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Abstract

We study joint efficient estimation of two parameters dominating gamma and inverse-
Gaussian subordinators, based on discrete observations sampled at (tn

i )n
i=1 satisfying

hn := maxi≤n(tn
i − tn

i−1) → 0 as n → ∞. Under the condition that Tn := tn
n → ∞ as

n → ∞ we have two kinds of optimal rates,
√

n and
√

Tn, and especially. Moreover,
as in estimation of diffusion coefficient of a Wiener process the

√
n-consistent compo-

nent of the estimator is effectively workable even when Tn does not tend to infinity.
Simulation experiments are given under several hn’s behaviors.

1 Introduction

In this article we shall present two case studies of estimating a subordinator based on a kind
of high-frequency discrete data. A subordinator Z = (Zt)t∈R+ is a one-dimensional non-
decreasing càdlàg (right continuous and having left hand side limits) process a.s. starting
from the origin with independent and stationary increments. For any subordinator without
drift, there corresponds a Lévy measure ν satisfying

∫ 1

0
|z|ν(dz) < ∞ and supported by R+

for which

ϕZt(u) = exp
{

t

∫
(eiuz − 1)ν(dz)

}
, u ∈ R, t ∈ R+. (1)

This is a special case of the so called Lévy-Khintchine formula. Here and in the sequel
u 7→ ϕξ(u) stands for the characteristic function of ξ, a random variable or a distribution.
Given a subordinator Z the law at time 1, L(Z1), is uniquely associated with an infinitely
divisible distribution whose support is contained in R+ = [0,∞). See, e.g., Bertoin [3,
Chapter III] for a systematic account of subordinators.

We shall consider statistical inference for two specific subordinators, L(Z1) = IG(δ, γ)
and Γ(δ, γ), admitting the density (w.r.t. the Lebesgue measure)

p(x; δ, γ) =
δeδγ

√
2π

x−3/2 exp
{
− 1

2

(
γ2x +

δ2

x

)}
1R+(x), (2)

p(x; δ, γ) =
γδ

Γ(δ)
xδ−1 exp(−γx)1R+(x), (3)
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respectively, where δ and γ are positive constants; both of the inverse-Gaussian and gamma
subordinators have infinitely many jumps over each finite time interval as the Lévy measure ν
in the formula (1) is given by g(z; δ, γ) = δ(2π)−1/2z−3/2 exp(−γ2z/2)1R+(z) and g(z; δ, γ) =
δz−1 exp(−γz)1R+(z), respectively.

We are interested in estimating θ = (δ, γ) when available data is

Ztn
0
, Ztn

1
, . . . , Ztn

n
,

where (tni )n
i=0 is a nonrandom positive sequence satisfying

0 ≡ tn0 < tn1 < · · · < tnn =: Tn

for each n ∈ N. Throughout this article we suppose
{

hn := max1≤i≤n(tni − tni−1) → 0,
Tn ³ nhn,

(4)

as n →∞, where an ³ bn means that there exists a constant c > 0 such that c−1 ≤ an/bn ≤ c
for every n large enough. For joint estimation of δ and γ we shall additionally suppose
Tn → ∞; then the sampling scheme is asymptotically the same as in the case where Z
is continuously observed over [0, Tn] with Tn → ∞. If we can observe continuous data
(Zt)t∈[0,T ], the likelihood theory has been already established: see, e.g., Akritas [1] and
Akritas and Johnson [2]. Denote by PT

θ the law of a sample path (Xt)t∈[0,T ] on the Skorohod
space (i.e., the space of càdlàg processes endowed with the Skorohod topology), and fix any
θi = (δi, γi), i = 1, 2, and T > 0. Then, in both of the inverse-Gaussian and gamma cases,
PT

θ1 and PT
θ2 fail to be mutually absolutely continuous as soon as δ1 6= δ2 (see, e.g., Akritas

and Johnson [2, Theorem 4.1]), so that we cannot consider the joint likelihood estimation
of δ and γ from a continuous record while it makes sense in discrete-observation cases. If
tni − tni−1 ≡ h > 0 in particular, then the situation is nothing but the classical iid framework,
and the convergence rate of the MLE is of course

√
nI2 for both component, and we can

explicitly write down the corresponding Fisher information matrices (depending on h in this
case): Woerner [9] systematically studied such cases for much more general classes of Lévy
processes.

