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Abstract

We study the likelihood inference for real-valued non-Gaussian stable Lévy processes
X = (Xt)t∈R+ based on sampled data (Xihn)n

i=0, where hn ↓ 0, focusing on cases
of either symmetric or completely skewed (one-sided) Lévy density. First, the local
asymptotic normality with always degenerate Fisher information matrix is obtained,
so that the maximum likelihood estimation is inappropriate for joint estimation of all
parameters involved. Second, supposing that either index or scale parameter is known,
we obtain the uniform asymptotic normality of the maximum likelihood estimates and
their asymptotic efficiency, where the resulting optimal convergence rates reveal that, as
opposed to the Gaussian case, that nhn →∞ is not necessary for consistent estimation
for all parameters.

Keywords: discrete sampling; efficiency; maximum likelihood estimation; stable Lévy
process.

1 Introduction

The purpose of this study is to investigate likelihood-based parametric estimation for dis-
cretely observed non-Gaussian stable Lévy processes whose Lévy measures are either sym-
metric or completely skewed (one-sided). Our main results are presented in Section 3: first,
we prove the local asymptotic normality (LAN) with an always degenerate Fisher informa-
tion matrix; second, the uniform asymptotic normalities and the asymptotic efficiencies of
the maximum likelihood estimators (MLE) are obtained when either index or scale param-
eter is supposed to be known. Recall that uniform asymptotic normality is theoretically
important for constructing asymptotic confidence intervals. The resulting phenomena turn
out to differ considerably from the Wiener case (see below). The proofs of the results are
given in Section 4.

Our precise model setup will be described in Section 2, however, prior to it let us recall
some well known facts and then give some remarks on our problem.

Consider the real-valued process X = (Xt)t∈R+ given by

Xt = γt + σwt, (1)

where γ ∈ R, σ > 0, and w is a standard Wiener process. If we can get a continuous
record (Xt)0≤t≤T , then on account of the quadratic-variation character we can identify σ
without error for each T > 0: any two statistical experiments corresponding to different σ
are mutually singular (entirely separated). So, in this case we may suppose σ > 0 is known
and only estimating γ makes sense. The MLE of γ possesses the asymptotic normality and
efficiency with optimal rate

√
T and asymptotic variance σ2. On the other hand, if we have
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only discrete observation (Xihn
)n
i=1 for some hn > 0 possibly depending on the sample size

n, then estimation of σ makes sense too and actually we have the following.

(i) If limn→∞ nhn ∈ [0,∞), then the MLE of σ is asymptotically normal and efficient
with optimal rate

√
n and asymptotic variance σ2/2, regardless of the behavior of hn ↓ 0,

while there exists no consistent estimate of γ; more precisely, the sequence of observed
information associated with γ is stochastically bounded without norming.

(ii) If nhn → ∞ and hn → 0 as n → ∞, then the MLE of (γ, σ) is asymptotically
normal and efficient with optimal rate diag(

√
nhn,

√
n) and asymptotic covariance matrix

diag(σ2, σ2/2).

Importantly, much more general diffusions give rise to analogous phenomena; see Gobet [3, 4]
for efficiency issues, and Yoshida [14] and Kessler [9] for optimal estimating procedures.

Now consider the question “what about cases where X is instead a non-Gaussian stable
Lévy process?”, to which we shall give a reply in this article. We know that continuously
observed cases makes no sense for all parameters involved: indeed, applying Kabanov et
al. [8, Theorem 15] we can easily check that, for every T > 0, PT

θ and PT
θ′ are absolutely

continuous if and only if θ = θ′, where PT
θ denotes the image measure of (Xt)0≤t≤T associated

with θ whose components consist of the index, scale, location. Historically, (possibly skewed)
non-Gaussian stable distributions have been rather typical for independent and identically
distributed (iid) data whose distribution seem to possess regularly varying tails, and have
been deeply investigated by many statisticians as well as probabilists: standard references
for basic facts of stable distributions can be found in the nice bibliography of Nolan [10].
Despite the lack of explicit expressions of the densities except for a few particular cases, one
can build on numerical procedures when attempting parametric inference: especially, for the
implementation of maximum likelihood estimation based on iid samples, one should consult
the above Nolan’s paper.

When X is sampled at equally spaced time points, the continuous-time background re-
duces to the usual iid-sample case since a Lévy process has independent and stationary
increments. However, it may be often useful and reasonable when we try to accommodate
“asymptotic high frequency” of data such as intraday minute-by-minute one into the model,
in which cases we may obtain precise asymptotic results by considering sampling length de-
creasing as sample size increase, such as the case where we observe (Xi/n)n

i=1: actually, this
is the scope of our present study. When a distribution of observed data seems to possess the
Paretian tail, stable-Lévy processes then may serve as a building block of modelling them.

