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SUMMARY

This paper introduces regularized functional principal component analysis for multidi-

mensional functional data sets, utilizing Gaussian basis functions. An essential point in a

functional approach via basis expansions is the evaluation of the matrix for the integral of

the product of any two bases (cross product matrix). Advantages of the use of the Gaus-

sian type of basis functions in the functional approach are that its cross product matrix

can be easily calculated, and it creates a much more flexible instrument for transforming

each individual’s observation into a functional form. The proposed method is applied to

the analysis of three-dimensional (3D) protein structural data that can be referred to as

unbalanced data. It is shown that our method extracts useful information from unbal-

anced data. Numerical experiments are conducted to investigate the effectiveness of our

method via Gaussian basis functions, comparing to the method based on B-splines. On

performing regularized functional principal component analysis with B-splines, we also

derive the exact form of its cross product matrix. The numerical results show that our

methodology is superior to that based on B-splines for unbalanced data.

KEY WORDS: functional data analysis, model selection, protein structure, radial basis

functions, regularization, smoothing parameter, spline.

1. Introduction

Multivariate analysis deals with observations on more than one variable, where there is

some inherent interdependence between the variables (Mardia, Kent and Bibby (1979)),

∗Research Fellow of the Japan Society for the Promotion of Science
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and principal component analysis (PCA) is one of the most widely used multivariate

analysis techniques in various fields of natural and social sciences (see, e.g., Jolliffe (2002)).

The concepts of PCA are the dimension reduction and visualization of data. However,

there are some problems with applying conventional PCA to the longitudinal type of data.

For example, if the observational points are not equally spaced and differ among subjects,

PCA cannot be directly applied. Accordingly, a number of recent papers have investigated

functional principal component analysis (functional PCA) and its regularization methods

that reformulate PCA in terms of the functions rather than the discrete observations

(Besse and Ramsay (1986), Rice and Silverman (1991), Silverman (1996)).

These functional approaches are referred to as functional data analysis (FDA; Ramsay

and Silverman (2002, 2005), Ferraty and Vieu (2006), Mizuta (2006)). The basic idea

behind FDA is the conversion of observational discrete data to functional data by a

smoothing method and then extracting information from the obtained functional data

set by applying concepts from traditional multivariate analysis. In modeling with FDA,

many studies employ a basis expansion which assumes that functional data and coefficient

functions may be expressed as linear combinations of known basis functions. Fourier series

are useful if the observations are periodic and have sinusoidal features, whereas splines

(Green and Silverman (1994)) and B-splines (De Boor (2001), Eilers and Marx (1996),

Imoto and Konishi (2003)) are utilized to non-periodic data.

An essential point for FDA via basis expansions is the evaluation of the matrix for

the integral of the product of any two bases (cross product matrix). The orthonormal

property of Fourier series yields the identity cross product matrix, and then we need not

evaluate the cross product matrix for Fourier series. In contrast, spline types of bases do

not have the orthonormal property, and in consequence the cross-product matrix must be

calculated. Previous works, however, utilized discrete approximation to evaluate the cross

product matrix for spline types of bases (see e.g., Ramsay and Silverman (2002, §2)). In

this paper, we provide the exact form for the integral of the product of any two B-spline

bases.

The main aim of this paper is to introduce regularized functional PCA for multidimen-

sional (multivariate) functional data sets, utilizing Gaussian basis functions. Advantages

of the use of the Gaussian type of basis functions are that its cross product matrix can

be easily calculated, and it creates a much more flexible instrument for transforming each

individual’s observation into a functional form. Numerical experiments are conducted to

investigate the effectiveness of our method via Gaussian basis functions. In addition, the

proposed method is applied to functionalized three-dimensional (3D) protein structural

data that determine the 3D arrangement of amino-acids in individual protein and also de-
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termine proteins that have special structures. An objective of the analysis of the protein

structural data is to characterize any features of proteins without relying on their sequence

information and physicochemical properties. Our functionalization method permits a

low-dimensional visualization of proteins, and provides a useful information concerning

to biological view points.

This paper is organized as follows. Section 2 describes observational discrete data and

their functinalization to multidimensional functional data. Section 3 introduces a regular-

ized functional principal component procedure based on multidimensional functional data

sets and gives an outline of its implementation. In Section 4, Monte Carlo simulations

are conducted to investigate the effectiveness of the proposed regularized functional PCA

based on Gaussian basis functions, in which we compare our procedure to that based on

B-splines with the derived exact cross product matrix. Section 5 describes an applica-

tion of the proposed method to the 3D protein structural data. Finally, some concluding

remarks are presented in Section 6.