Our main goal is to derive uniform asymptotic behaviors of the corresponding maximum-
likelihood estimators (MLE), say θ̂n = (δ̂n, γ̂n). In both cases we presuppose:

that the parameter space Θ ⊂ (0,∞)2 is a bounded domain whose closure is
contained in (0,∞)2 and that there is a true parameter which lies in Θ.

Denote by Pn
θ the image measure of (Ztn

i
)n
i=0 associated with θ. We shall derive the local

asymptotic normality (LAN) as well as the asymptotic normality of the MLEs with rate
diag(

√
n,
√

Tn), both uniform in Θ. Here the asymptotic normality with rate diag(
√

n,
√

Tn)
means that the convergence in law

(√
n(δ̂n − δ),

√
Tn(γ̂n − γ)

)
⇒ N2(0, I(θ)−1)

under (Pn
θ )-sequence of distributions, see (9) and (13) for specified expressions of I(θ): this

is a similar phenomenon to the well known case where Z is a Wiener process such that
L(Z1) = N1(γ, δ), or, more generally, a diffusion process. Under our sampling scheme
(4), we shall see that a remarkably different feature from the case of tni − tni−1 ≡ h > 0
will arise. Precisely, the forms of the asymptotic Fisher information matrices are different,
and especially they are diagonal, which implies that the joint ML estimation of δ and γ is
asymptotically mutually independent. See the expressions (9) and (13) below. We shall also
derive an efficient estimator of δ even when (Tn) is bounded in n; in this case γ may be
unknown, hence a nuisance parameter.
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Recall that, for general Lévy processes the likelihood function can be written down only
up to the Fourier inversion formula. Jongbloed and van der Meulen [5] studied the parametric
estimation of a subordinator based on the empirical characteristic function, where that tni −
tni−1 ≡ h > 0 is supposed and the efficiency issue is not discussed. Restricting the model
structure, we shall give sharper results than theirs. As a matter of fact, specification of
the parametric optimal rates in estimating a general Lévy process seems to be an intricate
problem. For example, the author [6] previously studied the LAN property for discretely
observed (non-Gaussian) stable Lévy processes, where various optimal rates were found for
each component: there the scaling property, which is inherent in the stable case among
general Lévy processes, was fully utilized, and it has been shown that the Fisher information
matrix is always degenerate as long as joint estimation of scale and index parameters are
concerned. Such a phenomenon does not arise in the present context.

In the rest of this article we shall present our asymptotic results in Section 2, then some
simulation results in Section 3, and finally the proofs in Section 4.

2 Results

We use asymptotic symbols for n → ∞ unless otherwise stated. Write ∆n
i = tni − tni−1,

∆n
i Z = Ztn

i
− Ztn

i−1
, θ := (δ, γ), and ∂θ = ∂/∂θ. Note that the sequence (∆n

i Z)n
i=1 forms a

rowwise independent triangular array fulfilling

L(∆n
i Z) = L(Z∆n

i t) (5)

for each i ∈ {1, 2, . . . , n}. For any σ(Ztn
i

: i ≤ n)-measurable random variables Xn(θ), n ∈ N,
and a constant X(θ) appearing in the sequel, we write:

(i) “Xn(θ) ⇒P n
θ

u X(θ)” if

sup
θ∈Θ−

|PXn(θ)f − PX(θ)f | → 0

for every bounded continuous function f , where P ξ denotes the law of ξ;

(ii) “Xn(θ) →P n
θ

u X(θ)” if for every ε > 0 we have

sup
θ∈Θ−

Pn
θ

[|Xn(θ)−X(θ)| > ε
] → 0.

