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Abstract

We consider a multi-class logistic discrimination for functional data. We use

a wavelet-based smoothing technique in obtaining a set of functional data, from

irregularly sampled time-dependent covariates of a number of individuals. A method

of estimating discriminant model is based on a regularized log-likelihood, where we

apply model selection criteria derived from Kullback-Leibler information and Bayes’

analysis.

Keywords: Functional data analysis, Model selection, Multi-class logistic discrimination,

Wavelets.

1. Introduction

Classification or discrimination have been important statistical problem areas in var-

ious fields of natural and social sciences. Several techniques have been proposed for ana-

lyzing multivariate data such as Fisher’s linear discriminant analysis (LDA) and quadratic

discriminant analysis (QDA) (see e.g. Hastie et al. (2003)).

It is often the case that dimension of covariates is quite high, while the whole popula-

tion of training set is relatively small. In such cases, variance-covariance matrix becomes

singular, and the Mahalanobis distance cannot be calculated. Besides the above prob-

lems caused by high dimensionality, this paper consider the case that covariates of data

are given by temporal (and/or spatial) observations whose observational points may vary

among individuals. The above discriminant methods based on multivariate vectors must

ignore the time order of temporal observations, further, there may be problems in appli-

cation for the case of un-uniform observational points.
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To solve these ill-posed problems, we introduce a functional discriminant approach,

which fits a curve (or a function) to the temporal observations of each individual, and then

discriminates individuals based on the functionalized covariates. This approach is based

on a framework of functional data analysis (FDA) proposed by Ramsay and Silverman

(2002, 2005) and has been applied in various fields such as biomechanics, chemometrics,

meteorology, and so on. Basis expansions for functionalization, such as Fourier bases and

splines, have been very popular in FDA, while more recently, radial basis expansions have

also been considered by Araki et al. (2004). The above basis expansions are known to be

effective for analyzing temporal observations when underlying curve is sufficiently smooth.

Here, however, we believe that the local adaptivity of wavelet-based curve estimation may

yield favorable results when data have irregular and complex structures.

Wavelets form an orthonormal basis and enable multi-resolution analysis by localizing

a function in different phases of both time and frequency domains simultaneously, and thus

offer some advantages over traditional Fourier analysis for analyzing data with intrinsically

local properties, such as discontinuities and sharp spikes. Wavelet-based methods have

been predominantly applied in sound and image analysis due to their ability to detect

edges and singularities. In statistics, applications of wavelet-based methods have been

frequently reported by Donoho et al. (1995), Hall and Patil (1996) among others.

We apply a wavelet-based method of Fujii and Konishi (2005) for constructing func-

tional covariates from temporal observations, and we then conduct a multi-class logistic

discriminant analysis. A crucial issue in model building process is choice of smoothing

parameter. We present an information-theoretic and Bayesian type criteria for evaluat-

ing models estimated by a method of regularization in the frame work of wavelet-based

functional logistic model.

This paper is organized as follows. In Section 2 we describe a multi-class functional

logistic model for data that the covariates are given by orthonormal wavelet expansions.

In Section 3 we describe a wavelet-based functionalization of time-dependent observa-

tions. Section 4 provide an estimation procedure of multi-class logistic model based on a

regularized log-likelihood and Newton-Raphson algorithm. In Section 5 we present model

selection criteria to choose the smoothing parameter. A numerical study is given in Sec-

tion 6. Finally, in Section 7, our proposed method is illustrated in a real data example

given by an application to digitized analog signals of “phonemes”, where this problem

forms the subject of sound recognition in signal analysis.
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2. Multi-class logistic model for functional data

Suppose we have n independent observations

{(xi(t), yi) ; i = 1, . . . , n}, (1)

where xi(t) are functions given on t ∈ T , and yi ∈ {1, 2, . . . , K} denote classes to which

xi(t) belong. We assume that the class labels yi are generated from certain probability

distributions Pr(Yi = k|xi(t)) which are represented by

log
Pr(Yi = k|xi(t))

Pr(Yi = K|xi(t))
= βk,0 +

∫
T

βk(t) xi(t) dt, k = 1, . . . , K − 1, (2)

where βk,0 and βk(t) are unknown model parameters.

We also assume that covariate functions xi(t) are given in the form

xi(t) =
M∑

m=1

αi,mφm(t).

