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Abstract

In this paper we investigate quantum cellular automata whose global
transitions are defined using a global transition function of classical cellu-
lar automata. And we prove the periodicity of behaviors of some quantum
cellular automata.

Key words: cellular automata, quantization, reversibility, periodicity

1 Introduction

Since classical (discrete) cellular automata (CA, for short) were introduced by
J. von Neumann about 60 years ago, CA have been applied to various fields and
much research is still reported.

Feynman proposed first the notion of cellular automata on principle of quan-
tum mechanics in 1982[3], and Watrous [10] introduced the first formal model
of quantum CA as a kind of quantum computer. He proved that there exists a
partitioned quantum CA which can simulate any quantum Turing machine ef-
ficiently with constant slowdown. After introduction of the formal model some
researches on properties of quantum CA were reported. Diirr and Santha [2]
considered the properties between the local function of quantum CA and the
unitarity of the global transition function, and proposed an algorithm to de-
cide if a linear quantum CA is unitary. Van Dam [9] investigated quantum CA
with circular bounded configurations and proved the existence of a universal
quantum CA. Although almost quantum CA investigated till now have infinite
cell space, Inokuchi and Mizoguchi [4] dealt with quantum CA with finite cell
array. They introduced a notion of quantum CA with cyclic finite cell array
and showed a sufficient condition for local transition functions to form quantum
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CA. And they introduced some examples of quantization method of reversible
classical CA. And several types of construction method of quantum cellular au-
tomata were proposed by Schumacher and Werner [8] and they showed that
any quantum cellular automaton is structurally reversible. Nevertheless much
research on quantum CA have been published, research on dynamical behaviors
of quantum CA have not been reported very much. Inui et al. [6] studied statis-
tical dynamical behaviors of a quantum CA. They calculated the time averaged
probability of finding a configuration for cell size 4 exactly in finite quantum
CA defined by quantization of classical CA with Wolfram’s rule 150, in addition
they proved that the time averaged mean density of cells with state 1 is 0.5 for
arbitrary cell size.

Because quantum computation operates under the unitary law, the reversibil-
ity of both quantum and classical systems has received much attention. A lot of
papers concerned with the reversibility of CA have been published and partic-
ularly the research by Morita and Harao [7] is widely noticed. They introduced
partitioned CA with which we can easily construct reversible CA, and proved
that reversible CA are capable of universal computation. Wolfram [11] inves-
tigated the reversibility of several models of CA of the elementary CA with
infinite cell array and showed that only six CA, whose transition functions are
identity function, right-shift function, left-shift function and these complement
functions, are reversible. In addition, Inokuchi et al. [5] investigated the re-
versibility of elementary CA with one dimensional finite cell array and proved
that some CA including non-trivial CA are reversible and the other CA are not
reversible.

A quantization of classical CA by rotation of classical cells is introduced in
[4] and we get quantizable classical CA, i.e. reversible CA, from the results
of [5]. In this paper we investigate quantum CA with finite cell array which
can be determined by reversible CA and the quantization, and we focus on the
periodic behaviors of quantum CA. Bertoni and Carpentieri [1] proved that for
any unitary matrix A and any ¢ > 0 there exists ¢ € N such that ||A? —id|| <e.
Hence any quantum CA behave almost periodically. Reversible classical CA
with finite cell array behave periodically because CA with finite cell array are
finite transition systems. It can be conjectured intuitively that quantum CA,
which are determined by reversible CA and rotation of the product of 7 and a
rational number, behave periodically, for example, the quantum CA, which is
defined by a classical CA with behaviors of period 5 and rotation of %", have
periodic behaviors of period 15. In the following discussion we will prove for
some quantum CA to behave periodically.

2 Preliminaries

In this section we define quantum CA and we mention the reversibility of clas-
sical CA with one dimensional finite cell array. This definition of quantum CA
was introduced by Inokuchi and Mizoguchi[4]. The global transition function of
quantum CA is defined by the global transition function of classical CA and a



rotation matrix.
Let C be the set of all complex numbers and I a singleton set {x}.

Definition 1 Let X andY be finite sets. A (transition) matriz of size |Y|x|X]|
1§ @ mapping
a: XxY—>C

forzre X andy €Y.
Definition 2 For each element x € X we define the matriz e, : I x X — C of
size | X| x |I] by

1 a==x

51(*’“):{ 0 atz

Example 3 We let Q = {0,1}. Then ego : I x Q* — C is

€00 =

S o o

Lemma 4 Every matriz p: I x X — C can be uniquely represented as a linear

combination
p= E ke€w
zeX

where k, is a complex number.

Definition 5 A matriz o : X x Y — C is called a quantum matriz (¢-matriz)
if it satisfies the unitary law
aTa = Id‘X|

where o is the transposed matriz of alpha and Id x| is the identity matriz of
size | X|.