We end this section with mentioning a few existing results. Woerner [13] proved the LAN
property with rate

√
n for the scale parameter of symmetric stable Lévy processes X based

on discrete data (Xihn)n
i=1, where either hn = h > 0 or hn → 0. Aı̈t-Sahalia and Jacod [1]

studied asymptotic behaviors of the Fisher information of Lévy processes with symmetric-
stable convolution factor sampled at i/n, i ≤ n, and then Aı̈t-Sahalia and Jacod [2] exhibited
an explicit construction of an explicit rate-efficient estimator for the scale parameter.

2 Objective

For a random variable ξ we denote its law by L(ξ). Let γ ∈ R and σ > 0 be constants. We
shall deal with the following two cases.

Case A. (Stable Lévy process with drift and symmetric Lévy density)
For α ∈ (0, 2), let SSα(σ) denote the α-stable distribution on the real line with the
characteristic function

u 7→ exp(−σα|u|α), u ∈ R.

Then let X = (Xt)t∈R+ with X0 = 0 a.s. be a Lévy process such that L(X1 − γ) =
SSα(σ).
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Case B. (Stable subordinator with drift)
For α ∈ (0, 1), let S+

α (σ) denote the α-stable distribution on the positive half line with
the characteristic function

u 7→ exp
{
− σα|u|α

(
1− i tan

πα

2
· signu

)}
, u ∈ R.

Then let X = (Xt)t∈R+ with X0 = 0 a.s. be a Lévy process such that L(X1 − γ) =
S+

α (σ).

In other words, we shall not consider skewed cases with β ∈ (−1, 0) ∪ (0, 1), where β stands
for the skewness parameter, see Nolan [10, Section 1.1]; this is equivalent to excluding cases
where L(Xt − γt) admits an everywhere positive and skewed density for each t > 0. By
taking the negative of X in Case B, stable Lévy processes with only negative jumps can be
treated as well. Note that for every t > 0

L(Xt − γt) =
{

SSα(σt1/α) in Case A,
S+

α (σt1/α) in Case B.

Now we describe our statistical model. Suppose we have equally spaced discrete data
Xhn , X2hn , . . . , Xnhn , where (hn)n∈N is a non-random bounded positive sequence fulfilling

lim
n→∞

hn = 0 and lim inf
n→∞

nhn > 0. (2)

If hn ³ n−a for example, then a ∈ (0, 1] necessarily; the symbol an ³ bn means that there
exists a constant c > 0 such that c−1 ≤ an/bn ≤ c for every n large enough. Let us emphasize
that no restriction on decreasing rate of hn other than (2) will be put in the sequel. Thus
we are led to the statistical model (Pn

θ )θ∈Θ, the image measure of (Xihn)n
i=1, which depends

on the unknown parameter
θ = (α, γ, σ) ∈ Θ ⊂ R3.

The parameter space Θ is supposed to be a bounded domain whose closure is contained in:
{ {(α, γ, σ) : α ∈ (0, 2), γ ∈ R, σ > 0} in Case A,
{(α, γ, σ) : α ∈ (0, 1), γ ∈ R, σ > 0} in Case B.

We implicitly suppose that there exists a true value θ ∈ Θ generating the observed data.
With the above setup, the first goal of this article is to provide a LAN property for

θ ∈ Θ with an always degenerate Fisher information matrix (Section 3.1). This entails a
negative conclusion, that is, joint estimation for (α, γ, σ) based on the maximum likelihood
estimator is out of place. Nevertheless, this bad job does not arise if we suppose either α or
σ is known (see (6) below). As the second goal, we provide uniform asymptotic normalities
of the maximum likelihood estimates (MLE) of either (α, γ) or (γ, σ) (Section 3.2). The
optimal rates for estimating α, γ, and σ will turn out to be

√
n log(1/hn),

√
nh

1−1/α
n , and√

n, respectively, implying that the answer to the question “which estimate converges with
most speed?” changes according as the true value of α; see (10) below. Also seen is that, as
opposed to the Wiener case, we need not impose that nhn →∞ for consistent estimation of
any component of θ; that is to say, the observed information over any (non-empty) bounded
time interval is rich enough. It is the 1/α-selfsimilarity of stable-Lévy processes, which plays
a key role in our study as in [13] and [1], that induces these inherent phenomena; recall that
a Lévy process is selfsimilar if and only if it is stable.

Remark 2.1. The parameter θ determines the generating triplet (γ, 0, gα,σ(z)dz) of the
process X, where, letting

c(α, σ) = σα

{
1
α

Γ(1− α) cos
απ

2

}−1

,
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the Lévy density gα,σ is given by

gα,σ(z) =
{

2−1c(α, σ)|z|−α−11{z 6=0} in Case A,
c(α, σ)z−α−11{z>0} in Case B.

(3)

(3) is readily seen by invoking Sato [11, Lemma 14.11]. Note that (α, σ) 7→ c(α, σ) is continu-
ous on (0, 2)×(0,∞), especially limα→1 c(α, σ) = σ/π and limα↓0 c(α, σ) = limα↑2 c(α, σ) = 0
for every σ > 0. It is important to remind that any distribution of X possibly infinite-
dimensional such as L(inft≤1 Xt) is determined by θ.

