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1 Introduction and statement of result

Let C∞
↑ (R; C2) be the space of all C∞ functions f =

(
f1

f2

)
: R → C2, which

and whose derivatives of all orders are of at most polynomial growth. The non-
commutative harmonic oscillator for (α, β) ∈ R2 with α, β > 0 is by definition
the differential operator Q(α,β) of C∞

↑ (R; C2) to itself defined by

Q(α,β)f(x) = −1

2

(
α 0
0 β

)
{f ′′(x) − x2f(x)} + J

{
xf ′(x) +

1

2
f(x)

}
for x ∈ R, f ∈ C∞

↑ (R; C2),

where J =

(
0 −1
1 0

)
, and f ′ and f ′′ denote the first and the second derivatives

of f . Its spectrum was studied in [12, 13, 14] by employing the representation-
theoretic method, and extensively studied by many authors [2, 3, 5, 6, 7, 8, 9,
10, 11]. In the present paper, we investigate the case when α = β from the point
of view of stochastic analysis: we construct probabilistically the heat semigroup
and kernel associated with

Qα = −Q(α,α) =
α

2

{( d

dx

)2

− x2
}

I −
{

x
d

dx
+

1

2

}
J,
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where I =

(
1 0
0 1

)
, and, using the semigroup, show the unitarily equivalence of

Qα with the ordinary harmonic oscillator. It should be mentioned that our Qα

has the opposite sign to that in [12, 13, 14].
We state our result more precisely. Assume that

α ≥ 1.

Denote by (W , µ) the classical 1-dimensional Wiener space: W is the space of
all continuous functions w on [0,∞) → R with w(0) = 0, and µ is the Wiener
measure on W . For x ∈ R and t ≥ 0, set xα = x/

√
α and define the R2×2-valued

random variable Mα
x (t) on W , R2×2 being the space of all real 2× 2 matrices, by

Mα
x (t, w) = Exp

(
−

{1

2
w(t)2 + xαw(t)

}
J −

{α2 − 1

2

∫ t

0

(w(s) + xα)2ds
}

I

)
, (1)

where Exp(A) stands for the exponential matrix of A.
Let U be the unitary matrix given by

U =
1√
2

(
−i 1
1 −i

)
,

where i2 = −1. Then, for any a, b ∈ R, it holds that

UExp(aJ + bI)U∗ =

(
eb+ia 0

0 eb−ia

)
, (2)

and
‖Exp(aJ + bI)‖ = eb, (3)

where ‖A‖ denotes the operator norm of the matrix A. This implies that

‖Mα
x (t)‖ ≤ 1. (4)

In particular, Mα
x (t) is pth integrable with respect to µ for any p ∈ (1,∞). More-

over, Mα
x (t) ∈ D∞,∞−(R2×2), where D∞,∞−(E) denotes the E-valued infinitely

differentiable functions in the sense of the Malliavin calculus, which and whose
Malliavin derivatives of all orders are pth integrable with respect to µ for any
p ∈ (1,∞). Namely, it is an easy exercise of the Malliavin calculus to see that

exp

(
±i

{1

2
w(t)2 + xαw(t)

})
, exp

(
−

{α2 − 1

2

∫ t

0

(w(s) + xα)2ds
})

∈ D∞,∞−(C).

Then, by (2), we obtain that Mα
x (t) ∈ D∞,∞−(R2×2).

We can then define

Tα
t f(x) = E[Mα

x (t)f(
√

αw(t) + x)] ∈ C2 and

Kα(t, x, y) = E[Mα
x (t)δy(

√
αw(t) + x)] ∈ R2×2

for t ≥ 0, f ∈ C∞
↑ (R; C2), and x, y ∈ R, where E[· · · ] stands for the expectation

with respect to µ, δy is the Dirac measure concentrated at y ∈ R, δy(
√

αw(t)+x)
denotes Watanabe’s pull-back of δy through

√
αw(t)+x, and Kα(0, x, y) = δy(x).

The first result of this paper is
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Theorem 1. Let Tα
t and Kα(t, x, y) be as above. Then the followings hold.

(i) Tα
t maps C∞

↑ (R; C2) into itself.
(ii) For t, s ≥ 0 and f ∈ C∞

↑ (R; C2), it holds that

Tα
t (Tα

s f) = Tα
t+sf and

d

dt
Tα

t f = QαTα
t f.

(iii) It holds that

Tα
t f(x) =

∫
R

Kα(t, x, y)f(y)dy, f ∈ C∞
↑ (R; C2).

The first and second assertions say that {Tα
t }t≥0 is the heat semigroup gener-

ated by Qα, and the third one does that Kα(t, x, y) is the associated heat kernel.
Let L2(R; C2) be the space of C2-valued square integrable functions on R

with respect to the Lebesgue measure. Define the differential operator Hα from
C∞

↑ (R; C2) to itself by

Hα =

{
1

2

(
d

dx

)2

− α2 − 1

2
x2

}
I.

As an application of Theorem 1, we have the following unitarily equivalence
between Qα and Hα in L2(R; C2), originally shown in [13].

Theorem 2. Define the unitary operator Vα of L2(R; C2) to itself by

Vαf(x) = α1/4

(
e−ix2/2 0

0 eix2/2

)
Uf(

√
αx), f ∈ L2(R; C2), x ∈ R.

Then
Qα = V −1

α ◦ Hα ◦ Vα on C∞
↑ (R; C2).

Obviously this implies the closures of Qα and Hα in L2(R; C2) are unitarily
equivalent.