Lemma 6 e Every composite of g-matrices is also a g-matriz.

e A matrit M : X xY — C is a ¢-matriz if and only if u*'p = (Mu)* (Mp)
for all matrices p,pu: I x X — C.

Let Q denote the set {0,1} of binary digits and n a positive integer and f :
Q3 — @ be a local function with rule number R (0 < R < 255), where

R = Z 24et2b%¢ £ (abc).

abce@?

A classical CA C A—R.(n) with cyclic boundary condition has a global transition
function dp . : Q™ — Q™ defined by

OR,c(x12 - p) = fTpzi22) f(T12223) -+ f(Tn_12nT1),



and a classical CA CA— R,_4(n) with fixed boundary condition a —b (a,b € Q)
has a global transition function dg 5 : @™ — Q" defined by

ORa—b(T1T2 -+ ) = flaxiw2) f(z12223) -+ f(Tn_12nb)
for 129 - -z, € Q.
Definition 7 A (rotation) matriz \g : Q x Q@ — C is defined by

_( 20(0,0) Xo(0,1) \ [ cos® —sinf \
Ao = ( )\:(1,0) )\:(1,1) ) o ( sinf  cos@ > 1QxQ—=C

zy \ _ [ cosf —sinf Zo0 o
( 1 ) B ( sinf  cosé > ( 2 ) (20,21, 24, 21 € C).

Trivially \g satisfies the unitary law, that is, Ay is a g-matrix.

Definition 8 A quantum CA QCA—[6,0](n) with n cells is a system consisting
of a bijection 6 : Q™ — Q™ and a g-matriz g : Q X Q — C.

QCA—[6,6](n) =(0:Q" = Q"X :Q xQ = C)
For a function § : Q™ — Q™ a matrix I' : Q™ x Q™ — C is defined by
_ |1 (y=4@)
twn={ o (7 s

If § is a bijection it is trivial that T" is a g-matrix. For a quantum CA QCA —
[0,6](n) its global transition g-matrix A : Q"™ x Q™ — C is defined by

A= @ - @X): Q" xQ" = C,
Ay, z) = Xo(y1,6(2)1) @ Ag(y2,0(2)2) ® -+ @ Ag(Yn,6(2)n) (7,9 € Q™).

Example 9 QCA-[890,0—0,0](2) is constructed by 9000 : Q% — Q% and Xy :
Q x Q — C where dg9,0—0 s the global transition function of CA-909_0(2). The
global transition g-matriz A is

1 0 00
A = (( cosf —sin9>®<c050 —sinf )) 0 01 0
sinf  cosf sinf  cosf 01 0 O
0 001
cos? 6 cosfsinf cosfsiné sin? @
_ —cosfsinf  —sin®f cos? 6 cosfsin 6
- — cosfsinf cos? 6 —sin? 6 cosfsin 6
sin® @ —cosfsinf —cosfsinf cosZ 6

Hence the q-matrixz Aegy after one step transition from initial g-matriz eo1 s

0 cosfsinf

1 —sin%6
Asor = A 0 |~ cos? 6

0 —cosfsinf



The global transition function § : Q™ — Q™ of a classical CA is not always a
bijection. Since quantum computations have to satisfy the unitarity law, we can
construct a quantum CA QCA —[4,6](n) if and only if the transition function &
of a classical CA is reversible. The following table is an extract from the results
of [5] and shows the reversibility of 1D finite classical CA C' A — R(n) with fixed
and cyclic boundary conditions.

| Rule numbers || Fixed boundary | Cyclic boundary |
204, 51 Reversible Reversible
240,15, 170, 85 Not reversible Reversible
90, 165 Reversible Not reversible
iff n =0 (mod 2)
60,195,102,153 Reversible Not reversible
150,105 Reversible Reversible
iff n# 2 (mod 3) | iff n # 0 (mod 3)
166,180,154,210, Not reversible Reversible
89,75,101,45 iff n =1 (mod 2)
others Not reversible Not reversible

We introduce the following term concerned with periodic behaviors of quantum
CA.

Definition 10 A quantum CA QCA — [0,0](n) is called “global periodic” if
there exists a positive integer p such that

Ap - Id‘in.

Now we will use new notations of kg = cosf, kK, = sinf and & defined as
follows:
(z ©y)i = z; +y; (mod2) (z,y € Q")

Then using those notations, the (a,b)-th component of Ay is represented by
Ao(a,b) = (=1) " ko (6).
And we let u =11---1 € Q™. Then for z,y € Q™ we define
<w,y>= kayka
k=1
which is the absolute sum but not the sum modulo 2, and
m(z) =< z,u > .

It is trivial that m(z ®u) =n —m(z) and < z,y > + < z,z2 >=< z,y Dz >
(mod2).