3 Statement of results

Under (2), without loss of generality we may suppose that hn ∈ (0, 1) and hence log(1/hn) >
0, taking the sample size n large enough. Any notation of asymptotics will be used for n →∞
unless otherwise stated.

Consider Case A and denote by x 7→ φα(x;σ) the density of SSα(σ), especially φα(x) :=
φα(x; 1). By the scaling property we have φα(x; aσ) = a−1φα(a−1x;σ) for every a > 0 and
x ∈ R. Noticing that L(Xihn

−X(i−1)hn
− γhn) = SSα(σh

1/α
n ) for each i ≤ n, we see that

the log-likelihood function of (Xihn)n
i=1, say `n(θ), is computed as

`n(θ) =
n∑

i=1

log φα(Xihn −X(i−1)hn
− γhn; σh1/α

n )

=
n∑

i=1

log
{

σ−1h−1/α
n φα(Yni)

}

=
n∑

i=1

{− log σ + α−1 log(1/hn) + log φα(Yni)
}

,

where (Yni)n
i=1 defined by

Yni = σ−1h−1/α
n (Xihn −X(i−1)hn

− γhn), i ≤ n, (4)

forms an iid triangular array with common law SSα(1) independent of n. The exactly same
as above remains true for Case B; just replace “SSα(σ)” with “S+

α (σ)”.

3.1 LAN property with degenerate Fisher information

Recall that the experiment (Pn
θ )n∈N is said to satisfy LAN at θ ∈ Θ with rate An(θ) if there

exist a random vector ∆n(θ) and deterministic matrix I(θ) such that, for any bounded vector
sequence (un) ⊂ R3 fulfilling un → u, we have

log
dPn

θ+{An(θ)}−1un

dPn
θ

= u>∆n(θ)− 1
2
u>I(θ)u + oP n

θ
(1),

where An(θ) ∈ R3⊗3 is invertible for each n, and ∆n(θ) ∈ R3 weakly converges along (Pn
θ )-

sequence to a centred normal variable with covariance matrix I(θ), which corresponds to the
Fisher information matrix.

Theorem 3.1. For both of Cases A and B, the experiment (Pn
θ ) satisfies LAN at any

θ = (α, γ, σ) ∈ Θ with rate

An(α) := diag
{√

n log(1/h),
√

nh1−1/α,
√

n
}

(5)
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and with the always degenerate Fisher information matrix

I(θ) =




Hα/α4 Jα/(σα2) Hα/(σα2)
Jα/(σα2) Mα/σ2 Jα/σ2

Hα/(σα2) Jα/σ2 Hα/σ2


 . (6)

Here 



Hα =
∫ {φα(y) + y∂φα(y)}2

φα(y)
dy,

Mα =
∫ {∂φα(y)}2

φα(y)
dy,

Jα =
∫

∂φα(y){φα(y) + y∂φα(y)}
φα(y)

dy,

(7)

all being finite, especially, Jα equals zero in Case A while is positive in Case B.

Remark 3.2. Under (2) it is clear that {An(α)}−1 → 0 whenever α ∈ (0, 2); this is not
necessarily the case if we drop the second one of (2).

Remark 3.3. Theorem 3.1 says that, in contrast to the Wiener case, the maximum likeli-
hood estimation for θ based on discrete sampling still leads to a degenerate Fisher information
matrix. On the other hand, I(θ) does not depend on γ alike the Wiener case.

3.2 Uniform asymptotic normality when either α or σ is known

The form (6) says that we can proceed to considering efficiency issues if either α or σ is
known.

We need to prepare some notation. In the sequel the notation ⇒u indicates the weak con-
vergence along (Pn

θ )-sequence, which holds uniformly over Θ− (the closure of Θ): precisely,
for any random vectors ζn(θ) and ζ(θ) with distribution Pn and P depending on θ ∈ Θ, we
write ζn ⇒u ζ(θ) if

sup
θ∈Θ

∣∣∣∣
∫

f(y)Pn(dy)−
∫

f(y)P (dy)
∣∣∣∣ → 0

for every continuous bounded function f . Analogous notation will be used for other modes
of convergence (including ordinary convergence of a nonrandom sequence). Write θ′ =
(α, γ) and θ′′ = (γ, σ), and let Θ′ and Θ′′ respectively denote the corresponding admissible
parameter spaces induced from Θ. Write `n(θ′) (resp. `n(θ′′)) instead of `n(θ) when σ (resp.
α) is known, and let

D1n(α) = diag{√n log(1/hn),
√

nh1−1/α
n }, D2n(α) = diag{√nh1−1/α

n ,
√

n}.
Putting I(θ) = [Ikl(θ)]3k,l=1 we write

I1(θ′) =
(

I11(θ) I12(θ)
I21(θ) I22(θ)

)
, I2(θ′′) =

(
I22(θ) I23(θ)
I32(θ) I33(θ)

)
.