Then for βk(t) =
∑M

m=1 βk,mφm(t) expanded by the same bases as that of xi(t), it follows

that the right-hand side of equation (2) may be

βk,0 + (βk,1, . . . , βk,M)J (αi,1, . . . , αi,M)T , (3)

where J denotes the M ×M matrix with (m1,m2)th elements given by
∫

φm1(t)φm2(t) dt.

Cardot and Sarda (2005) proposed an estimation of the coefficient function for functional

generalized models based on a B-splines expansion and penalized likelihood. Araki et

al. (2004) considerd the use of radial basis function networks for the functional logistic

discrimination of sufficiently smooth time course data.

In this paper, we consider the use of wavelets for the bases {φm(t) ; m = 1, . . . ,M}.

The orthonormal property of wavelets, i.e.,
∫

φm1(t)φm2(t) dt = δm1,m2 yields that J = I,

and thus equation (2) is equivalent to

log
Pr(Yi = k|xi(t))

Pr(Yi = K|xi(t))
= βT

k αi , k = 1, . . . , K − 1,

where αi = (1, αi,1, . . . , αi,M)T and βk = (βk,0, βk,1, . . . , βk,M)T . It follows that the estima-

tion of the model results in the estimation of the vector of coefficients β = (βT
1 , . . . , βT

K−1)
T .
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3. Wavelet-based functionalization of irregulary sampled data

Although we assumed that the covariates of data (1) are given by wavelet expansions,

in practice, it is natural that the coefficients α1, . . . , αn are unknown, while we instead

observe the following

[{(xi,l, ti,l) ; l = 1, . . . , Li}, yi]. (4)

Suppose that {xi,l ; l = 1, . . . , Li} in data (4) are generated from the model

xi,l = αT
i φi,l + εi,l, l = 1, . . . , Li,

where φi,l = (φ1(ti,l), . . . , φM(ti,l))
T , {ti,l ; l = 1, . . . , Li} are fixed observational points,

{εi,l} are independently and normally distributed with mean 0 and variance σ2
i , and αi

are unknown. Note that, in this case, the observational points {ti,l ; l = 1, . . . , Li} may

vary among individuals. Hence there may be problems in constructing the discriminant

model directly by using {xi,l ; l = 1, . . . , Li} as covariate vectors.

It follows that probability model for data (4) may be represented by the density

function

f(yi ; αi, β) = f(yi |αi ; β)

Li∏
l=1

f(xi,l | ti,l ; αi, σ
2
i ), (5)

where f(yi |αi ; β) = Pr(Yi = yi|xi(t)) is the model for functional data (1) with given αi,

and

f(xi,l | ti,l ; αi, σ
2
i ) =

1√
2πσ2

i

exp

{
−

(xi,l − αT
i φi,l)

2

2σ2
i

}
, (6)

is the model of {xi,l ; l = 1, . . . , Li} with unknown αi.

By means of the generalized linear models for functional data, James (2002) suggested

the estimation of the full model (5) directly from the discrete observation (4) by using the

EM algorithm (Dempster et al., 1977), in which the coefficients α1, . . . , αn are consid-

ered as unobserved latent variables having some prior density. In this method, however,

there may be difficulties in deciding how to determine the coefficients αi∗ for the future

observations.

To avoid this problem, we consider the following 2-step estimation procedure:

step 1. estimate the parameter αi of the model (6) for i = 1, . . . , n.
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step 2. estimate the parameter β of model f(yi |αi ; β) with αi ≡ α̂i estimated in step 1.

We can then estimate the conditional probabilitis for unsupervised future observations as

Pr(Yi∗ = k|xi∗(t)) = logit−1(β̂
T

k α̂i∗), where we estimate αi∗ in the same way as that used

for α1, . . . , αn.

We apply a wavelet-based regression method of Fujii and Konishi (2005) for the esti-

mation in step 1. It might be noticed that the vast majority of wavelet-based regression

estimation including Donoho (1995) has been conducted within the setting that given

data is of decimal length and has equally spaced observational points. For the case that

the observational points are not decimal and irregularly spaced such as that given by data

(4), the corresponding basis matrix is no longer orthogonal, and wavelet-based decompo-

sition/reconstruction procedure can not be directly applied. Several different approaches

for irregular observational points have been made such as by Hall and Patil (1996) and

Fujii and Konishi (2005) among others.