As will be seen in Remark 1, even if α ∈ (0, 1), Tα
t can be defined for suffi-

ciently small t. Using this Tα
t , we obtain that the unitarily equivalence continues

to hold when α ∈ (0, 1). Hence, as for the unitarily equivalence, our semigroup
method yields the same result as was achieved in [13]. It should be mentioned
that if α ∈ (0, 1) then Ttf may be no longer in C∞

↑ (R; C2) even if f ∈ C∞
↑ (R; C2).

The proofs of Theorems are given in the next section.

2 Proofs

Proof of Theorem 1. To prove Theorem 1, we employ the heuristic argument
leading us to the expression of Mα

x (t) as described in (1).
We first construct the semigroup {Tα

t }t≥0. Notice that Qα looks like the
Laplacian acting on differential forms on a Riemannian manifold. Inspired by the
probabilistic realization of the heat semigroup of differential forms and taking
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care of the coefficient α/2 in front of f ′′ in the definition of Qαf , we expect that
the semigroup {Tα

t }t≥0 is of the form that

Tα
t f(x) = E[Mα

x (t)f(
√

αw(t) + x)]

for some C2×2-valued stochastic process {Mα
x (t)}t≥0, which is specified in the

sequel.
By the Itô formula, we have that

d[f(
√

αw(t) + x)] =
√

α f ′(
√

αw(t) + x)dw(t) +
α

2
f ′′(

√
αw(t) + x)dt. (5)

A close look at this identity with the Itô calculus in hand leads us to the following
stochastic differential equation that Mα

x (t) should obey;

dMα
x (t) = −Mα

x (t)J{w(t) + xα}dw(t) − 1

2
Mα

x (t)
(
α2{w(t) + xα}2I + J

)
dt (6)

with the initial condition that Mα
x (0) = I. Namely, from (5) and (6) it follows

that

d[Mα
x (t)f(

√
αw(t) + x)] =Mα

x (t)
√

αf ′(
√

αw(t) + x)dw(t)

− Mα
x (t){w(t) + xα}Jf(

√
αw(t) + x)dw(t)

+ Mα
x (t)Qαf(

√
αw(t) + x)dt.

If we establish the estimation (4), then this identity implies that

d

dt
Tα

t f = Tα
t (Qαf), (7)

which is a source to the heat semigroup property as described in the assertion
(ii).

As was seen in Section 1, the estimation (4) follows from the expression (1),
which is obtained by solving the stochastic differential equation (6). To solve
(6), recall that, for semi-martingales {X(t)}t≥0, {Y (t)}t≥0, and {Z(t)}t≥0, the
Stratonovich integral X ◦ (Y ◦ dZ) is represented in terms of Itô integrals as

X ◦ (Y ◦ dZ) = XY dZ +
1

2
XdY · dZ +

1

2
dX · Y dZ,

where dY ·dZ denotes the quadratic variation process corresponding to the prod-
uct of the martingale parts of Y and Z. Hence, it follows from (6) that

dMα
x (t) = Mα

x (t) ◦
[
−J{w(t) + xα} ◦ dw(t) − α2 − 1

2
{w(t) + xα}2Idt

]
.

Since (aJ + bI)(cJ + dI) = (cJ + dI)(aJ + bI) for any a, b, c, d ∈ C and the
Stratonovich integral satisfies the usual differential rule, this implies the expres-
sion (1).

Due to the expression (1) of Mα
x (t), the definition of Tα

t f , and the estimation
(4), it is easily seen that Tα

t f ∈ C∞
↑ (R; C2) if so is f . Thus the assertion (i) has

been verified.
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By the definition of Mα
x (t) and the independent increments property of the

Brownian motion, we obtain that

Tα
t (Tα

s f) = Tα
t+sf.

Thus the first identity in the assertion (ii) holds. The identity can be rewritten
as

Tα
s (Tα

t−sf) = Tα
t f.

Differentiating this in s, plugging (7) into the resulting identity, and then substi-
tuting s = 0, we get to the the second identity in the assertion (ii).

The assertion (iii) is a straightforward application of the Malliavin calculus.
For example, see [4].

Proof of Theorem 2. Let f ∈ C∞
↑ (R; C2). For t ≥ 0, define Sα

t f ∈ C∞
↑ (R; C2) by

Sα
t f(x) = E

[
exp

(
−α2 − 1

2

∫ t

0

{w(s) + x}2ds
)
f(w(t) + x)

]
, x ∈ R.

By the Feynman-Kac formula, it holds that

d

dt
Sα

t f = Sα
t (Hαf). (8)

Plugging (2) into the definition of Tα
t , we see that

Tα
t f(x) = U∗

(
eix2

α/2 0

0 e−ix2
α/2

)
E

[
exp

(
−α2 − 1

2

∫ t

0

{w(s) + xα}2ds
)

×
(

e−i{w(t)+xα}2/2 0

0 ei{w(t)+xα}2/2

)
Uf(

√
α{w(t) + xα})

]
.

Then, by a straightforward computation, we obtain that

Vα(Tα
t f) = Sα

t (Vαf).

Differentiating the both sides in t and substituting t = 0, by virtue of (7) and
(8), we have that

Vα(Qαf) = Hα(Vαf).

Thus the desired unitarily equivalence has been shown.

Remark 1. Let α ∈ (0, 1). As is well known, exp(sups≤t |w(s)|) is pth integrable
with respect to µ for any p ∈ (1,∞), and

E
[
exp

(a2

2

∫ t

0

w(s)2ds
)]

=
{
cos(at)

}−1/2

for any a ∈ [0, π/(2t)). For example, see [1, 4]. By virtue of the estimation (3),
we can define Tα

t and Sα
t for t ∈ [0, π/{2(1−α2)}). Then the Itô formula implies

(7) and (8) for such t. Hence the previous proof of Theorem 2 still works in this
case, and we see that the assertion of Theorem 2 also holds for α ∈ (0, 1).
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