Finally, put θ̂′n = supθ′∈Θ′− `n(θ′) (resp. θ̂′′n = supθ′′∈Θ′′− `n(θ′′)) when σ (resp. α) is known.
Now we can state our second result.

Theorem 3.4. Let Z stand for a two-dimensional standard normal variable. For both of
Cases A and B, we have the following.

(a) Suppose σ is known, while θ′ is unknown. Then there exists a local maximum θ̂′n of
`n(θ′) with probability tending to 1, for which

D1n(α)(θ̂′n − θ′) ⇒u {I1(θ′)}−1/2Z. (8)

The estimate is asymptotically efficient.
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(b) Suppose α is known, while θ′′ is unknown. Then there exists a local maximum θ̂′′n of
`n(θ′′) with probability tending to 1, for which

D2n(α)(θ̂′′n − θ′′) ⇒u {I2(θ′′)}−1/2Z. (9)

The estimate is asymptotically efficient.

Remark 3.5. To see that both of I1(θ′) and I2(θ′′) are positive-definite, it suffices to show
that Ikk(θ) > for k = 1, 2 and that Ikk(θ)I ll(θ)−{Ikl(θ)}2 > 0 for (k, l) = (1, 2), (2, 3). But
the former is obvious and the latter is a direct consequence of the fact J2

α < HαMα coming
from Schwarz’s inequality (the equality J2

α = HαMα cannot be satisfied).

Remark 3.6. Clearly {Djn(α)}−1 →u 0, j = 1, 2, under our model setup described in
Section 2. Since the components of each Djn(α) are different, it may be informative to
mention the magnitude relations of the optimal rates. In Case A they are summarized as
follows: 




σn ≺ αn ≺ γn if α ∈ (0, 1),
σn ∼ γn ≺ αn if α = 1,
γn ≺ σn ≺ αn if α ∈ (1, 2).

(10)

Here, αn ≺ γn (resp. αn ∼ γn) means that “any rate-efficient estimate of γ converges faster
than (resp. with the same rate as) that of γ”. In (10), ignore σn (resp. αn) in case of (a)
(resp. (b)). Of course, the order is always σn ≺ αn ≺ γn in Case B.

Remark 3.7. It follows from (8) (resp. (9)) that α̂n and γ̂n (resp. γ̂n and σ̂n) are asymptoti-
cally independent in Case A, especially, it is identical to the Wiener case that the estimations
of drift and scale parameters are asymptotically independent (case (b)). In contrast, this is
not the case in Case B, where the estimates are asymptotically correlated (namely, Jα > 0).

4 Proofs

The proofs for Cases A and B are almost the same, hence for conciseness we shall first
complete the proofs of Case A in Sections 4.1 and 4.2, and then turn to Case B in Section
4.3, where only the variation from the proof of Case A will be mentioned.

4.1 Proof of Theorem 3.1 for Case A

It is well known that (α, y) 7→ φα(y) is everywhere positive and of class C∞; by means of the
Fourier-inversion formula, for any k, k′ ∈ N ∪ {0} there exist constants ci = ci(α, k, k′) > 0
such that

|∂k∂k′
α φα(y)| ≤ c0

∫
e−|u|

α |u|c1{1 + (log |u|)c2}du,

so that |∂k∂k′
α φα(y)| < ∞. It also follows from the series expansion of the density (e.g., Sato

[11, Remark 14.18]) that for any k, k′ ∈ N ∪ {0}
|∂k∂k′

α φα(y)| ³ (log |y|)k′ |y|−α−1−k, (11)

as |y| → ∞. Therefore:

the quantities Hα,Mα and Jα of (7) and
∫ (

∂αφα(y)
φα(y)

)2

dy are finite. (12)

We denote by →a.s. the almost sure convergence under Pn
θ , and introduce some notation as

follows:

ψn(Yni; θ) := σ−1h−1/α
n φα(Yni),

gni(θ) := ∂θ log ψn(Yni; θ),
θn := θ + An(α)un.
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To complete the proof it suffices to verify Lemmas 4.1 to 4.3 below (law of large numbers, Lin-
deberg condition, and L2(P )-differentiability, respectively; see, e.g., Greenwood and Shiryaev
[5, Sections 6, 7 and 8] for details).

Lemma 4.1. C1n(θ) := An(α)
n∑

i=1

gni(θ){gni(θ)}>An(α) →a.s. I(θ).

Lemma 4.2. C2n(θ) :=
n∑

i=1

En
θ

[{
u>n An(α)gni(θ)

}2
1{|u>n An(α)gni(θ)|≥ε}

]
→ 0 for every ε >

0.

Lemma 4.3. C3n(θ) := n

∫ {√
ψn(y; θn)−

√
ψn(y; θ)− (θn − θ)>∂θ

√
ψn(y; θ)

}2

dy → 0.