There may be an advantage to use a method of Fujii and Konishi (2005) because one

can automatically choose smoothing parameters in estimating each αi by using model

selection criteria (see Fujii and Konishi (2005, Section 3) for further details).

4. Estimation of the discriminant model

In this section, we assume that the coefficients α1, . . . , αn are already estimated in

step 1 of Section 3, and they are given by αi ≡ α̂i. Here, we describe the procedure

of estimation in step 2 of Section 3. We consider the maximization of regularized log-

likelihood function given by

`λ(β) =
n∑

i=1

log f(yi |αi ; β) − n

2
λ βTKβ, (7)

where the (M + 1)(K − 1) × (M + 1)(K − 1) diagonal matrix K has elements given by

K(m,m) =

{
0 m ≡ 1 (mod M + 1),
1 otherwise.

For an explicit representation of the log-likelihood function, we define yi,1, . . . , yi,K−1

in place of the response yi ∈ {1, . . . , K} by

yi,k =

{
1 if k = yi,
0 otherwise,
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and let µi,k = Pr(Yi = k|xi(t)) for k = 1, . . . , K − 1. It then follows from the multinomial

nature of the distribution that

log f(yi |αi ; β) =
K−1∑
k=1

yi,k log µi,k +

(
1 −

K−1∑
k=1

yi,k

)
log

(
1 −

K−1∑
k=1

µi,k

)

=
K−1∑
k=1

yi,kβ
T
k αi − log

{
1 +

K−1∑
k=1

exp(βT
k αi)

}
.

Let µ, y and η be n(K − 1) dimensional vectors whose {i + n(k − 1)}th elements are

µi,k, yi,k and ηi,k = βT
k αi, respectively. It then follows that

∂`λ(β)

∂β
=

∂ηT

∂β
(y − µ) − nλKβ,

∂2`λ(β)

∂β∂βT
= −∂ηT

∂β

∂µ

∂ηT

∂η

∂βT
− nλK,

where the elements of the above matrices are given respectively by

∂ηi,k

∂βl,m

= δk,lαi,m,
∂µi,k

∂ηj,l

= δi,jµi,k(δk,l − µj,l).

Further, the regularized log-likelihood function (7) can be maximized by using the Newton-

Raphson algorithm represented as follows:

βnew = βold −

(
∂2`λ(β)

∂β∂βT

)−1
∂`λ(β)

∂β

∣∣∣∣∣
˛=˛old

. (8)

We start with βold = 0, and then update βold with βnew calculated by equation (8)

repeatedly until a certain convergence criterion is satisfied.

5. Model selection

To find an optimal model we must choose smoothing parameter λ. In this section, we

present two different model selection criteria derived from Kullback-Leibler information

and Bayes’ analysis.

5.1. Generalized information criterion

Generalized information criterion (GIC) had been derived by Konishi and Kitagawa

(1996) as a bias corrected estimator of the Kullback-Leibler information (Kullback and

Leibler, 1951), which define a distance between true model and the model fitted by using

the methods such as penalized log-likelihood estimation.
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Hence by using the result given in Konishi and Kitagawa (1996, p. 889), we have the

model selection criterion for evaluating the fitted logistic model f(yi|αi ; β̂λ) estimated

by maximizing the penalized log-likelihood function (7),

GIC = −2 `0(β̂λ) + 2 tr(R−1
λ Qλ),

where `λ(·) is given by equation (7) and

Rλ = − 1

n

n∑
i=1

∂2{log f(yi |αi ; β) − (λ/2)βTKβ}
∂β∂βT

∣∣∣∣∣
˛=b˛λ

=
1

n

∂ηT

∂β

∂µ

∂ηT

∂η

∂βT

∣∣∣∣∣
˛=b˛λ

+ λK, (9)

Qλ =
1

n

n∑
i=1

∂{log f(yi |αi ; β) − (λ/2)βTKβ}
∂β

∂ log f(yi |αi ; β)

∂βT

∣∣∣∣∣
˛=b˛λ

=
1

n

{
∂ηT

∂β
diag(y − µ̂λ) − λKβ̂λ1

T
n(K−1)

}
diag(y − µ̂λ)

∂η

∂βT
.