At the end of this section we prove the following lemma which show the
elements of the global transition q-matrix A of quantum CA.



Lemma 11 For all configurations x,y € Q™ the (y,x)-th component of the
g-matriz A : Q" x Q™ — C of QCA —[6,0](n) is given by

Ay, z) = (=1)<0@)wOu> cogn=—m(@)®y) g ginm((2)y) g
Proof. Let z,y,z € Q™ and ' = é(x). Then we have
Ay, z)
= >‘9(ylvxll)>‘9(y25xlz)"'>‘9(yn7mln)
= (=) o (0) (=) T2k (8) - (— 1) Ty, e (6)
= (DO k0 (O)Fye (6) By, (6)
= (=1)<F B> ogn—m(@'BY) g ginm(=' DY) g

O

3 Analysis of the Behaviors of Quantum Cellu-
lar Automata

All reversible CA with 2 states, 1d finite cell array were listed in the previous
section. We can consider that the behaviors of a quantum CA and its symmetric
quantum CA are isomorphic. Therefore in this section we deal with either a
reversible CA or its symmetric CA.

We will show the results of computer simulations of quantum CA QCA-
[660,0—0, 5](5) (figure 1) and QCA-[d60,0-0, 7](5) (figure 2). First we calculated
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Figure 1: QCA-[d60,0—0, 5](5)

the probability of finding state 1 at each cells where the initial g-matrix is
€00100, and the results are presented by darkness in the lefthandside figure. If
quantum CA is global periodic we can see it from the lefthandside figure. So
we can guess that QCA-[d60,0-0, §](5) is global periodic. In order to examine
in detail we calculated the change of the mean density of cells with state 1
(middle figure) and the discrete Fourier transformation of the middle figure
(righthandside figure). But from Figure 1 we cannot obtain the result that
QCA-[060,0-0, 3](5) is global periodic. From our computer simulation we can
guess the following theorem which show the global periodicity of the behaviors
of some quantum CA.
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Figure 2: QCA-[d60,0-0, F](5)

Theorem 12 Let n be a positive integer. Then for QCA-[0rp..,0](n) the fol-
lowing table hold where r is a rational number, g.p shows that QCA-[0rp.c.,0](n)
is global periodic for any n, and g.p.1, ¢g.p.2, g.p.3 and g.p.4 show that QCA-
[0R,b.c.,0](n) global periodic if n is even, if n # 0 (mod3), if n # 2 (mod3) and
if n is odd, respectively.

0 5 T rT others
b.c. 0-0 | ¢ 0-0 | «¢ 0-0] ¢ [ 0-0] ¢
R=204 gp. | gp- | gp- | gp- | gp- | gp ?
R=51 g.p. g.p. g.p. g.p- | gp.- | gp.- | gp. | g.p-
R=240,15, ? g.p. ? g.p. ? | g.p. ? ?
170,85
R=90,165 g.p1 ? g.p1 g 4 ? 4
R=60,195 g.p ? g.p- g ? ? ?
102,153
R=150,105 || ¢g.p-2 | 9.3 | 9-p2 | ¢9.p-3 ? ? ?
R=166,180, ? g.p.a ? g g ? g
154,210,
89,75,
101,45

The following lemma is very useful for proving the theorem in the following
discussion.

Lemma 13 For any x € Q™ the equation

Z (_1)<z7y> _ 2" ’Lf r = 0
0 otherwise

yeQ™
holds.
Proof.
Z (_1)<x,y> — Z (_1)<x,y>
yeQR™ yeQR™
— Z (_1)w1y1+---+wnyn
yeQR™



Il

(I+(=1)")

1

2" if =0
0 otherwise

(2

I
—N

3.1 Quantum CA with Rotation Angle ¢ = 7

In this subsection we discuss the behaviors of quantum CA decided by reversible
CA and the 3 rotation.
The rotation g-matrix Ag of @ = 7 is presented by

0 -1
v (1)
And the negation function = : QQ — @ is easily represented by a unitary matrix
01
o= ( 10 ) QxQ—C
The negation function = : @ — @ is extended into a function —, : @™ — Q" by

Now we let 6 : Q™ — Q™ be a global transition function of a reversible classical
CA and dp : Q™ — Q™ the compliment function of g, that is,

Or () = —n(0r(2))

and let A : Q" x Q™ — C and A’ : Q™ x Q™ — C be global transition q-
matrices of QCA — [, §](n) and QCA — [0r',0](n), respectively. Note that
Or is reversible and R’ = 255 — R.

Then we have

A(z,x)

Az ®---®Az)(z,0r(2))

_ { (=1)mOEN) (2 = bp(x) D u)
0 (z # 0p(x) Du)

and ¢'(z) = §(x) @ u for z,z € Q™. Hence the equation
|A(z,2)| = |A"(z, 2)]

holds for any z,z € Q™. The quantum CA QCA — [dgr,0](n) is essentially the
classical CA CA — R} . (n) and CA — R; _ (n) is reversible. Therefore we have
the following proposition.