2. Discrete and functional data

Suppose we have N independent discrete observations {tij, (xi1j, · · · , xipj) ; j = 1, · · · ,

ni} (i = 1, · · · , N), where each tij (∈ T ⊂ R) is the j-th observational point of the

i-th individual and (xi1j, · · · , xipj) (∈ Rp) is the discrete data observed at tij for p

variables X1, · · · , Xp. In particular, the i-th discrete data set observed at tij for Xl

is represented by {(tij, xilj) ; j = 1, · · · , ni}. It may be noted that we have the dis-

crete data observed at possibly different observational points ti1, · · · , tini
for each subject,

and then the discrete observations can be referred to as unbalanced data. For example,

{tij, (xi1j, xi2j, xi3j) ; j = 1, · · · , ni} (i = 1, · · · , 12) are the measurements in XYZ coor-

dinates of 3D protein structures, where tij are the positions in i-th amino-acid sequence

and (xi1j, xi2j, xi3j) are the XYZ coordinates values of amino acids which compose i-th

3D protein structure. Fig1 (upper) shows an example of discretized 3D protein structural

data with p = 3 and ni = 186.

We convert each discrete data set {(tij, xilj) ; j = 1, · · · , ni} to functional data x∗il(t)

using a smoothing method, as follows. It is assumed that each discrete data {(tij, xilj); j =

1, · · · , ni} is generated from the nonlinear regression models

xilj = uil(tij) + εilj (j = 1, · · · , ni) ,

where the errors εilj are independently normally distributed with mean 0 and variance σ2
il.

The nonlinear functions uil(t) are assumed to be given by linear combinations of Gaussian
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Fig. 1: An example of discrete data (upper) and corresponding three-dimensional func-
tional data (lower) for a 3D protein structure (p = 3, ni = 186).

basis functions {φm(t) = φm(t; ν, µm, τ 2
m)} with parameters µm, τm and ν,

uil(t) =
M∑

m=1

cilmφm(t) ,

where the m-th Gaussian basis function φm(t) has the form

φm(t) = φm(t; ν, µm, τ 2
m) = exp

{
−(t− µm)2

2ντ 2
m

}
(m = 1, · · · ,M) . (1)

The parameters µm and τm express the position and width of the m-th basis function and

ν is a hyper-parameter that adjusts the degree of overlapping among the basis functions

(Ando et al. (2005)).

Each non-linear function uil(t) is estimated in two steps. First, the parameters µm

and τm are estimated applying the k-means clustering method to
∑

i ni observational

points {tij ; j = 1, · · · , ni, i = 1, · · · , N}. The estimated parameters µ̂m and τ̂ 2
m are

given by the sample mean and variance of {tij ∈ Cm}, where Cm is the m-th cluster

given by the k-means method. Let φν
m(t) = φm(t; ν, µ̂m, τ̂ 2

m) be the estimated m-th basis

function. Next, the coefficient parameters cil1, · · · , cilM and variance σ2
il are estimated by

maximizing the penalized log-likelihood function with a smoothing parameter βil (> 0)

that controls the smoothness of the nonlinear function uil(t). The estimators ĉil and
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σ̂2
il depend on the number of basis functions M , hyper-parameter ν in Gaussian basis

functions and smoothing parameter βil for each i and l. The parameters are selected by

minimizing the generalized information criterion (GIC), given by Konishi and Kitagawa

(1996) (see also, Konishi and Kitagawa (2008)).

Thus, we have the estimated nonlinear functions ûil(t) =
∑M

m=1 ĉilmφm(t) ((i =

1, · · · , N, l = 1, · · · , p), where φm(t) = φν
m(t) = φm(t; ν, µ̂m, τ̂ 2

m) is the m-th basis func-

tion with the optimal hyper-parameter ν selected by minimizing GIC. The p-dimensional

functional data sets {x∗i1(t), · · · , x∗ip(t) ; t ∈ T} are given by x∗il(t) = ûil(t) for each i and

l. In the next section, we introduce regularized functional PCA for the p-dimensional

functional data sets, using Gaussian basis functions. An example of multidimensional

functional data is shown in Fig1 (lower), corresponding to the discretized 3D protein

structural data in Fig1 (upper).