5.2. Generalized bayesian information criterion

Konishi et al. (2004) extended Schwarz’s BIC (Schwarz, 1978) to the evaluation of

models fitted by the maximum penalized log-likelihood method or the method of regular-

ization.

Let the prior density for the unknown parameter vector β to be a multivariate normal

distribution given by

π(β |λ) = (2π)−M(K−1)/2(nλ)M(K−1)/2|K|1/2
+ exp

(
−nλ

2
βTKβ

)
,

where K is a matrix of rank M(K − 1) which appears in equation (7), and |K|+ denotes

the product of M(K − 1) non-zero eigenvalues of K. Then by using the result given in

Konishi et al. (2004, p. 30), we have generalized bayesian information criterion (GBIC)

given by

GBIC = −2 `λ(β̂λ) − M(K − 1) log λ + log |Rλ| − log |K|+ ,

where the matrix Rλ is given by equation (9).

We choose the optimal values of the smoothing parameter λ by minimizing either GIC

or GBIC criterion.
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Figure 1: (a), (b) and (c) are the plots of true functions x(t) for class 1, 2 and 3, respec-
tively. (d) displays the true functions for three classes simultaneously.

6. Numerical study

In this section, we describe a multi-class discriminant analyses of simulated data. For

the simulations, we consider the following sinusoidal functions as true covariates.

x(t) =


4 sin(4πt) − 2 exp{−(8t − 3)2} − 2 exp{−(8t − 5)2} for class 1,

4 sin(4πt) − sgn(t − .25) − sgn(.72 − t) for class 2,

4 sin(4πt) − sgn(t − .3) − sgn(.77 − t) for class 3.

Figure 1 plots the true functions on t ∈ [0, 1]. The functions for class 2 and class 3 have

jump discontinuities at {.25, .72} and {.3, .77} respectively, while the function for class 1

has no jump discontinuities, but smoothly approximates the other functions.

For each class, we generated a data set as follows:

xi,l = x(ti,l) + εi,l, l = 1, . . . , 100,

for i = 1, . . . , 200, where observational points {ti,l ; l = 1, . . . , 100} are independently, uni-
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Figure 2: (a), (b) and (c) are the plots of each 10 pieces of noisy data generated for
class 1, 2 and 3, respectively. (d) displays each 1 piece of noisy data for the three classes
simultaneously.

formly distributed on [0, 1], and noises {εi,l ; l = 1, . . . , 100} are independently, normally

distributed with mean 0 and variance 1. Figure 2 plots the generated data including

noises. In the functionalization step, we used symmlet-5 as the wavelet bases, and used

the criterion GBIC for selecting the optimum number of bases and the other smoothing

parameters in the context of regularized wavelet-based regression estimation (see Fujii

and Konishi (2005, Section 3.2)). For all classes, the most frequently selected number of

bases was M = 25, so we fixed this parameter in the following analyses.

In each class, we randomly allocated 100 of 200 observations to a training set, and

the rest 100 observations to a testing set. We estimated an optimum model according to

each of the criteria, GIC and GBIC defined in Section 4, and then assessed the estimated

model by calculating error rates for the testing set.

We repeated 100 times the above discriminant analysis for randomly allocated train-

ing/testing set. In total, misclassification rates for the testing set are 17.53% and 16.98%
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Figure 3: Upper panel: The curve of test error rate, calculated with respect to the
smoothing parameter λ. Lower panel: The curves drawn by the model selection criteria
(dashed line: GIC, solid line: GBIC).

for GIC and GBIC, respectively. The lower plot of Figure 3 shows the curves drawn by the

values of GIC and GBIC, calculated with respect to a set of fixed smoothing parameter

λ, while the upper plot shows the values of test error rate. These values are averaged over

100 repetition.

Using Fourier bases and cubic B-splines in the functionalization, we performed the

same analyses as that we did for the wavelet bases. It may be noted that Fourier bases

are orthonormal, while B-splines are not. Hence we calculated matrix J of functional

linear model (3) for cubic B-splines {Bm(t) ; m = 1, . . . ,M}. The (m1, m2)th elements

J(m1,m2) =
∫

Bm1(t)Bm2(t) dt are given by J(m1,m2)/∆ = 214/315, 1163/21504, 1/42,

1/322560 for (m1,m2) such that |m1 − m2| = 0, 1, 2, 3, respectively, and 0 for the other

(m1,m2), where ∆ denotes a distance of an equidistant knots sequence.

