
MHF Preprint Series
Kyushu University

21st Century COE Program
Development of Dynamic Mathematics with

High Functionality

Arithmetic of the splitting field

of Alexander polynomial

T. Komatsu

　　
　　
　　

MHF 2006-17

( Received April 3, 2006 )

Faculty of Mathematics

Kyushu University
Fukuoka, JAPAN



Arithmetic of the splitting field of
Alexander polynomial

Toru KOMATSU

§ 1. Introduction

In this paper we study the arithmetic of the minimal splitting field of the

Alexander polynomial of a knot and present two kinds of infinite families of knots,

one is a family of knots which satisfying Heilbronn conjecture (Conjecture 1.3) and

the other is a family of counterexamples to the conjecture.

For a knot K in R3 let us denote by ∆K(t) the Alexander polynomial of K.

In general, ∆K(t) is defined up to ±tk. In this paper we assume that ∆K(t) is

normalized so that ∆K(t) is a polynomial in Z[t] whose order at t = 0 is equal

to 0. It is a difficult problem to determine the period of a knot K in terms of

the Alexander polynomial ∆K(t). However, some necessary conditions for a knot

to have some period are known. For a positive integer m ∈ Z, m ≥ 1 let ζm be

a primitive m-the root of unity in Q. Let Ff be the minimal splitting field of a

polynomial f ∈ Q[t] over Q.

Proposition 1.1 (Trotter [7]). Let K be a fibered knot with disct∆K(t) 6= 0. If

K has period m, then ζm ∈ F∆K
.

Let p be a prime number. For a positive integer λ ∈ Z, Z ≥ 1 and a polynomial

µ ∈ Z[t] let us denote by Mp(λ, µ) the set consisting of polynomials f ∈ Z[t] such

that f ≡ ±tk(1 + t + · · ·+ tλ−1)p−1µp (mod p) for some integer k ∈ Z.

Proposition 1.2 (Murasugi [4]). If K is a knot with prime period p, then

∆K(t) ∈ Mp(λ, µ) for a positive integer λ ∈ Z, λ ≥ 1 and a polynomial µ ∈ Z[t].

Let H(F ) be the Hilbert class field of a finite number field F .

Conjecture 1.3 (Heilbronn (cf. [5])). For a (fibered) knot K, if ∆K(t) ∈
Mp(λ, 1) for a positive integer λ ≥ 1, then ζp ∈ H(F∆K

).
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We have already obtained some counterexamples to the Heilbronn’s conjecture

(e.g., Example 2.3). Morishita gave a question which revises the Heilbronn’s con-

jecture. For a polynomial f ∈ Q[t] we say that f satisfies the condition (U) if

ζp ∈ H(Ff ).

Question 1.4 (Morishita (cf. [5])). What is a condition so that the Alexander

polynomial ∆K(t) with degree p− 1 of a knot K satisfies the condition (U) ?

In this paper we show the following theorem by constructing the explicit Alexander

polynomials of knots.

Theorem 1.5 (Corollary 3.4). For every odd prime number p > 3 (resp. p = 3)

there exist infinitely many knots K whose Alexander polynomials ∆K(t) are monic

(resp. non-monic) of degree p− 1 and satisfy the two conditions ∆K(t) ∈ Mp(2, 1)

and (U).

Theorem 1.6 (Corollary 3.8). For every odd prime number p > 3 (resp. p = 3)

there exist infinitely many knots K whose Alexander polynomials ∆K(t) are monic

(resp. non-monic) of degree p− 1 and satisfy the conditions ∆K(t) ∈ Mp(2, 1) but

fail the condition (U).

Remark 1.7. The Alexander polynomial of a fibered knot is monic. For the

Alexander polynomial ∆K(t) of a knot K, if ∆K(t) is monic, then there exists a

fibered knot K ′ so that ∆K′(t) = ∆K(t) (Burde [1]).

Acknowledgement. The author is grateful to Professor Masaaki Morishita for intro-

ducing the Heilbronn’s conjecture. He is grateful to Professor Kunio Murasugi for

his many helpful comments. He is supported by the 21st Century COE Program

“Development of Dynamic Mathematics with High Functionality”.

§ 2. Known results

For a positive integer n let An be the set of the Alexander polynomials ∆K(t) of

knots K with degree n. We define three conditions (A.1) to (A.3) for a polynomial

f(t) ∈ Z[t] by

(A.1) the degree n of f(t) is even,
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(A.2) f(t) = tnf(t−1),

(A.3) f(1) = ±1.