3. Functional Principal Component Analysis

3.1 Model

Let {(x∗i1(t), · · · , x∗ip(t)) ; t ∈ T} (i = 1, · · · , N) be the p-dimensional functional data

sets obtained by smoothing the observational discrete data sets {tij, (xi1j, · · · , xipj) ;

j = 1, · · · , ni} (i = 1, · · · , N). A functional principal component method is here applied

to the p-dimensional functional data sets {(xi1(t), · · · , xip(t)) ; t ∈ T} (i = 1, · · · , N),

where xil(t) = x∗il(t) − x̄l
∗(t) and each x̄l

∗(t) is the mean function of the functional data

x∗i1(t), · · · , x∗ip(t). It is assumed that each functional data element xil(t) can be expressed

as a linear combination of Gaussian basis functions φm(t) = φν
m(t) = φm(t; ν, µ̂m, τ̂ 2

m),

xil(t) =
M∑

m=1

c̃ilmφm(t) = c̃′ilφ(t) (i = 1, · · · , N, l = 1, · · · , p),

where c̃il = (c̃il1, · · · , c̃ilM)′ and φ(t) = (φ1(t), · · · , φM(t))′.

Let fi be an inner product for a p-dimensional weight function ξ(t) = (ξ1(t), · · · , ξp(t))
′

(t ∈ T) and i-th p-dimensional functional data xi(t) = (xi1(t), · · · , xip(t))
′,

fi = 〈ξ,xi〉p =

p∑

l=1

〈ξl, xil〉 =

p∑

l=1

∫

T

ξl(t)xil(t)dt (i = 1, · · · , N) .

We adopt a straightforward definition of an inner product between two p-dimensional

functions. It is assumed that the weight functions ξ1(t), · · · , ξp(t) can be expressed in

terms of the same basis functions as the functional data sets {(xi1(t), · · · , xip(t))},

ξl(t) =
M∑

m=1

θlmφm(t) = θ′lφ(t) (l = 1, · · · , p)
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with θl = (θl1, · · · ,θlM)′. A general functional principal component method maximizes

the sample variance of the inner products subject to the orthonormal constraints, in order

to estimate weight functions. It may be noted that the weight functions correspond to

the weight vectors in conventional PCA. Ramsay and Silverman (2005, §8.5) describes the

functional principal component method to the 2-dimensional functional data sets which

include the hip and knee angles during a human gait cycle.

On the other hand, regularized (smoothed) functional principal component analy-

sis (regularized functional PCA) proposed by Rice and Silverman (1991) and Silverman

(1996) avoids ill-posed problems from functional PCA and maximizes the penalized sam-

ple variance (PSV) instead of the sample variance in functional PCA. In this paper, we

estimate the p-dimensional weight function ξ(t) that maximizes the following penalized

sample variance subject to penalized orthonormal constraints.

PSVλ(ξ) =
var(f)

‖ξ‖2
p + θ′Qλθ

, (2)

where θ = (θ′1, · · · ,θ′p)
′, ‖ξ‖2

p =
∑

l ‖ξl‖2 =
∑

l

∫
T
ξ2
l (t) dt is the norm of a p-dimensional

weight function ξ(t) and Qλ = diag(λ1Q
∗, · · · , λpQ

∗) is a pM × pM positive-semidefinite

block diagonal matrix with M×M positive-semidefinite matrix Q∗ and smoothing param-

eters λl > 0 which control the smoothness of the weight functions ξl(t). The smoothing

parameters λl can be optimally selected by minimizing a cross validation score.

The principal component (PC) curves are defined by the p-dimensional weight function

ξ(t) that maximizes the penalized sample variance PSVλ(ξ) given by (2) subject to the

penalized orthonormal constraints.