4.1.1 Proof of Lemma 4.1

Put gni(θ) = [gni;k(θ)]3k=1. Direct partial differentiations yield

gni;1(θ) = −α−2 log(1/hn)F1(Yni) + F2(Yni), (13)

gni;2(θ) = −σ−1h1−1/α
n F3(Yni), (14)

gni;3(θ) = −σ−1F1(Yni), (15)

where

F1(y) =
φα(y) + y∂φα(y)

φα(y)
, F2(y) =

∂αφα(y)
φα(y)

, F3(y) =
∂φα(y)
φα(y)

.

Put An(α) = diag{A1n(α), A2n(α), A3n(α)} and C1n(θ) = [C1n;kl(θ)]3k,l=1. Substituting the
expression (C1n(θ) is symmetric)

C1n;kl(θ) =
n∑

i=1

{Akn(α)Aln(α)}−1gni;k(θ)gni;l(θ), 1 ≤ k, l ≤ 3,

with (13) to (15), we get Pn
θ -a.s.

C1n;11(θ) = α−4 1
n

n∑

i=1

F1(Yni)2 + O
({log(1/hn)}−1

) 1
n

n∑

i=1

F1(Yni)F2(Yni),

C1n;22(θ) = σ−2 1
n

n∑

i=1

F3(Yni)2,

C1n;33(θ) = σ−2 1
n

n∑

i=1

F1(Yni)2,

C1n;12(θ) = (α2σ)−1 1
n

n∑

i=1

F1(Yni)F3(Yni) + O
({log(1/hn)}−1

) 1
n

n∑

i=1

F2(Yni)F3(Yni),

C1n;13(θ) = (α2σ)−1 1
n

n∑

i=1

F1(Yni)2 + O
({log(1/hn)}−1

) 1
n

n∑

i=1

F1(Yni)F2(Yni),

C1n;23(θ) = σ−2 1
n

n∑

i=1

F1(Yni)F3(Yni).

Since (Yni)n
i=1 is an iid array with common law SSα(1) not depending on n (recall (4)), it

follows from the strong law of large numbers that

1
n

n∑

i=1

Fk(Yni)Fl(Yni) →a.s.

∫
Fk(y)Fl(y)φα(y)dy

7



for k, l ∈ {1, 2, 3}, where the finiteness of the limit can be ensured by means of Schwarz’s
inequality and (12). In particular, we have

∫
F1(y)F3(y)φα(y)dy = 0. (16)

since y 7→ y{∂φα(y)}2/φα(y) is odd. Thus we get Lemma 4.1.

4.1.2 Proof of Lemma 4.2

Fix any constants ε, δ > 0, and write un = (ukn)3k=1. In the sequel the notation an . bn

indicate that there exists a constant c0 > 0 such that an ≤ c0bn for every sufficiently large
n. Then, using the Lyapunov-type estimate we have

C2n(θ) . nEn
θ

[∣∣∣∣
3∑

k=1

uknAkn(α)−1gn1;k(θ)
∣∣∣∣
2+δ]

. n

3∑

k=1

{Akn(α)}−(2+δ)En
θ

[{gn1;k(θ)}2+δ
]
. (17)

At the same time, from the expressions (13) to (15) it is easy to see that

En
θ [|gn1;1(θ)|2+δ] . {log(1/hn)}2+δ + 1,

En
θ [|gn1;2(θ)|2+δ] . h(1−1/α)(2+δ)

n ,

En
θ [|gn1;3(θ)|2+δ] . 1,

the finiteness being guaranteed by (11), from which combined with (17) we have

C2n(θ) . O
(
n−δ/2

[
{log(1/hn)}−(2+δ) + 1

])
= o(1),

completing the proof of Lemma 4.2.

4.1.3 Proof of Lemma 4.3

For simplicity, let ∂k stand for the partial differentiation with respect to the kth component
of θ. First we estimate C3n(θ) as, using the standard notation for multi-indices,

C3n(θ) . n

∫ { ∑

|r|=2

1
r!

(u>n An(α)−1)r

∫ 1

0

(1− v)∂r
θ

√
ψn(y; θ + v(θn − θ))dv

}2

dy

. n

3∑

k,l=1

∫∫

R×[0,1]

{Akn(α)Aln(α)}−2
[
∂k∂l

√
ψn(y; θ + v(θn − θ))

]2

dvdy. (18)

Below we fix a small ε > 0 for which we have B3(θ; ε) := {ρ = (ρk)3k=1 ∈ Θ : |θ−ρ| < ε} ⊂ Θ.
Note that for any ρ = (ρk)3k=1

[
∂l∂k

√
ψn(y; ρ)

]2

=
[1
2

√
ψn(y; ρ)

{
∂l∂k log ψn(y; ρ)

+
(
∂l log ψn(y; ρ)

)(
∂k log ψn(y; ρ)

)}

−1
4

√
ψn(y; ρ)

(
∂k log ψn(y; ρ)

)(
∂l log ψn(y; ρ)

)]2

. ψn(y; ρ)
{(

∂l∂k log ψn(y; ρ)
)2

+
(
∂l log ψn(y; ρ)

)2(
∂k log ψn(y; ρ)

)2}
. (19)
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On the other hand, we have the following:

∂2
α log ψn(y; θ) =

1
α4

[log(1/hn)]2
{

y
∂φα(y)
φα(y)

+ y2 φα(y)∂2φα(y)− (∂φα(y))2

φα(y)2

}

+
2
α3

log(1/hn)
{

1 + y
∂φα(y)
φα(y)

− αy
φα(y)∂∂αφα(y)− (∂φα(y))(∂α(y))

φα(y)2

}

+
φα(y)∂2

αφα(y)− (∂αφα(y))2

φα(y)2
, (20)

∂2
γ log ψn(y; θ) =

1
σ2

h2(1−1/α)
n

φα(y)∂2φα(y)− (∂φα(y))2

φα(y)2
, (21)

∂2
σ log ψn(y; θ) =

1
σ2

{
1 + 2y

∂φα(y)
φα(y)

+ y2 φα(y)∂2φα(y)− (∂φα(y))2

φα(y)2

}
, (22)

∂γ∂α log ψn(y; θ) =
1

σα2
h1−1/α

n log(1/hn)
{

∂φα(y)
φα(y)

+ y
φα(y)∂2φα(y)− (∂φα(y))2

φα(y)2

}

− 1
σ

h1−1/α
n

φα(y)∂∂αφα(y)− (∂φα(y))(∂αφα(y))
φα(y)2

, (23)

∂σ∂α log ψn(y; θ) =
1

σα2
log(1/hn)

{
y
∂φα(y)
φα(y)

+ y2 φα(y)∂2φα(y)− (∂φα(y))2

φα(y)2

}

− σ−1y

{
∂∂αφα(y)

φα(y)
− ∂φα(y)∂αφα(y)

φα(y)2

}
, (24)

∂γ∂σ log ψn(y; θ) =
1
σ2

h1−1/α
n

{
∂φα(y)
φα(y)

+ y
φα(y)∂2φα(y)− (∂φα(y))2

φα(y)2

}
. (25)

On account of (11) it is easy to see that the above quantities are φα(y)dy-integrable. Letting
n be so large that θn ∈ B3(θ; ε) and then piecing together the displays (18) to (25), we see
that

C3n(θ) . n

3∑

k,l=1

∫ [
sup

ρ∈B3(θ;ε)

{Akn(ρ1)Aln(ρ1)}−2ψn(y; ρ)

·
{(

∂l∂k log ψn(y; ρ)
)2

+
(
∂l log ψn(y; ρ)

)2(
∂k log ψn(y; ρ)

)2}]
dy

. O(n−1) = o(1),

as desired.

4.2 Proof of Theorem 3.4 for Case A

In both of cases (a) and (b), the asymptotic efficiency directly follows from Theorem 3.1 and
the Hajék’s minimax theorem [6]. We shall only prove (a) since the proof of (b) is similar.

Denote by I1n(θ′) the observed information matrix associated with θ′:

I1n(θ′) = [Ikl
1n(θ′)]2k,l=1 :=

( −∂2
α`n(θ′) −∂γ∂α`n(θ′)
sym. −∂2

γ`n(θ′)

)
.

For θ′1, θ
′
2 ∈ Θ′, we also define

I1n(θ′1, θ
′
2) = [Ikl

1n(θ′1, θ
′
2)]

2
k,l=1 :=

( −∂2
α`n(θ′1) −∂γ∂α`n(θ′1)

−∂γ∂α`n(θ′2) −∂2
γ`n(θ′2)

)
.

Let Θ′α stand for the second-coordinate space of Θ′. We shall consistently denote by→a.s. the
Pn

θ′-a.s. convergence. According to Sweeting [12, Theorems 1 and 2], the proof is achieved
by verifying the following Lemmas 4.4 to 4.6.

9



Lemma 4.4.
∣∣D1n(α)−1I1n(θ′)D1n(α)−1 − I1(θ′)

∣∣ →a.s.
u 0.

Lemma 4.5. sup ∗|D1n(α)−1D1n(α′)− I2| →u 0 for every c > 0, where sup∗ is taken over
the set {α′ ∈ Θ′−α :

√
n log(1/hn)|α′ − α| ≤ c}.

Lemma 4.6. sup ∗∗|D1n(α)−1{I1n(θ′1, θ
′
2)− I1n(θ′)}D1n(α)−1| →a.s.

u 0 for every c > 0, where
sup∗∗ is taken over the set {θ′k ∈ Θ′−, k = 1, 2 : |D1n(α)(θ′k − θ′)| ≤ c}.
Remark 4.7. Concerning Lemmas 4.4 and 4.6, the original Sweeting’s conditions require
weaker ⇒u and →p

u (convergence in Pn
θ′-probability) rather than →a.s.

u , respectively; see
C1 and C2 (ii) of [12]. The primary reason why we prove the stronger uniform Pn

θ′-a.s.
convergence is that the derivation then becomes much more easy in our framework; when one
attempts to prove the uniform convergence in Pn

θ′ -probability, the techniques of Ibragimov
and Has’minsǩı [7, Theorems I.7 and I.20] are often employed, however, one can see that
the modulus of continuity of the random field (i.e., the condition (1) of Theorem I.20 of [7])
does not seem to be fulfilled in our model.