Given a log-likelihood function θ 7→ `n(θ), we write

Sn(θ) = ∂θ`n(θ) and In(θ) = −∂2
θ`n(θ),

the score function and the observed information matrix, respectively.
With the above-mentioned notation, we formulate the uniform LAN property in our

context as follows. Write
An = diag(

√
n,

√
Tn), (6)

so that A−1
n → 0. The experiment {Pn

θ : n ∈ N}θ∈Θ is called “uniformly An-LAN with the
Fisher informations {I(θ)}θ∈Θ” if:

[U1] `n(θ + A−1>
n un)− `n(θ)− u>nSn(θ) + 1

2u>n In(θ)un →P n
θ

u 0 for any nonrandom bounded
sequence (un) ⊂ R2 such that un → u;

[U2] A−1
n Sn(θ) ⇒P n

θ
u N2(0, I(θ)) with I(θ) being positive definite for any θ ∈ Θ−;

[U3] A−1
n In(θ)A−1>

n →P n
θ

u I(θ), with the same I(θ) as in [U2].

The forthcoming asymptotic normalities reveal that the MLEs are asymptotically efficient
in both of inverse-Gaussian and gamma cases. If θ̂n ∈ Θ− is not well-defined, we may assign
any number θ ∈ Θ to θ̂n.
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2.1 Inverse-Gaussian case

Let L(Z1) = IG(δ, γ) whose density is given by (2). Since

ϕIG(δ,γ)(u) = exp{δ(γ −
√

γ2 − 2iu)},
we have L(Zt) = IG(δt, γ) for each t > 0. On account of (5), the target log-likelihood
function of (Ztn

i
)n
i=0 is given by

`n(θ) =
n∑

i=1

{
log δ + δγ∆n

i t− 1
2

(
δ2(∆n

i t)2

∆n
i Z

+ γ2∆n
i Z

)}
. (7)

Solving ∂θ`n(θ) = 0, we get the explicit MLE:

δ̂n =
[

1
n

{ n∑

i=1

(∆n
i t)2

∆n
i Z

− T 2
n

ZTn

}]−1/2

, γ̂n =
Tnδ̂n

ZTn

. (8)

For the joint estimation we have the following.

Theorem 2.1 (Unbounded-domain asymptotics). Let Z be a subordinator such that L(Z1) =
IG(δ, γ), let `n(θ) and θ̂n = (δ̂n, γ̂n) be as in (7) and (8), respectively, and suppose (4) and
Tn →∞. Then {Pn

θ : n ∈ N}θ∈Θ is uniformly An-LAN with the Fisher informations

IIG(θ) =
(

2/δ2 0
0 δ/γ

)
, θ ∈ Θ, (9)

and we have An(θ̂n − θ) ⇒P n
θ

u N2(0, IIG(θ)−1).

If Tn does not tends to infinity, then the observed information associated with γ is
bounded in n, and this is the case also for the gamma Lévy process; see (16) and (17).
Therefore no consistent estimation procedure of γ is possible. But this is not the case for
estimating δ, and actually we may use the same estimate as in (8).

Corollary 2.2 (Bounded-domain asymptotics). Let Z be a subordinator such that L(Z1) =
IG(δ, γ), where γ > 0 is fixed while it may be unknown, let δ̂n be given by (8), and suppose
(4) and Tn = O(1). Moreover suppose that the true value of δ lies in some interval (a, b)
such that 0 < a < b < ∞. Then {Pn

δ : n ∈ N}δ∈(a,b) is uniformly
√

n-LAN with the Fisher
informations 2/δ2, and δ̂n fulfils

√
n(δ̂n − δ) ⇒P n

δ
u N1(0, δ2/2).