GBIC selected M = 9 as the optimum number of Fourier bases, and M = 13 for
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Table 1: Discriminant results for the three types of bases each with the use of GIC and
GBIC.

n = 300 Li = 100 ŷ = 1 ŷ = 2 ŷ = 3
εi,l ∼ N (0, 1) GIC GBIC GIC GBIC GIC GBIC

class 1 symmlet-5 73.56 74.07 15.50 15.71 10.94 10.22
Fourier 69.24 69.22 22.72 22.75 8.04 8.03

cubic B-splines 72.42 72.31 18.87 19.00 8.71 8.69
class 2 symmlet-5 13.83 12.65 84.44 85.69 1.73 1.66

Fourier 18.63 18.76 76.88 76.75 4.49 4.49
cubic B-splines 12.74 12.79 83.10 83.03 4.16 4.18

class 3 symmlet-5 8.61 8.60 1.97 2.10 89.42 89.30
Fourier 5.36 5.34 1.52 1.53 93.12 93.13

cubic B-splines 8.58 8.39 1.11 1.28 90.31 90.33

cubic B-splines. For Fourier bases, test errors are 20.25% and 20.30% according to GIC

and GBIC respectively, while for cubic B-splines, the test errors are 18.06% and 18.11%.

Table 1 shows average breakdowns of the repeated discriminations with the use of the

three types of bases.

The simulation results show efficiency of the proposed discriminant rule based on the

wavelet bases. The regularization method successfully works with the use of proposed

model selection criteria for the estimation of functional logistic model. It might be also

said for this simulation that the criterion GBIC reduces test errors more than that of

GIC.

7. Real data example

The “phoneme” data has frequently been analyzed in sound recognition. We use a

dataset available at the Stanford University web-site1, which was illustrated in the paper

on penalized discriminant analysis by Hastie et al. (1995). The phonemes are transcribed

as follows; “sh” as in “she”, “dcl” as in “dark”, “iy” as the vowel in “she”, “aa” as the

vowel in “dark”, and “ao” as the first vowel in “water”.

4509 speech frames are sampled from continuous speech of 50 male speakers. The

each speech frame is represented by 512 digitized samples of 32 msec duration at a 16

kHz sampling rate, and it represents one of the above five phonemes. From the each speech

frame, a log-periodogram of length 256 on a 0-8 kHz frequency range was computed. Thus

1URL: http://www-stat.stanford.edu/~tibs/ElemStatLearn/
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Figure 4: The log-periodograms of five phonemes (10 speech frames for each phoneme).
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the dataset consists of 4509 log-periodograms of length 256 with known class (phoneme)

memberships. A breakdown of the 4509 log-periodograms into phoneme frequencies is as

follows; 695 “aa”s, 1022 “ao”s, 757 “dcl”s, 1163 “iy”s and 872 “sh”s. The dataset is thus

represented in the form

[{(xi,l, tl), yi} ; l = 1, . . . , 256 ; i = 1, . . . , 4509], (10)

where xi,l are the log-periodograms, tl are the frequencies and yi ∈ {1, 2, . . . , 5} are

the class labels (“aa”, “ao” “sh”, “iy” or “dcl”). Figure 4 shows a sample of 10 log-

periodograms of the five phonemes respectively.

In the functionalization step, we used symmlet-10 as the wavelet bases, and used the

criterion GBIC for selecting the optimum number of bases and smoothing parameters

in the regularized wavelet-based regression estimation. The number of bases M = 26 is

optimal for almost all log-periodograms, while optimum values of the other smoothing

parameters differ for each log-periodogram. Thus, we selected the smoothing parameters

individually.

To perform a classification of the functionalized data, we randomly allocated 50 indi-

viduals from each class to a training set, and the rest individuals to a testing set. Thus we

totally used individuals of population n = 250 to estimate a discriminant model, and used

the rest 4259 individuals as the testing data. We then select an optimum λ by assessing

the model for β̂λ via the model selection criterion. Smoothing parameter λ is selected

by using either GIC or GBIC criterion. GIC selects an optimum smoothing parameter

λ = 0.836, while GBIC selects λ = 0.702. The test errors are 10.07% and 10.00% for GIC

and GBIC, respectively. The corresponding discrimination results are shown in Table 2.