4.2.1 Proof of Lemma 4.4

We prepare a simple version of uniform strong laws of large numbers.

Proposition 4.8. Let U ⊂ Rp be compact, and let {(ψn(u))u∈U}n∈N be a sequence of real-
valued random fields defined on some probability space. Suppose that u 7→ ψn(u) is continuous
a.s. for every n ∈ N, and that ψn(u) → 0 a.s. for every u ∈ U large enough. Then we have
supu∈U |ψn(u)| → 0 a.s.

Proof. The regularity conditions stated remain true for ψn(u) replaced with −ψn(θ), hence
it suffices to prove limn→∞ supu∈U ψn(u) ≤ 0 a.s.

Fix any ε > 0. Since u 7→ ψn(u) is uniformly continuous, there exists a constant δ(ε) > 0
such that for every large n ∈ N

sup
ui:|u1−u2|<δ(ε)

|ψn(u1)− ψn(u2)| < ε. (26)

For this δε we can find a finite δε-net (vj)Mε
j=1 of U . Next fix any u ∈ U , and then take a

j(u) ≤ Mε for which u ∈ Bp(vj(u); δε). Then we have ψn(u) ≤ ψn(vj(u)) + ε a.s. for every
large n ∈ N, so that on account of (26) we have

sup
u∈U

ψn(u) ≤ sup
u∈U

ψn(vj(u)) + ε ≤ max
j≤Mε

ψn(vj) + ε a.s. (27)

(the net (uj)Mε
j=1 can be taken to be independent of u). Since Mε is finite, we get the claim

on taking the limit in (27) together with the assumed u-pointwise convergence.

Now, recalling the expressions (20), (21) and (23), we can conclude the proof by applying
Lemma 4.8 with replacing U and ψn(u) with Θ′− and the components of

Gn(θ′) := D1n(α)−1I1n(θ′)D1n(α)−1 − I1(θ′),

respectively; as a matter of fact, by using (11) and the elementary integration by parts (to
derive

∫
y∂2φα(y)dy = 0, and so on) we can prove that Gn(θ′) →a.s. 0 for every θ′ ∈ Θ′.

Building on the continuity of θ′ 7→ Gn(θ′), Proposition 4.8 ends the proof of Lemma 4.4.

4.2.2 Proof of Lemma 4.5

We have |D1n(α)−1D1n(α′)− I2| = |h1/α−1/α′
n − 1|. Observe that

sup ∗
∣∣∣log h1/α−1/α′

n

∣∣∣ ≤ sup ∗
∣∣∣∣
α′ − α

αα′

∣∣∣∣ log(1/hn) ≤ c

α
√

n
sup ∗

1
α′

. 1√
n
→u 0,

so that sup∗ h
1/α−1/α′
n →u 1. Hence the claim follows.

10



4.2.3 Proof of Lemma 4.6

First we note that

sup
θ′∈Θ′

sup ∗∗
∣∣D1n(α)−1{I1n(θ′1, θ

′
2)− I1n(θ′)}D1n(α)−1

∣∣

≤ sup
θ′∈Θ′

sup ∗∗
∣∣n−1{log(1/hn)}−2{I11

1n(θ′)− I11
1n(θ′1)}

∣∣

+ sup
θ′∈Θ′

sup ∗∗
∣∣∣n−1h−2(1−1/α)

n {I22
1n(θ′)− I22

1n(θ′2)}
∣∣∣

+ 2 sup
θ′∈Θ′

sup ∗∗
∣∣∣n−1{log(1/hn)}−1h−(1−1/α)

n {I12
1n(θ′)− I12

1n(θ′1)}
∣∣∣

= H1n + H2n + H3n, say.

For convenience we denote by P the underlying probability measure (defined on the Skorohod
space); the law of the parametric family of X associated with all admissible θ′ ∈ Θ′. The
proof is achieved by proving Hkn → 0 P -a.s. for all k, and to this end we shall again utilize
Proposition 4.8 partly combined with the fact sup ∗∗|h1/α−1/α′

n | →u 1, which has seen in
Section 4.2.2. We shall only show H1n →a.s. 0, since the others can be shown in a similar
manner.

From Lemma 4.4 we have

1
n[log(1/hn)]2

I11
1n(θ′) =

1
n

n∑

i=1

1
α4

{Yni∂φα(Yni)}2
φα(Yni)2

+ o(1) =: Jn(θ′) + o(1),

Pn
θ′-a.s. uniformly in θ′ ∈ Θ′, where we applied Proposition 4.8 to the o(1) term. Hence,

applying Taylor’s formula around θ′ to the summand of Jn(θ′) and then taking the definition
of sup∗∗ into account, we see that P -a.s.