First PC Curve ξλ
1(t) = (ξλ

11(t), · · · , ξλ
1p(t))

′ :

the p-dimensional weight function ξ(t) that maximizes PSVλ(ξ)

subject to ‖ξ‖2
p = 1,

k (≥ 2)-th PC Curve ξλ
k(t) = (ξλ

k1(t), · · · , ξλ
kp(t))

′ :

the p-dimensional weight function ξ(t) that maximizes PSVλ(ξ)

subject to ‖ξ‖2
p = 1 and 〈ξ, ξλ

r 〉p + θ′Qλθ
λ
r = 0 (r < k),

where the l-th element ξλ
kl(t) of ξλ

k(t) may be expressed as the basis expansion ξλ
kl(t) =∑

m θλ
klmφm(t) = (θλ

kl)
′φ(t), and θλ

k = ((θλ
k1)

′, · · · , (θλ
kp)

′)′. The k-th principal component

score is defined by {fλ
ki = 〈ξλ

k ,xi〉p ; i = 1, · · · , N} (k = 1, · · · , pM). We note that there

are pM principal components by the assumption of basis expansions.
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3.2 Eigenvalue Problem

The PC curves ξλ
k(t) = (ξλ

k1(t), · · · , ξλ
kp(t))

′ can be estimated by solving an eigenvalue

problem. The inner product fi = 〈ξ, xi〉p for a p-dimensional weight function ξ(t) and

i-th p-dimensional functional data xi(t) can be written as

fi = 〈ξ,xi〉p =

p∑

l=1

〈ξl, xil〉 =

p∑

l=1

∫

T

θ′lφ(t)φ(t)′c̃il dt =

p∑

l=1

θ′lW
∗c̃il = θ′W c̃i,

where c̃i = (c̃′i1, · · · , c̃′iM)′, each θl is the coefficient vectors of ξl(t), the M × M cross-

product matrix W ∗ =
∫

T
φ(t)φ(t)′dt has the (m,n)-th element W ∗

mn =
∫

T
φm(t)φn(t) dt,

and the pM × pM matrix W = diag(W ∗, · · · ,W ∗) is the block diagonal matrix formed

from W ∗.

The (m,n)-th components of the cross-product matrix W ∗ for Gaussian basis functions

φl(t) = φν
l (t) = φl(t; ν, µ̂l, τ̂

2
l ) are given by

W ∗
mn =

√
2πντ̂ 2

mτ̂ 2
n√

τ̂ 2
m + τ̂ 2

n

exp

{
− (µ̂m − µ̂n)2

2ν(τ̂ 2
m + τ̂ 2

n)

}
(m,n = 1, · · · ,M).

We assume that the cross-product matrix W ∗ of Gaussian basis functions is positive

definite. From this assumption, it follows that the condition for a norm is satisfied and

regularized functional PCA can be applied. In addition, to satisfy the assumption, we

employ Gaussian basis functions except constant term (1), which are as flexible as common

Gaussian RBF.

Now, let V = N−1
∑

i c̃ic̃
′
i be the pM × pM sample variance-covariance matrix of the

estimated coefficient vectors c̃i of the p-dimensional functional data xi(t). The sample

variance var(f) of {fi ; i = 1, · · · , N} can be written as

var(f) =
1

N

N∑
i=1

f 2
i =

1

N

N∑
i=1

θ′W c̃ic̃
′
iWθ = θ′WV Wθ .

The penalized sample variance PSVλ(ξ) in (2) can then be written as

PSVλ(θ) =
θ′WV Wθ

θ′(W + Qλ)θ
,

since the norm of the p-dimensional weight function ξ(t) is expressed as

‖ξ‖2
p =

p∑

l=1

‖ξl‖2 =

p∑

l=1

θ′lW
∗θl = θ′Wθ .

Also let u = Uλθ and Sλ = U−1
λ , where the pM × pM non-singular upper triangular

matrix Uλ satisfies W + Qλ = U ′
λUλ. We then have

PSVλ(u) =
u′S ′λWV WSλu

u′u
. (3)
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Thus, the maximum problem of the penalized sample variance PSVλ(ξ) is equivalent to

the maximum problem of the above quadratic form (3). Therefore we need to solve the

eigenvalue problem for the pM × pM matrix S ′λWV WSλ.

Let ρ1 ≥ · · · ≥ ρpM be the eigenvalues of S ′λWV WSλ and e1, · · · , epM be the or-

thonormal eigenvectors corresponding to the eigenvalues ρ1, · · · , ρpM , respectively. The

estimated coefficient parameter vectors θ̂
λ

k = ((θ̂
λ

k1)
′, · · · , (θ̂

λ

kp)
′)′ are given by

θ̂
λ

k =
1√

e′kS
′
λWSλek

Sλek (k = 1, · · · , pM) .