Proposition 14 For any quantum cellular automata QC A — [0r, 5](n) defined
by the global transition function 0 of reversible classical CA and the 5 rotation
g-matriz Az there exists a positive integer p such that

Ap - Id‘in.



3.2 Quantum CA with Rule 204

Trivially the global transition function d294 of CA —204(n) is the identity func-
tion Idg» on Q™. Welet A=Xg @A ® - ® A : Q™ x Q™ = C be the global
transition q-matrix of the quantum CA QCA — [d204,6](n). First we will prove
the following lemma.

Lemma 15 For any 6,0 € R and any x € Q™ the following hold:
I M ®-- QX)) Aor @@ Apr) = (Moo ® - D Agpor)
2. A(z,z) = cos" 0,
3. Az ®u,z) = (—=1)""™=) sin" 4.

The global transition g-matrix A is unitary and using the above two lemmas
we have
A™(z,x) = cos” mb.

Hence we can get the following proposition:
Proposition 16 In QCA — [0204,0](n) the following equation
A™ = Idgn
holds if there exists m satisfying
m:{ min{ m' e N | m'6 € nZ } if nis even,
min{ m' € N | m'0 € 21Z } otherwise
3.3 Quantum CA with Rule 51

The global transition function ds; of the CA CA—51(n) is the negation function
—,. The global transition q-matrix of the quantum CA QCA—[d51,6](n) is given
by

A=N1)®@ @ Ng): Q" xQ" = C.

cosf sinf 0 1 2
—sinf cosf 1 0
_ sinf  cosf \’
- cosf —sinf

= Idpg).

And we have

(Ag—)?

Therefore we can prove the following proposition:
Proposition 17 In QCA — [051,0](n) the following equation
A% = Idgr,

holds.



Proof.

A = (M) @ (Xgm)?
A=)’ @+ @ (Agm)?
Id‘Q‘ & - ®Id‘Q‘

= Tdjg

3.4 Quantum CA with Rule 240 and 15

Classical CA with the local functions of rule number 240 and 15 are reversible
only in the case of cyclic boundary condition. We can prove the following
lemmas on quantum CA QCA — [0240,c,0](n) and QC A — [d15,¢,8](n).

Lemma 18 LetT': Q" xQ™ — C and ' : Q" x Q™ — C be matrices determined
by d240,c : Q™ — Q™ and 615, : Q" = Q" respectively. For any 6 the following
holds:

L. T® - ®X) =N ®--® X)L,
2. (M ®- ®Ag)I")2 =T7

Using the above two lemmas we can get the configuration after 1 or 2 transition
steps in QCA — [0240,c,0](n) and QCA — [015,c,0](n) from QCA — [0204,0](n).

Hence we get the following proposition:

Proposition 19 Let A, A" and A" be the global transition g-matrices of QC A—
[0204,0](n), QCA — [0240.¢,0](n) and QCA — [615,.,0](n), respectively. If there
exists a positive integer p such that AP = Idg~ then the equations

(A = Idjgn),

and ;
(A" = Idign)

hold where p' = lem(p,n) and p'' = 2p'.

3.5 Quantum CA with Rule 90

Classical CA with the local function of rule number 90 are reversible only in
the case of n =0 (mod 2) and fixed boundary condition. In this subsection we
discuss the behaviors of quantum CA decided by dgo,0—0, # = 7 and cell size
n =0 (mod2).

When n is even, in classical CA C'A —90(n) of 0 — 0 boundary condition it
can be checked that dgp,0_o(z) = 0™ if and only if = 0" for z € Q™. Hnce we

can prove the following lemma.

10



Lemma 20 In QCA — [dg0,0-0, 5](n) for any x € Q™ the equation
A?(z Du,z) = (—1)"+on
holds where n is even.

Proposition 21 In QCA — [0g0,0-0, §](n) the equation

A" = Idgr,
holds where n is even.
Proof.
A'z,2) = ) A%(z,y)A%y,x)
yeQ™
_ A%(z,y)A%(y,z) (if y=r©uand z =y Su)
N 0 (otherwise)
_ 1 (z=u)
N 0 (z+#2)

3.6 Quantum CA with Rule 165

Classical CA with the local function of rule number 165 are reversible only in
the case of n =0 (mod 2) and fixed boundary condition. In this subsection we
discuss the behaviors of quantum CA decided by d165,0-0, # = 7 and cell size
n =0 (mod2).