2.2 Gamma case

Next we set L(Z1) = Γ(δ, γ) whose density is given by (3), so that

ϕΓ(δ,γ)(u) = (1− iu/γ)−δ

and hence L(Zt) = Γ(δt, γ) for each t > 0. Thus the log-likelihood function of (Ztn
i
)n
i=0 is

given by

`n(θ) =
n∑

i=1

{
δ∆n

i t log γ − log Γ(δ∆n
i t) + δ∆n

i t log(∆n
i Z)− γ∆n

i Z

}
. (10)

The corresponding MLE solves
n∑

i=1

(∆n
i t){log(δ∆n

i t)− ψ(δ∆n
i t)} = Tn log

(
ZTn

Tn

)
−

n∑

i=1

(∆n
i t) log

(
∆n

i Z

∆n
i t

)
, (11)

γ = δ
Tn

ZTn

, (12)
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Figure 1: The plot of the bounded function (0,∞) 3 x 7→ {log x−ψ(x)}/{(3x+1)/(6x2+x)},
which is strictly increasing to 1 (resp. decreasing to 0) as x ↘ 0 (resp. as x ↗∞).

where ψ denotes the digamma function, ψ(x) := ∂xΓ(x)/Γ(x).
For each n ∈ N the left-hand side of (12), say fn(δ), is a smooth, positive, and strictly

decreasing function of δ ∈ (0,∞): fn(x) ↘ 0 (resp. ↗∞) as x ↗∞ (resp. x ↘ 0). So (11)
admits a unique root δ̂n a.s. on the event where the right-hand side of (11) is positive, and
we can simply apply, e.g., the bisection search in order to find the root of (11) readily.

Theorem 2.3 (Unbounded-domain asymptotics). Let Z be a subordinator such that L(Z1) =
Γ(δ, γ), and let `n(θ) and θ̂n = (δ̂n, γ̂n) be as in (10) and the solution to (11) and (12),
respectively, and suppose (4) and Tn → ∞. Then {Pn

θ : n ∈ N}θ∈Θ is uniformly An-LAN
with the Fisher informations

IΓ(θ) =
(

1/δ2 0
0 δ/γ2

)
, θ ∈ Θ, (13)

and we have An(θ̂n − θ) ⇒P n
θ

u N2(0, IΓ(θ)−1).

We also have an analogue to Corollary 2.2.

Corollary 2.4 (Bounded-domain asymptotics). Let Z be a subordinator such that L(Z1) =
Γ(δ, γ), where γ > 0 is fixed while it may be unknown, let δ̂n be a solution of (11), and
suppose (4) and Tn = O(1). Moreover, suppose that the true value of δ lies in (a, b) for
some 0 < a < b < ∞. Then {Pn

δ : n ∈ N}δ∈(a,b) is uniformly
√

n-LAN with the Fisher
informations 1/δ2, and δ̂n fulfils δ̂n fulfils

√
n(δ̂n − δ) ⇒P n

θ
u N1(0, δ2).

Here is a remark for finding the root of (11) in the equidistant-sampling case, hn =
tni − tni−1 for each n: in this case (11) can be rewritten as

log(δhn)− ψ(δhn) = log
(

1
n

n∑

i=1

∆n
i Z

)
− 1

n

n∑

i=1

log(∆n
i Z).

Write this right-hand side as Yn. We can show that hnYn →P n
θ

u δ−1 > 0 (use Genon-Catalot
and Jacod [4, Lemma 9]), hence Yn becomes positive with Pn

θ -probability tending to 1. Now,
using the approximation (see Figure 1)

log(x)− ψ(x) ∼ 3x + 1
6x2 + x

, x → 0,

and taking the positivity of δ into account, we get the approximate MLE δ̃n of δ given by

δ̃n =
3− Yn

12hnYn
+

{(
3− Yn

12hnYn

)2

+
1

6hnYn

}1/2

, (14)
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n Tn δ̂IG
n -mean (s.d.) γ̂IG

n -mean (s.d.) δ̃Γ
n-mean (s.d.) γ̃Γ

n -mean (s.d.)
50 3.23 3.0910 (0.3195) 2.1514 (0.5217) 3.0674 (0.4832) 2.2386 (0.8505)