The p-dimensional k-th PC curves ξλ
k(t) and PC scores {fλ

ki = 〈ξλ
k ,xi〉p ; i = 1, · · · , N}

can then be obtained by using θ̂
λ

k . Furthermore, we can express the p-dimensional func-

tional data sets {xi1(t), · · · , xip(t) ; i = 1, · · · , N} as uncorrelated scores, since the sample

covariance of the k-th and k′ (6= k)-th PC scores is 0.

3.3 Smoothing Parameter Selection

The smoothing parameters λl in regularized functional PCA can be optimally selected,

as follows. Rice and Silverman (1991) and Silverman (1996) selected the optimal smooth-

ing parameter using a cross validation (CV) method.

When we have smoothing parameters λl and k ∈ {1, 2, · · · , pM}, then i-th p-dimensional

functional data xi(t) is projected into the space spanned by the PC curves
{
ξλ,−i

r (t) ; r = 1,

· · · , k}, where each ξλ,−i
r (t) denotes the r-th PC curve estimated from the functional data

set excluding xi(t). The projected (reconstructed) functional data x̂λ,−i
ik (t) are given by

x̂λ,−i
i,k (t) =

k∑
r=1

k∑
q=1

(
Gλ,−i

k

)−1

rq

〈
ξλ,−i

q ,xi

〉
p

ξλ,−i
r (t) (i = 1, · · · , N) ,

where the k × k matrix Gλ,−i
k has (r, q)-th components Gλ,−i

k,rq =
〈
ξλ,−i

r , ξλ,−i
q

〉
p
. The cross

validation scores CVk(λ) and CV (λ) are defined by

CVk(λ) =
N∑

i=1

∥∥∥xi − x̂λ,−i
i,k

∥∥∥
2

p
, CV (λ) =

pM∑

k=1

CVk(λ) .

The set of optimal smoothing parameters is obtained by minimizing CV (λ).

4. Numerical experiments

In this section, Monte Carlo experiments are conducted to compare the effectiveness

of the proposed method via Gaussian basis functions and cubic B-splines with equidistant
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knots. We refer to De Boor (2001) and Imoto and Konishi (2003) for B-splines. We note

that Fourier series are orthonormal, while Gaussian basis functions and B-splines are not.

The evaluation of the cross product matrix for Gaussian basis functions was described

in the subsection 3.2. Then if we perform regularized functional PCA via B-splines, its

cross-product matrix W ∗ must be evaluated. We derived the integral of the product of

any two B-spline bases. An outline of the evaluation is shown in Appendix.

A true functional data set {xi(t); t ∈ [0, 1], i = 1, · · · , 15} was generated in each

trial of Monte Carlo experiments. However this data set xi(t) could not be expressed in

terms of a basis expansion, so a discrete data set was generated from {xi(t)}, and a new

functional data set {x̃i(t) ; i = 1, · · · , 15} was then obtained by smoothing the generated

discrete data set. Applying regularized functional PCA to x̃i(t), we calculated the mean

square error (MSE) between the true functional data xi(t) and the that reconstructed by

estimated PC curves. More precisely, we performed the Monte Carlo experiment using

the following procedure.

Step 1. Generate a true functional data set {xi(t) ; i = 1, · · · , 15} from mixed effects

models (see, e.g., James et al. (2000)),

xi(t) = µ(t) +
4∑

m=1

αimξm(t) (t ∈ [0, 1], i = 1, · · · , 15) ,

where the mean function µ(t) is assumed to be the following functions

1. µ(t) = e−3t sin(3πt),

2. µ(t) = 1− 48t + 218t2 − 315t3 + 145t4,

and ξ2r−1(t) = sin(2πrt), ξ2r(t) = cos(2πrt) (r = 1, 2). The random components αim are

assumed to be independently normally distributed with αim
iid∼ N(0, (0.03Rx)

2), where Rx

is the range of µ(t) over t ∈ [0, 1].

Step 2. Generate discrete data {xij ; j = 1, · · · , ni} from the nonlinear regression models

with the true functions xi(t),

xij = xi(tij) + εij (j = 1, · · · , ni i = 1, · · · , 15) ,

where the errors εij are assumed to be independently normally distributed with εij
iid∼

N(0, σ2
ε), where standard deviation σε is taken as 0.05Rx, 0.1Rx, 0.2Rx. A set of obser-

vational points tij is generated from the uniform distribution on [0, 1]. The numbers ni

of observational points are taken as ni = 100 or generated from the normal distribution

9
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Fig.2: Examples of simulated data: The dashed lines are the true functional data, while
the solid lines are the estimated functional data. µ(t) = (a) e−3t sin(3πt) and (b) 1−48t+
218t2 − 315t3 + 145t4.

with mean 100 and variance 22. We note that the generated data can be referred to as

high-dimensional and small sample-size data.