In classical CA C'A —165(n) of 0 — 0 boundary condition we can check easily
that 6165,0—0 (CU) = 0" if and only if

[ (0110)F  p =4k
P71 (1100)%11 n =4k +2

for x € Q™ where n is even and k& = [%]. Hence we can get the following lemma:

Lemma 22 Let w € Q™ be a configuration such that d1650—0(w) = 0™. Then
in QCA — [5165,070, %](n)

{ (_1)$2+I3+"'+En—1 (Z —whzrd U,)

A(z2) = 0 (zAwdzdu)

where n is even.
Proposition 23 In QCA — [0165,0-0, 7)(n) the equation
A* = Id|gn)

holds where n is even.

11



Proof. Let w € Q" be a configuration such that d165,0_0(w) = 0™.

Alzz) = Y A(zy)A%y,)
yer
[ NyA%r) (fy=wereuandz=woydu)
o { 0 (otherwise)

3.7 Quantum CA with Rule 60

Classical CA with the local function of rule number 60 are reversible in the case
of any cell size n and fixed boundary condition. In this subsection we discuss
the behaviors of quantum CA decided by dg0,0—0 and 6 = 7.

For z € Q™ and an integer i (0 <7 < n) we define (i) E Q™ as follows:

2(0) =

i = Tpn—itl +1 (mOd 2)

8

0)i =
)

0)itj =% + Tnoit1 + 1 (mod 2) for 1 < j <n —i,

(]
8

(
(
 2(i)i_j =Xp—iy1 + Tp_j+1 (mod 2) for 1 <j <i—1.

We can easily check the followings:

e (1) = (0,21, 22, -, Tn-1) D (Tr, Ty -, Tp) D
e z(i+1)==x(i)(1)
e X(n)(1) ==

In addition, we can easily check that for any x € Q™ the equation dgp,0—0(z) ®
(510270_0(2’ D U) = 0™ holds if z = (0,371,562, .. .,xn_1) D (xn,xn, . ,len) D u.
Then the following lemma can be proved.

Lemma 24 In QCA — [d60,0-0, 7](n) the equation
) imi @1 — (i
A*(z,z) = { (=1)== (2 =a())
0 (z # =(i))
holds for any configuration x € Q™ and 1 < i < n.
For any = € Q™ we have
Zm(])n = Qij +n.
7=0 j=1

Therefore the following proposition holds:

12



Proposition 25 In QCA — [d60,0-0, 7](n) the following
A2n+2 — (_l)nIden‘

holds.
Proof.
AP za) = Y AP(z,y) A% (y,2)
yeQ™
{ (=1)>5=1 20D (—1)oif y = a(n) and 2 =y(1)
0 otherwise
_ { (_1)2,"-=ow(j)n (z =)
B 0 (z # )
_ { (~1)" (z=2)
0 (z # x)

3.8 Quantum CA with Rule 195

Classical CA with the local function of rule number 195 are reversible in the case
of any cell size n and fixed boundary condition. In this subsection we discuss
the behaviors of quantum CA decided by 195,00 and 6 = 7.

For z € Q™ and an integer i (0 <i < n) we define z(i) € Q™ as follows:

e z(0) ==z
e (i) = Tp—it1 +ni+1 (mod 2),

o z(i)itj = Tj + Tn—iy1 +i(n+j) + 1 (mod 2)
forl1 <j<n-—i,

o 2(i)imj = Tn—it1 + Tn_jy1 +i(n+7) +j(n + 1) (mod 2)
for1<j<i—1.

We can easily check the following equations:

e (1) = (zn,Tn, -+, Zn) ®(0,21,22, -, Zp_1) D(n—1,n—2,---,0)

e z(i+1)==x(i)(1)

e z(n)(1) ==z
And we can easily check that for © € Q™ the equation

d195,0—0(2) B d1700-0(z P u) B 2zBu=0"
holds if
2= (T, T, ,Tn) B (0,21,22, , Tpno1)® (n—1,n—2,---,0).

Then the following lemma holds:

13



Lemma 26 In QCA — [01950-0, 7](n) the equation

A% (z,2) = (~) s {<elim Dz tnel-Da e 5550, o z(i))
0 (= # ()
holds for any configuration x € Q™ and 1 < i < n.

Proposition 27 In QCA — [0195,0-0, 7](n) the following

A2n+2 _ _Id‘in n:4k+3
Iden‘ otherwise

holds.
Proof. We have
A2n+2 (Z, CE)

S A2z, ) ATy, 2)
yeRr
(_]_)Z?:1{<z(j—1)7u>+niv(j—1)n+%}(_1){<y,u>+nyn+%}

if y=z(n) and z=y(1)
0
otherwise

B (1) Z5A el D> tna(-Dat 2050 g
0 (z # z)
_ { (_1){n3+22n2+n+4n4+3gs+5n2+7n4+8n31+229n2+4n} (

0 (

=)

# 1)

z
z
and we can check that

3 2 4 3 2 4 3 2
n°+2n“+n An“+3n°+5n Tm*4+8n°+4+29n“+4n . _
nin 4 . + = is odd if n = 4k + 3

° n3+22nz+n + 4114—}-371.3—‘,-571.2 + 7n4+8n3+29n2+4n

& o is even otherwise.