100 3.98 3.0276 (0.2243) 2.0865 (0.4657) 3.0604 (0.3249) 2.2331 (0.7651)
300 5.54 3.0142 (0.1233) 2.0560 (0.3547) 3.0499 (0.1798) 2.1650 (0.6089)
500 6.45 3.0021 (0.0929) 2.0657 (0.3410) 3.0426 (0.1321) 2.1241 (0.5064)

Table 1: Simulation 1. Means and standard deviations (s.d.) of the estimate based on 1000
independent trajectories. We set hn = n−0.7, i.e. Tn = n0.3 →∞, and (δ, γ) = (3, 2).

which, together with γ̃n := δ̃nTn/ZTn
in cases of Tn →∞, enables us to bypass the numerical

optimization procedure.

Remark 2.5. As a familiar naive estimator, one may consider moment estimator based on
the first and second sample moments, utilizing the convergences

1
Tn

n∑

i=1

∆n
i Z →P n

θ
u

δ

γ
and

1
Tn

n∑

i=1

(∆n
i Z)2 →P n

θ
u

δ

γ2
;

again, this can be proved by means of [4, Lemma 9]. However, the asymptotic behavior of
the moment estimator θ̂M,n obtained from the above relations are far from that of θ̂n: using
the delta method we can check

√
Tn(θ̂M,n − θ) ⇒ N2

(
0,

(
2δ 2γ
2γ 3γ2/δ

) )
.

This reveals that we cannot use θ̂M,n even as an initial estimate in applying Fisher’s scoring
or one-step improvement.

3 Simulation experiments

We here report some numerical results. For simplicity we carried out equidistant sampling
cases, ∆n

i t = hn for each i ≤ n. For gamma cases, we utilized the approximate MLE
θ̃n := (δ̃n, γ̃n); the results will show that even θ̃n performs well. In each simulation we simu-
lated 1000 independent discrete sample paths of Z, and then computed mean and standard
deviation (s.d.) of the obtained 1000 estimates. Throughout the true value is (δ, γ) = (3, 2).
For generating pseudorandom-Γ(p, q) numbers with p ∈ (0, 1), we used the algorithm of
Michael et al. [7].

In Tables 1 and 2, we distinguish inverse-Gaussian and gamma cases by the superscripts
“IG” and “Γ”.

Simulation 1. Next we set hn = n−0.7, so that Tn = n0.3 → ∞ and the jointly consistent
estimation of δ and γ can be done. The results are given in Table 1.

Simulation 2. Next we set hn = n−0.3, so that Tn = n0.7 →∞; the total observation-time
domain diverges faster than the previous case. It is observed that: (i) accuracy of estimating
δ is slightly worse than Simulation 1; and (ii) performance of estimating γ is much better
than Simulation 1, because of the faster increase of Tn. The results are given in Table 2.

Finally, let us look at a case of Tn = O(1) in the inverse-Gaussian case.

Simulation 3. Set hn = 1/n, so that Tn ≡ 1. In this case only δ can be consistently
estimated. The results are given in Table 3: just for reference we also give estimates γ̂n,
which badly behaved and have severe inevitable bias, as was expected.
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n Tn δ̂IG
n -mean (s.d) γ̂IG

n -mean (s.d.) δ̃Γ
n-mean (s.d) γ̃Γ

n -mean (s.d.)
50 15.46 3.0812 (0.3190) 2.0630 (0.2941) 3.1331 (0.5908) 2.1335 (0.5235)

100 25.12 3.0384 (0.2152) 2.0487 (0.2248) 3.0319 (0.3988) 2.0470 (0.3557)
300 54.20 3.0058 (0.1224) 2.0095 (0.1392) 2.9866 (0.2059) 2.0030 (0.2130)
500 77.50 3.0115 (0.0933) 2.0087 (0.1138) 2.9713 (0.1534) 1.9911 (0.1741)

Table 2: Simulation 2. Means and standard deviations (s.d.) of the estimate based on 1000
independent trajectories. We set hn = n−0.3, i.e. Tn = n0.7 →∞, (δ, γ) = (3, 2).