Step 3. Estimate a functional data set by smoothing the discrete data set {xij ; j =

1, · · · , ni, i = 1, · · · , 12}. It is assumed that each functional data xi(t) can be expressed

as a linear combination of Gaussian basis functions or B-splines. The number M of basis

functions, hyper-parameter ν (for Gaussian basis functions) and smoothing parameters

βi are optimally selected by minimizing GIC (Konishi and Kitagawa (1996, 2008)). Fig2

shows generated true functional data x1(t) (dashed line), discrete data {x1j ; j = 1, · · · , ni}
and estimated functional data x̃1(t) (solid line) for 2 mean functions with σε = 0.1Rx.

Step 4. Perform regularized functional PCA on the estimated functional data set

{x̃i(t) ; i = 1, · · · , 15} and smoothing parameter selection based on the cross validation

method.

Step 5. Calculate the mean square error for the b-th trial,

MSEb =
1

15

15∑
i=1

‖xi − x̂λ
i ‖2 ,

where λ is the selected smoothing parameter using cross validation and x̂λ
i (t) =

∑4
r=1

∑4
q=1

(Gλ
4)
−1
rq

〈
ξλ
q , x̃i

〉
ξλ
r (t) are the reconstructed functional data with the 4× 4 matrix Gλ

4 that

has (r, q)-th element Gλ
4,rq = 〈ξλ

r , ξλ
q 〉.

Step 6. Repeat Steps 1 to 5 for each trial. Then the average mean square error (AMSE)

10



Table1: Simulation results for 2 mean functions.

µ(t) = e−3t sin(3πt)

σε = 0.05Rx σε = 0.1Rx σε = 0.2Rx

Gaussian B-splines Gaussian B-splines Gaussian B-splines
ni = 100

AMSE ×102 7.792 7.792 7.962 7.957 7.972 7.960
SD(MSE) ×103 9.17 9.16 9.77 9.76 9.23 9.26

ni : normal
AMSE ×102 7.682 9.197 7.802 9.230 7.987 9.312

SD(MSE) ×103 8.43 10.04 9.54 12.15 9.59 12.62

µ(t) = 1− 48t + 218t2 − 315t3 + 145t4

σε = 0.05Rx σε = 0.1Rx σε = 0.2Rx

Gaussian B-splines Gaussian B-splines Gaussian B-splines
ni = 100
AMSE 1.472 1.471 1.508 1.504 1.520 1.509

SD(MSE) ×10 1.72 1.72 1.92 1.92 1.81 1.82

ni : normal
AMSE 1.468 1.786 1.504 1.790 1.518 1.793

SD(MSE) ×10 1.86 2.03 1.67 1.81 1.85 2.35

is given by AMSE = 100−1
∑100

b=1 MSEb.

Table1 shows the simulation results with the AMSE and standard deviation (SD)

of MSE for Gaussian basis functions and B-splines. From this table, if the numbers

ni of observational points were generated from the normal distribution, all AMSE and

SD(MSE) for Gaussian basis functions were smaller than the corresponding values for

B-splines. Moreover, most of results for Gaussian basis functions to the unbalanced

data (ni:normal) are better than the that to the equispaced data (ni = 100), while the

results for B-splines were not. In consequence, regularized functional PCA via Gaussian

basis functions performs well to unbalanced data in the sense of minimizing AMSE and

SD(MSE) through these simulations.

5. Real data example

We apply the proposed regularized functional PCA to 3D protein structures such as

that shown in Fig3. There have been many studies that have analyzed proteins using

statistical methods (Wu, Hastie and Schmidler (1998), Ding and Dubchak (2001), Green

11



Fig. 3: Examples of 3D protein structures. The surface (left) and internal structures
(right) of a protein.

Table2: The 12 proteins from the 4 families.