H1n ≤ sup
θ′∈Θ′

sup ∗∗ |Jn(θ′)− Jn(θ′1)|+ o(1)

. 1√
n

{
sup

θ′∈Θ′

∣∣∣∣[log(1/hn)]−1∂αJn(θ′)
∣∣∣∣

+ sup
θ′∈Θ′

∣∣∣∣h−(1−1/α)
n ∂γJn(θ′)

∣∣∣∣ · sup
θ′∈Θ′

sup ∗
∣∣∣h1/α−1/α1

n

∣∣∣
}

+ o(1),

. 1√
n

{
sup

θ′∈Θ′

∣∣∣∣[log(1/hn)]−1∂αJn(θ′)
∣∣∣∣ + sup

θ′∈Θ′

∣∣∣∣h−(1−1/α)
n ∂γJn(θ′)

∣∣∣∣
}

+ o(1). (28)

At the same time, the partial differentiations yields that

[log(1/hn)]−1∂αJn(θ′)

= 2[log(1/hn)]−1 1
n

n∑

i=1

{
Yni∂φα(Yni)
α2φα(Yni)

}2{
∂α∂φα(Yni)
∂φα(Yni)

− ∂αφα(Yni)
φα(Yni)

− 2
α

}

− 2
α6

1
n

n∑

i=1

{
Yni∂φα(Yni)
α2φα(Yni)

}2[
1 + Yni

{
∂2φα(Yni)
∂φα(Yni)

− ∂φα(Yni)
φα(Yni)

}]
,

h−(1−1/α)
n ∂γJn(θ′)

=
2
σ

1
n

n∑

i=1

{
Yni∂φα(Yni)
α2φα(Yni)

}2{ 1
Yni

+
∂αφα(Yni)
φα(Yni)

∂2φα(Yni)
∂φα(Yni)

}
,
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from which, on account of (11) and Proposition 4.8 once again, it follows that

[log(1/hn)]−1∂αJn(θ′)

→a.s.
u

2
α6

∫ [
y3{∂φα(y)}3
{φα(y)}2 − y2{∂φα(y)}2 + y3∂φα(y)∂2φα(y)

φα(y)

]
dy,

h−(1−1/α)
n ∂γJn(θ′)

→a.s.
u

2
σα4

∫ [
y{∂φα(y)}2 − y2∂φα(y)∂2φα(y)

φα(y)
+

y2{∂φα(y)}3
{φα(y)}2

]
dy,

both limits being finite. Therefore we have seen that P -a.s.

sup
θ′∈Θ′

|{log(1/hn)}−1∂αJn(θ′)| = O(1),

sup
θ′∈Θ′

|h−(1−1/α)
n ∂γJn(θ′)| = O(1),

from which together with (28) we get H1n ≤ O(n−1/2) + o(1) = o(1) P -a.s., as desired.

4.3 Proof of Theorems 3.1 and 3.4 for Case B

The proof of Case B can be achieved along with that of Case A, except for the following:

(i) the display (16) changes to
∫

F1(y)F3(y)φα(y)dy = Jα;

(ii) the asymptotic behavior (11) remains valid only for y ↑ ∞.

Actually, (i) does not matter; it just changes the expression of I(θ), and the positivity of Jα

is clear from the definition. As for (ii), invoking the series expansion of Sato [11, Remark
14.18 (vi)] together with the scaling property of φα(y), we see that there exist constants cα,
c′α, and c′′αj (j ≥ 1) for which, given any m ∈ N,

φα(y) = cα exp{−c′αy−α/(1−α)}y−(2−α)/(1−α)

·
{

1 +
m∑

j=1

c′′αjy
αj/(1−α) + O

(
yα(1+m)/(1−α)

) }
(29)

for y ↓ 0. Here the constants cα, c′α, and c′′αj smoothly depend on α over (0, 1). Due to the
exponential factor exp{−c′αy−α/(1−α)} appearing in (29), we see that ∂k∂k′

α φα(y) decreases
to 0 very fast as y ↓ 0 for any k, k′ ∈ N ∪ {0}, which enables us to verify, especially, the
finiteness of the Fisher information matrix I(θ), and indeed, to follow the same line as in
Case A.
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Expressions for values of the gamma function

MHF2004-11 Raimundas VIDŪNAS
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MHF2004-15 Kouji HASHIMOTO, Ryohei ABE, Mitsuhiro T. NAKAO & Yoshitaka
WATANABE
Numerical verification methods of solutions for nonlinear singularly perturbed
problem

MHF2004-16 Ken-ichi MARUNO & Gino BIONDINI
Resonance and web structure in discrete soliton systems: the two-dimensional
Toda lattice and its fully discrete and ultra-discrete versions

MHF2004-17 Ryuei NISHII & Shinto EGUCHI
Supervised image classification in Markov random field models with Jeffreys
divergence

MHF2004-18 Kouji HASHIMOTO, Kenta KOBAYASHI & Mitsuhiro T. NAKAO
Numerical verification methods of solutions for the free boundary problem

MHF2004-19 Hiroki MASUDA
Ergodicity and exponential β-mixing bounds for a strong solution of Lévy-
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