Therefore we have

A2 —ldjgn) n=4k+3
Idgn otherwise.

3.9 Quantum CA with Rule 150

Classical CA with the local function of rule number 150 are reversible in the
following cases:

e n # 2 (mod 3) and fixed boundary condition

14



e n # 0 (mod 3) and cyclic boundary condition

where n is cell size. In this subsection we discuss the behaviors of each quantum
CA decided as follows:

® 0150,c, any @ and cell size n = 4
® J150,c, = 7 and cell size n # 0 (mod3)
® 150,00, 0 = 7 and cell size n # 2 (mod3)

3.9.1 QCA —[6150..,6](4)

We set
gn) = (Zcos 41—20) sin 26
cos?(2nf)  —g(n) —g(n) 0
. (n) cos?(2n6) 0 —g(n)
Al(n) = () 0 cos(md) —om) |
o) gln)  cos’(2n8)
g(n) (0) 0( | g(n)
0 n —g(n 0
A2n) = 0y n) gg(n) 0 |’
gln) 0 0 g(n)
(0) —g(n) —g((n) | s1112((271)9)
n 0 —sin?(2n6 —g(n
A3(n) = z(n) — sin?(2n0) 0 —z(n) ’
sin?(2n0) g(n) g(n) 0
_ Al(n) —A2(n)
mw = (el e )
A2(n)  —A3(n)
B2(n) = <A3(n) A2(n) >’“”d
Bl(n) —B2(n)
Cln) = <32(n) Bl(n) )

Then we can show the following lemma:

Lemma 28 In QCA — [0150,c,0](4) the following equation
A?* = C(k)
holds for any positive integer k.

Therefore considering positive integer m such that cos?(2mf) = 1 we can get
the following proposition
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Proposition 29 In QCA — [0150.¢,0](4) the following equation
AP = Tdjgn)
holds if there exists m satisfying m = min{ m' € N | 2m'6 € nZ }.

3.9.2 QCA — [0150,, %] (n)

In the classical CA C'A — 150 of cyclic boundary condition we can easily check
that d150,.(x) = 0™ if and only if z = 0™ for € Q™ where n # 0 (mod 3).
Using the fact and lemma 13 we can prove the following lemma:

Lemma 30 In QCA — [d150,c, 5](n) the equation

2 _ ) ()= (z=z0u)
A(z,m)_{ 0 (z £z u)

holds for all z,z € Q™ where n # 0(mod3).
The following proposition can be got immediately from the above lemma.
Proposition 31 In QCA — [0150,c, 7](n) the equation
A* = (=1)"Idjgn|
holds where n # 0(mod3).

Proof. For any z,z € Q™ we have

Alzz) = Y A(z,y)A%(y,x)
yer
_ { A2z, ®u)A%(z Du,x) (v =2)
0 (x # 2)
- [ ey
0 (x # 2)

3.9.3 QCA —[b150,0—0, 5](n)

In the classical CA CA — 150 of 0 — 0 boundary condition we can easily check
that d150,0-0(x) = 0™ if and only if x = 0™ for & € Q™ where n # 2 (mod 3).
Then we can prove the following lemma:

Lemma 32 In QCA — [0150,0-0, 5](n) the equation

(_1)I2+$3+"'+2n—1 (Z =—r®d U,)

2 —
A(z,m)—{ 0 (z#zDu)
holds for all z,z € Q™ where n # 2(mod3).
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Using this lemma we can get the following proposition:
Proposition 33 In QCA — [0150,0-0, 7](1)

A* = (=1)"Idjgn|
holds where n # 2(mod3).

Proof. For any z,z € Q™ we have

Nea) = Y M)A’ )
yeQr
. A%z, ®u)A%(z Du,x) (v =2)
o 0 (x # 2)
_ { (_1)E2+$3+"'+$n—1(_1)($2+1)+(I3+1)+'"+(ivn—1+1) (.T — Z)
- 0 (z # 2)

3.10 Quantum CA with Rule 105

Classical CA with the local function of rule number 105 are reversible in the
following cases:

e n # 2 (mod 3) and fixed boundary condition
e 1 # 0 (mod 3) and cyclic boundary condition

where n is cell size. In this subsection we discuss the behaviors of each quantum
CA decided by as follows:

e 0105,c, 0 = § and cell size n # 0 (mod3)
e 0105,0—0, 0 = T and cell size n # 2 (mod3)

3.10.1 QCA — [5105,, T](n)

In the classical CA C'A — 105 of cyclic boundary condition we can easily check
that d105,.(x) = 0™ if and only if z = 1™ for & € Q™ where n # 0 (mod 3).
Then we can prove the following lemma:

Proposition 34 In QCA — [6105,c, T](n) the equation
A? = Idjgn)

holds where n # 0(mod3).
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Proof.
Azz) = Y Alzy)Ay,2)
yer
(_1)<6(y),z@u> (_1)<6(z),y@u>
ZQ{ VWA }

_ (—1)n+3m(w)+m(z€9u) Z (_1)<5(z@z®U),y>
2 yeEQ™

3.10.2 QCA — [0105,00, F](n)

In the classical CA CA — 105 of 0 — 0 boundary condition we can easily check
that 510570_0 (ZU) = 0" if and only if

_ [ (010)* if n=3k
| (100)k1 if n=3k+1.

for x € Q™ where n # 2 (mod 3). Then we can prove the following lemma:

Lemma 35 Let w € Q™ be a configuration such that 6105,0—0(w) = 0. Then in
QCA — [6105,0-0, 7](n) the equation

2, = DT (z=worou)
A(z,m)—{ 0 zAwdzdu)

holds for any z,z € Q™ where n # 2(mod3).

Proposition 36 In QCA — [0105,0-0, 7](n) the equation
A" = Idgn,

holds where n # 2(mod3).

Proof.
At(zz) = Y A%(zy)A%y,2)
yeQ™
_ Az(zay)Az(y,l‘) (ify=wdzduand z=wdy Du)
- { 0 (otherwise)
_ 1 (z=1)
- { 0 (z#2)
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4 Conclusion

In this paper we treated quantum CA whose global transition function is defined
by the global transition function of classical CA and rotation of cells. A quantum
cell can be represented by any point on the sphere and a transition in quantum
CA is considered as a movement from a point to another point on the sphere.
While trivially classical CA with finite cell array behave in finite space, we think
that generally quantum CA (including quantum CA quantizated classical finite
CA) behave infinitely for any initial configuration. In this paper we proved that
some quantum CA is global periodic. Global periodic quantum CA have infinite
variety of configurations and finite behaviors from any initial configuration.
That is, in global periodic quantum CA for any initial configuration we can
get the same configuration after some step transitions. By this property we
may apply global periodic quantum CA to cryptography theory or quantum
communication theory by using rule number and rotation angle as keys.
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Appendix A Proofs of Lemmas
Proof. (of lemma 15)

1. For any 6,6’ € R we can easily check A\pAgr = A\grg. Hence we have

M@ @X) (A @+ ® Agr)
= ((AoAer) ® -+ ® (Ao X))
(Aogor ® -+ @ Aoyor ).

2.
A(l‘,l‘) = (/\0 ®---®/\9)(£L’,£L’)
= Ao(x1,21) X -+ X Xg(Tn, T0)
= cos™#f.
3.
A(x@u,a:) = (/\9®---®/\9)(£L’69U,£L’)

A(L—zy,m1) X --- X Ap(1 — &y, )
™) g(— sin g)n-m (@)
= (=)@ ginng.

Proof. (of lemma 18)

1. For any x, y € Q™ we have

(Ao @ @X)D)(y, ) = (A®: - ®X)(Y,TnT1@2 " Trm1)

Ao(Y1, Zn) X Xg(Y2,21) X Ao(y3,22) X -+ X Xg(Yn, Tn—1)
= A(y2,21) X Ag(ys,T2) X -+ X Xg(Yn, Tn—1) X Ng(Y1,Tn)
(Ao ® -+ ® Xo))(y2y3 -+ * YnY1, T)

= (T ® - @) (y, D)

2. The equations —,' = I'-,, and I" = -, T" can be checked easily. Hence we
have

Mg @+ @ \g)T)?

(Ao @+ ® Ng),T)?

A @+ @A) (Ag @ - @ Ag) [, T
N @+~ ® Ng)p)°T?

= I?

(
(
(
(
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Proof. (of lemma 20)

Azz) = 3 A(zy)Aly,e)

yeQ™

(_1)<590,0—0(y),Z®U> (_1)<590,0—0($),y®U>
2 { - VAT }
yeEQ™

(_1)<590,070(w),u>

2n

E: 0_1)<%mofdw@1@u%y>
yeQ™

_ [ (m)Teoo@e> (g @z @ u=0m)

- 0 (x®zdu#0m)

{ (—=1)*1ten (z =2 D u)
0 (z £z ®u)

Proof. (of lemma 22)

Aza) = 3 Alzy)Aw,e)
yeQ™

(_1)<5155,g,0(y),z@u> (_1)<5165,070($)yy€8u> }

= 2 { V2" ) L

yeQR™

) _o(@)PzPu,u
_ (_1)< 165,0—0 (@) DzOu,u> Z (_1)<5155‘0,0(a¢€9z€9u),y>

2’".
yeQ™
B (_1)<5165,0—0($)@9Z@”7“> (:L’ DzDu= U))
= { 0 (rD2zdu#w)
B (_1)1‘2+1‘3+"'+9¢n71 (z =wdrd U)
= { 0 (zAwdzTDu)