Family code Family name Protein code
adk Nucleotide kinase 1gky (186) 3adk (194)
aza Azulin / plastocyanin 1azu (125) 1plc (99) 7pcy (98) 1paz (120)

9pcy (92)
cbp Calcium-binding protein 3cln (142) 4cln (148) 5cln (161)

(calmodulin-like)
dhfr Dhydrofolate reductase 3dfr (162) 8dfr (186)

Each number in the parentheses shows the length of the amino-acid sequence.

and Mardia (2006), among others). Regularized functional PCA is applied here to 3-

dimensional functional data sets representing 3D protein structures, in order to identify

any features of the protein structures.

Proteins have been classified from a biological point of view, and a protein class is

referred to as a family. A protein family is a group of evolutionarily related proteins.

We treat 12 proteins from the 4 families given in Table2. The 3D protein structural

data set was obtained from the National Center of Biotechnology Information (NCBI,

http://www.ncbi.nlm.nih.gov/). It should be noted that because the length of amino-acid

sequence differs for each protein, the conventional multivariate analysis including PCA

cannot be directly applied to this unbalanced data set. In what follows, it is assumed that

we have the XYZ-coordinates values of all atoms for each protein in various coordinate

systems.

12
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Fig.4: An example of a rotation of proteins. The 3-dimensional functional data (upper)
and rotated data (lower) of two proteins.

Firstly, the 3D protein structural data set was converted into discrete data sets using

the XYZ-coordinates values of the α-carbon atoms which were typical atoms of amino-

acids. Each α-carbon atom corresponds to an amino-acid. We then had a discrete data

set for each coordinate, and the smoothing method using Gaussian basis functions was

performed for each discrete data set. We considered values for M of 3, 4, · · · , 20, values

for ν of 1, 2, · · · , 50 and values for βil of 10−10, 10−9, · · · , 10−1 and found optimal values

of M = 15, ν = 11.6 and βil = 10−8 ∼ 10−5. The selected values of M and ν were the

mode and mean of that for all individuals and coordinates, respectively.

To unify the coordinates, we rotated the estimated functional data sets obtained by

smoothing, since the coordinate systems differ for each protein. Optimization was per-

formed in rotating each protein to an another base protein. A root mean square deviation

(RMSD) for two functional data {x(t), y(t), z(t) ; t ∈ T} and {x′(t), y′(t), z′(t) ; t ∈ T}
was utilized as a criterion for the optimization, and it was here defined by

RMSDF =

{
1

|T|
[ ∫

T

{(x(t)− x′(t)}2
dt

+

∫

T

{y(t)− y′(t)}2
dt +

∫

T

{z(t)− z′(t)}2
dt

]}1/2

.

We employed Euler’s angle θ1, θ2, θ3 as a rotation method with step size 10 degree, and the

13
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Fig. 5: The principal component (PC) scores for each family. The proteins in the adk,
aza and dhfr families are clustered in their respective groups, while the cbp family has an
un-clustered protein.

selected angles θ∗1, θ
∗
2, θ

∗
3 were then varied with step size 1 degree. Fig4 shows an example

of the 3-dimensional functional data sets (upper) and the rotated ones (lower). In this

figure, we show a rotation of two proteins. The regularized functional PCA was applied

to the rotated 3-dimensional functional data sets.

Using cross validation resulted in λ1 = 6.31× 10−6, λ2 = 2.51× 10−6 and λ3 = 3.98×
10−6 as optimal smoothing parameters, where we set the candidate values of λl (l = 1, 2, 3)

to λli = 1011−i (i = 1, · · · , 10) and λli = 10 (i−71)/10 (i = 1, · · · , 21). With the selected

smoothing parameters, we estimated PC curves and PC scores and plotted the PC scores

for each family (Fig5). The proteins belonging to the adk, aza and dhfr families were

clustered in respective family groups; however, the cbp family contained an unclustered

protein. This problem may be caused by the ”slim” structure of proteins in the cbp family,

while we successfully captured the ”ball” structure characteristic of proteins in the adk,

aza and dhfr families. Thus, using our functionalization method, 3D protein structures

can be captured without relying on their sequence information, physicochemical properties

and a visual census of an enormous number of proteins. However, we may have to use a

robust representation of a 3D protein structure for rotation.