n δ̂IG
n -mean (s.d) γ̂IG

n -mean (s.d.)
50 3.0760 (0.3220) 2.3424 (0.9575)

100 3.0431 (0.2200) 2.4193 (0.9441)
300 3.0211 (0.1230) 2.3300 (0.9481)
500 3.0114 (0.0935) 2.3123 (0.9044)

1000 3.0011 (0.0674) 2.3603 (0.9735)

Table 3: Simulation 3. Means and standard deviations (s.d.) of the estimate based on 1000
independent trajectories. We set hn = 1/n, i.e. Tn ≡ 1.

4 Proofs

4.1 Preliminary

Put Hn(θ) = [Hkl
n (θ)]nk,l=1 = A−1

n In(θ)A−1>
n , the normalized observed information matrix;

recall (6). First, utilizing the results of Sweeting [8, Theorems 1 and 2], we shall observe
that each proof of Theorems 2.1 and 2.3 reduces to the verification of [U3].

Put In(θ) = [Ikl
n (θ)]2k,l=1. Given θk = (δk, γk), k = 1, 2, we introduce the notation

In(θ1, θ2) := [Ikl
n (θk)]2k,l=1,

and, for a constant a > 0,

F a
n (θ) = sup

θk:|An(θk−θ)|≤a,k=1,2

|A−1
n {In(θ1, θ2)− In(θ)}A−1

n | :

these quantities appear in the assumptions of [8] in relation to deriving asymptotic results
through Taylor’s formula. Now suppose

Hn(θ) →P n
θ

u H(θ) (15)

for some H(θ), which is positive definite for every θ ∈ Θ− and continuous in θ ∈ Θ. Then we
can easily see as follows that the condition C2(ii) of [8] is fulfilled. Write An = diag(A1n, A2n)
and observe that for each θk ∈ Θ we have

|A−1
n {In(θ1, θ2)− In(θ)}A−1

n |

.
2∑

k,l=1

|A−1
knA−1

ln {Ikl
n (θk)− Ikl

n (θ)}|

≤
2∑

k,l=1

{|Hkl
n (θk)−Hkl(θk)|+ |Hkl

n (θ)−Hkl(θ)}|+ |Hkl(θk)−Hkl(θ)|} ,

and therefore, on account of (15), we get F a
n (θ) →P n

θ
u 0 for every a > 0 as desired. In partic-

ular, this leads to [U1]. Since the conditions C1 and C2(i) of [8] are automatic under (15),
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Theorems 1 and 2 of the paper can apply under (15), so that we get [U2], the existence of a
local root of ∂θ`n(θ) = 0, and the uniform asymptotic normality {A−1

n In(θ)A−1>
n }1/2An(θ̂n−

θ) ⇒P n
θ

u N2(0, I2), where I2 denotes the 2-dimensional identity matrix.
Thus, in order to prove Theorem 2.1 (resp. Theorem 2.3), it suffices to show (15), namely

Hn(θ) →P n
θ

u IIG(θ) (resp. Hn(θ) →P n
θ

u IΓ(θ)).

4.2 Inverse-Gaussian case

Proof of Theorem 2.1. Direct computations yield

Hn(θ) =




1
δ2

+
1
n

n∑

i=1

(∆n
i t)2

∆n
i Z

−
√

Tn

n

sym.
1
Tn

n∑

i=1

∆n
i Z


 . (16)

The task here is to show Hn(θ) →P n
θ

u IIG(θ) (recall (9)), but in view of (4) it is clear that
H12

n (θ) = H21
n (θ) →u 0 (the ordinary convergence). As for the diagonal elements, we shall

first utilize [4, Lemma 9] to deduce the θ-pointwise convergence. Fix any θ ∈ Θ and observe
that

En
θ [∆n

i Z] = δ∆n
i t/γ,

En
θ [(∆n

i Z)2] = δ∆n
i t/γ3 + (δ∆n

i t/γ)2,

En
θ [(∆n

i Z)−1] = 1/{δ∆n
i t}2 + γ/(δ∆n

i t),

En
θ [(∆n

i Z)−2] = 1/{δ∆n
i t}4 + 3γ/{δ∆n

i t}3 + (2 + γ2)/{δ∆n
i t}2.