Proof. (of lemma 24)
We prove it by induction on ¢. First, we have

A(zz) = 3 Alzy)AQy,a)
yeQ™

(_1)<550,070(y)72@u> (_1)<550,070(w),y€9u> }

= 2 { V2" - V2"

yeQ™
(_1)<550,070(9¢)7u>

2n

Z (_1)<550‘0,0(x)696102,0,g(zEBu),y>

yeQR™
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- {0 o)
0 (= # 2(1))
_ { (=10 (2 = (1))
0 (z # =(1))
And we assume that the equation holds in the case of i < k. Then we have
AP (zz) = Y A%(zy)A%(y,x)
yeEQ™
(—)Z5= 0D (e if y=a(k) and = =y(1)
0 otherwise

()T 00 (o = gk + 1))
0 (z # z(k + 1))

That is, in the case of i = k + 1 the equation holds. a

Proof. (of lemma 26)
We prove it by induction on ¢. First, we have

A(z,z) = Y Alz,y)Ay,z)

yeQ™
(_1)<6195,070(y),2@u> (_1)<6195,070(w),y@u>
- 2| X |

(_1)<6195,0,g(w)@z@u,u>

E (_1)<5195,070(w)®5170,070(Z@U)GBZEBU,.U>

2" yeQR™
_ { (_1)<5195,070(w)@2@u,u> ( — (1))
0 (z # z(1))
- {(—1)<Ivu>+mn+@ (= = 2(1))
0 (= # (1)

And we assume that the equation holds in the case of i < k. Then we have
A2kz+2 (Z, 1,)

> A%(z,y)A%(y, z)
yeQ™
(_1)27:1{<z(j—1),u>+nz(j—1)n+%}+<y(o),u>+ny(0)n+%

if y=x(k) and z = y(1)

0
otherwise
- (~)TH S tnaG=Dat 25 (= (k4 1))
0 (z #£xz(k+1))
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Proof. (of lemma 30)

A?(z,x) =

Proof. (of lemma 32)

A?(z,z) =

Proof. (of lemma 35)

A?(z,z) =

S A yAy,e)

>

(_1)<5(y),z@u> (_1)<6(w),y€9u> }
yeQ™

(vV2)r (vV2)r
(—1)2iw,u> Z (_1)<5(x@z€9u),y>

yer
{ (D<o (zoz=u)
0 (x ® 2z # u)

S Az y)Al, )

yeQ™

Z { (_1)<6(y),z@9u>

yeQ™ (\/i)n

(_1)w2+1‘3+"'+wn71
2n

(—1)<8()y@u> }
(V2

Z (_1)<5(wEBzEBu),y>

yeQ™
{ (_1)w2+w3+---+$n71 (Z =z® ’LL)

0 (z £z ®u)

S Az y)Al, )

yeQ™

Z { (_1)<6(y),z@9u> (_1)<6(z),y@u> }

(—1)<6(z)EBzEBu,u> Z (_1)<5(z@z®U),y>
2 yeQ™

(_1)<6(z)EBZEBu7u> (x DzDbu= w)
0 (x DzRuF w)

{ (=¥t (z=wdzdu)
0 z£wdzdu)
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Appendix B Computer Simulations

In this appendix we will show three kinds of results of computer simulations for
each QCA — [0ppe, Mo](n). We let c2 = ggn-219 and ¢4 = ggn-3199. The first
result (lefthandside figure) shows the probability of finding state 1 at each cells
by darkness. The second result (middle figure) shows the change of the mean
density of cells with state 1 and the thrid result (righthandside figure) shows
the discrete Fourier transiformation of the second result.

Appendix B.1 Behaviors of QCA — [0s0,0-0, M) (D)
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Appendix B.2

Behaviors of QCA — [d204,c, 0](5)
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Appendix B.3 Behaviors of QCA — [051¢, A\g|(5)
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Appendix B.4 Behaviors of QCA — [0249,c, ] (D)
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Appendix B.5 Behaviors of QCA — [090,0—0, A\g](4)
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Appendix B.6 Behaviors of QCA — [0165,0-0, Ao|(4)
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Appendix B.7 Behaviors of QCA — [01950-0, Ag|(5)
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Appendix B.8

Behaviors of QCA — [§150,0-0, \](4)
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Appendix B.9 Behaviors of QCA — [0150,¢, \g] (D)
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Appendix B.10 Behaviors of QCA — [§105,0-0, \g](4)
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Appendix B.11 Behaviors of QCA — [d105.¢, Ag](5)
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