorems.

Danilov-Koshevoy-Murota [3] is the first result of economic models based

on discrete convex analysis. They considered the model called Arrow-Debreu

type model. Furthermore, Danilov-Koshevoy-Lang [2] extended [3]’s model.

Lehmann-Lehmann-Nisan [5] considered auctions. Tamura [8] expounded on

these results.

On the other hand, Iimura [4] provided a discrete fixed point theorem and

showed the existence of Walrasian equilibrium with indivisible commodities.

Since his discrete fixed point theorem is based on Brouwer’s fixed point theorem
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and the discrete convex analysis, it is a different type of fixed point theorem

from Proposition 3.1.
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