14



6. Concluding remarks

We introduced regularized functional PCA for multidimensional functional data sets,

using Gaussian basis functions. The results of the Monte Carlo experiments showed that

our regularized functional PCA based on Gaussian basis functions performed well, and was

superior to that based on cubic B-splines in the sense of minimizing the mean square error

and its standard deviation for unbalanced data. The proposed procedure extracted useful

information from unbalanced data like the protein structural data. The analysis of the

real data set showed that the 3D protein structures could be characterized by our method

without relying on their sequence information and physicochemical properties. Future

works that remains to be done include derivation of model selection criteria from an

information-theoretic perspective and also the application of Bayesian approaches instead

of cross validation.
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Appendix. Evaluation of the cross product matrix for

cubic B-splines

This section shows an outline of the evaluation for the cross product matrix W ∗ =

{W ∗
mn =

∫
T
φm(t)φn(t) dt}M

m,n=1 via cubic B-splines {φm(t)} with the equispaced knots

k1 < k2 < · · · < kM+4, where T = [k4, kM+1]. We refer to De Boor (2001) and Imoto and

Konishi (2003) for B-splines.

It is known that B-splines φ1(t; r), · · · , φM(t; r) with degree r ∈ {1, 2, · · · } and knots

k1 < k2 < · · · < kM+r+1 are given by the sequential equation (de Boor 2001);

φm(t; r) =
t− km

km+r − km

φm(t; r − 1)− t− km+r+1

km+r+1 − km+1

φm+1(t; r − 1) ,

where φm(t; 0) = 1 (km ≤ t < km+1), = 0 (otherwise). The cubic B-splines {φm(t; 3)} are

here denoted by {φm(t)}. Fig6 shows an example of the cubic B-splines with T = [0, 1]

and M = 9.

The diagonal components W ∗
mm of W ∗ can be evaluated through the integrations

Id
1 =

∫ k2

k1
φ1(t)

2dt = h/252 and Id
2 =

∫ k3

k2
φ1(t)

2dt = 33h/140 with the width h of the

15
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Fig.6: Cubic B-splines (T = [0, 1], M = 9).

equidistant knots sequence;

W ∗
11 = Id

1 (= W ∗
MM) , W ∗

22 = Id
1 + Id

2 (= W ∗
M−1,M−1) ,

W ∗
33 = Id

1 + 2Id
2 (= W ∗

M−2,M−2) , W ∗
mm = 2Id

1 + 2Id
2 (m = 4, 5, · · · , M − 3) .

It may be noted that the B-splines are symmetric and φm(t) = 0 (t < km, km+4 ≤ t).

Furthermore, each B-spline function φm(t) is given by the parallel translation of the other

B-splines φn(t) (n 6= m).

The calculation of the non-diagonal components W ∗
mn (m < n) requires the 4 in-

tegrations Ind
1 =

∫ k5

k4
φ1(t)φ2(t) dt = h/210, Ind

2 =
∫ k5

k4
φ1(t)φ3(t) dt = h/84, Ind

3 =∫ k5

k4
φ1(t)φ4(t) dt = h/5040 and Ind

4 =
∫ k4

k3
φ1(t)φ2(t) dt = 311h/1680. We then have

the components in the 1st to 3rd rows;

W ∗
12 = Ind

1 , W ∗
13 = Ind

2 , W ∗
14 = Ind

3 , W ∗
15 = · · · = W ∗

1M = 0 ,

W ∗
23 = Ind

1 + Ind
4 , W ∗

24 = 2Ind
2 , W ∗

25 = Ind
3 , W ∗

26 = · · · = W ∗
2M = 0 ,

W ∗
34 = 2Ind

1 + Ind
4 , W ∗

35 = 2Ind
2 , W ∗

36 = Ind
3 , W ∗

37 = · · · = W ∗
3M = 0 .

In a similar way, the components in the 4th,5th,· · · rows can be obtained. Especially, the

components in the (M−2)-th and (M−1)-th rows are given by W ∗
M−2,M−1 = Ind

1 +Ind
4 (=

W ∗
23), W ∗

M−2,M = Ind
2 (= W13) and WM−1,M = Ind

1 (= W12).
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equation

MHF2005-14 Masato KIMURA & Shin-ichi NAGATA
Precise asymptotic behaviour of the first eigenvalue of Sturm-Liouville prob-
lems with large drift

MHF2005-15 Daisuke TAGAMI & Masahisa TABATA
Numerical computations of a melting glass convection in the furnace

MHF2005-16 Raimundas VIDŪNAS
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