Now consider H11
n (θ). Under (4) we have

1
n

n∑

i=1

(∆n
i t)2En

θ [(∆n
i Z)−1] =

1
δ2

+
γ

δ

1
n

n∑

i=1

(∆n
i t)2 =

1
δ2

+ o(1),

1
n2

n∑

i=1

(∆n
i t)4En

θ [(∆n
i Z)−2] =

1
n2

n∑

i=1

O(1) = o(1).

Thus [4, Lemma 9] yields H11
n (θ) →P n

θ 2/δ2. Similarly, as for H22
n (θ) we see

1
Tn

n∑

i=1

En
θ [∆n

i Z] = δ/γ,

1
T 2

n

n∑

i=1

En
θ [(∆n

i Z)2] =
1

T 2
n

n∑

i=1

{O(1)(∆n
i t)2 + O(1)∆n

i t} = o(1),

so that H22
n (θ) →P n

θ δ/γ. The uniformity of the convergence of Hn(θ) directly follows on
account of the continuity of IIG(θ) and the boundedness of Θ. Thus we obtain Hn(θ) →P n

θ
u

IIG(θ) as desired. ¤
Proof of Corollary 2.2. Note that the condition Tn → ∞ was not used for H11

n (θ) in the
proof of Theorem 2.1. Hence the claim directly follows from Theorem 2.1 and the continuous
mapping theorem. ¤
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4.3 Gamma case

Proof of Theorem 2.3. We proceed along with the inverse-Gaussian case. We see that the
observed information is nonrandom and Hn(θ) is given by

Hn(θ) =




1
δ2n

n∑

i=1

(δ∆n
i t)2ψ′(δ∆n

i t) −
√

Tn

γn

sym.
δ

γ2


 , (17)

where ψ′ denotes the derivative of ψ. It suffices to consider H11
n (θ). We note that x2ψ′(x) →

1 as x ↘ 0. Put C = supδ δ−2, which is finite by means of the assumptions on Θ−. Given
any ε > 0, from the boundedness of (∆n

i t)n
i=1 we can find n0 ∈ N such that

sup
θ∈Θ

sup
n≥n0

sup
i≤n

|(δ∆n
i t)2ψ′(δ∆n

i t)− 1| ≤ ε/C.

Hence for every n ≥ n0 we have

sup
θ∈Θ

|H11
n (θ)− δ−2| ≤ sup

δ

{
δ−2 1

n

n∑

i=1

|(δ∆n
i t)2ψ′(δ∆n

i t)− 1|
}
≤ C · ε/C = ε,

yielding that H11
n (θ) →u 1/δ2. This complete the proof. ¤

Proof of Corollary 2.4. This follows every bit as Corollary 2.2. ¤
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MHF preprint series 2006-18, Kyushu Univeresity.

[7] Michael, J. R., Schucany, W. R. and Haas, R. W. (1976), Generating random variates
using transformations with multiple roots. Amer. Statist. 30, 88–90.

[8] Sweeting, T. J. (1980), Uniform asymptotic normality of the maximum likelihood
estimator. Ann. Statist. 8, 1375–1381. [Corrections: (1982) Ann. Statist. 10, 320.]

[9] Woerner, J. H. C. (2001), Statistical Analysis for Discretely Observed Lévy Processes.
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Darboux evaluations of algebraic Gauss hypergeometric functions

MHF2006-16 Masato KIMURA & Isao WAKANO
New mathematical approach to the energy release rate in crack extension

MHF2006-17 Toru KOMATSU
Arithmetic of the splitting field of Alexander polynomial

MHF2006-18 Hiroki MASUDA
Likelihood estimation of stable Lévy processes from discrete data
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