Nextly, to make a comparison with our proposed method based on functionalization,

we aimed to conduct the discriminant methods based on multivariate vectors xi of length

256 given as (10), assuming that xi in class k are independently, normally distributed

with covariance matrix given by

Σk(ε) = εΣ̂k + (1 − ε)Σ̂, k = 1, 2, 3, 4, 5,

where Σ̂k is a sample covariance matrix of class k and Σ̂ is a sample covariance matrix of

the whole training data. We then conducted Fisher’s linear discriminant analysis (LDA),

quadratic discriminant analysis (QDA) and regularized discriminant analysis (RDA) by

taking ε = 0, ε = 1 and ε ∈ (0, 1), respectively. The above discriminant procedures
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for multivariate observations are detailed in Hastie et al. (2003) and in references given

therein.

However, all of the above discriminant methods for multivariate vectors failed to es-

timate a discriminant functions with the training set of population n = 250, because the

variance-covariance matrices of LDA, QDA and RDA became singular.

To conduct the discriminant methods for multivariate vectors successfully, we then

increased the population of training set as n = 500, by randomly allocating 100 individuals

from each class to the training set. The method RDA gives the minimum test error

10.900% when ε = 0.01, while LDA gives 10.975%. QDA failed once again in this situation.

GIC selected an optimum smoothing parameter λ = 0.7571, while GBIC selected λ =

0.5834. The test errors are 9.204% and 9.030% for GIC and GBIC, respectively. The

corresponding discrimination results of the methods other than QDA are shown in Table 3.

The results show that the proposed functional discriminant procedures are superior in

generalization ability to the other procedures.

Table 2: The result for phoneme data (n = 250). Totally, the test errors are 10.073%
(GIC; λ = 0.8355) and 10.002% (GBIC; λ = 0.7019). LDA, QDA and RDA can not be
calculated because of singularity.

n = 250 ŷ = 1 ŷ = 2 ŷ = 3 ŷ = 4 ŷ = 5 test errors (%)

aa (class 1) GIC 493 152 0 0 0 23.57
GBIC 491 154 0 0 0 23.88

ao (class 2) GIC 235 735 0 0 0 24.23
GBIC 232 738 0 0 0 23.92

sh (class 3) GIC 0 0 822 0 0 0.00
GBIC 0 0 822 0 0 0.00

iy (class 4) GIC 0 2 16 1089 6 2.16
GBIC 0 2 16 1089 6 2.16

dcl (class 5) GIC 0 2 6 8 691 2.26
GBIC 0 1 6 7 693 1.98
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Table 3: The result for phoneme data (n = 500). Totally, the test errors are 9.204% (GIC;
λ = 0.7571), 9.030% (GBIC; λ = 0.5834), 10.975% for LDA and 10.900% for RDA with
ε = 0.01. QDA can not be calculated because of singularity.

n = 500 ŷ = 1 ŷ = 2 ŷ = 3 ŷ = 4 ŷ = 5 test errors (%)

aa (class 1) LDA 392 203 0 0 0 34.12
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GIC 441 154 0 0 0 25.88
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GBIC 164 756 0 0 2 18.00
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RDA 0 0 771 0 1 0.13
GIC 0 0 772 0 0 0.00

GBIC 0 0 772 0 0 0.00
iy (class 4) LDA 3 0 2 1042 16 1.97

RDA 3 0 2 1042 16 1.97
GIC 0 2 13 1043 5 1.88

GBIC 0 1 11 1045 6 1.69
dcl (class 5) LDA 0 0 4 28 625 4.87

RDA 0 0 3 27 627 4.57
GIC 0 3 6 13 635 3.35

GBIC 0 2 6 13 636 3.20
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Darboux evaluations of algebraic Gauss hypergeometric functions

MHF2006-16 Masato KIMURA & Isao WAKANO
New mathematical approach to the energy release rate in crack extension

MHF2006-17 Toru KOMATSU
Arithmetic of the splitting field of Alexander polynomial

MHF2006-18 Hiroki MASUDA
Likelihood estimation of stable Lévy processes from discrete data
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