Proposition 2.1 (Seifert [6]). For a polynomial f(t) ∈ Z[t] with degree n, it

holds that f(t) ∈ An if and only if f(t) satisfies all of the three conditions (A.1) to

(A.3).

Let p be a prime number. For a positive integer λ ∈ Z, Z ≥ 1 and a polynomial

µ ∈ Z[t] let Mp(λ, µ) be the set as in Introduction, that is, the set consisting of

polynomials f ∈ Z[t] such that f ≡ ±tk(1 + t + · · ·+ tλ−1)p−1µp (mod p) for some

integer k ∈ Z. If f(t) ∈ An ∩ Mp(λ, 1), then tk(1 + t + · · · + tλ−1)p−1 ≡ f(t) =

tnf(t−1) ≡ tn−k(1 + t−1 + · · · + t−(λ−1))p−1 (mod p). By considering the degrees,

one has that k +(λ− 1)(p− 1) = n− k, which shows n = (λ− 1)(p− 1)+2k. Note

that k ≥ 0 for f(t) ∈ Z[t]. Let us calculate the Hilbert class field H(F∆K
) of the

Alexander polynomials ∆K(t) of some knots K and determine whether or not the

Heilbronn’s conjecture holds.

Example 2.2 (cf. [5]). For ∆K(t) = 4 − 7t + 4t2 ∈ A2 ∩ M3(2, 1), we have

F∆K
= Q(

√−15). One can see that H(F∆K
) = F∆K

(ζ3) 3 ζ3. Thus Heilbronn’s

conjecture is true for the case ∆K(t) = 4− 7t + 4t2.

Example 2.3 (cf. [5]). When ∆K(t) = 1− 6t + 11t2− 6t3 + t4 ∈ A4 ∩M5(2, 1),

we have F∆K
= Q(

√
5) since ∆K(t) = (1−3t+t2)2. Note that H(Q(

√
5)) = Q(

√
5).

This means that ζ5 6∈ H(F∆K
), that is, Heilbronn’s conjecture is not true for the

case ∆K(t) = 1− 6t + 11t2 − 6t3 + t4.

We define four conditions (U), (U1), (U2) and (U3) for a finite Galois extension F

of Q such that

(U) ζp ∈ H(F ),

(U1) F (ζp)/F is unramified,

(U2) F (ζp)/F is unramified at all the prime ideals p of F above p,

(U3) for every prime ideal p of F above p, the ramification index of p in the

extension F/Q is a multiple of p− 1.

The ramification theory of algebraic number theory implies
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Lemma 2.4. Assume that p is odd. If F is totally real, then F (ζp)/F is ramified

at all infinite places of F, in particular, ζp 6∈ H(F ). When F is totally imaginary,

the four conditions (U), (U1), (U2) and (U3) are equivalent to each other.

Morishita and Taguchi showed a sufficient condition to hold (U). For a polynomial

g(t) =
∑n

i=0 ait
i ∈ Z[t] we call g(t) a p-Eisenstein polynomial if the coefficients ai

satisfy that p - an, p | ai for 0 ≤ i ≤ n − 1 and p2 - a0. In this paper we do not

assume that a p-Eisenstein polynomial is monic.

Proposition 2.5 (Morishita–Taguchi (cf. [5])). If g(t) ∈ Z[t] is a p-Eisenstein

polynomial of degree p− 1, then ζp ∈ H(Fg).

Example 2.6 (cf. [5]). If g(t) = t4 + 5t3 − 40t2 + 70t − 35, then g(t + 1) =

t4 + 9t3 − 19t2 + 9t + 1, which is the Alexander polynomial of some knot. One can

see that Fg is a D4-extension of Q where D4 is the dihedral group of degree 4 with

order 8. Note that Fg has no subfields which are cyclic quartic fields since D4 has

no normal subgroups N such that D4/N are isomorphic to the cyclic group C4 of

order 4. Thus we have ζ5 6∈ F∆K
. Proposition 1.1 implies that K does not have

period 5. On the other hand, Proposition 2.5 yields ζ5 ∈ H(F∆K
).

For the use of Proposition 2.5 one needs a criterion whether or not a p-Eisenstein

polynomial g(t) can become the Alexander polynomial ∆K(t) of a knot K by some

translation t 7→ at+b for integers a and b ∈ Z with a 6= 0, that is, g(at+b) = ∆K(t).

However, such a criterion is not easy in general. By using a characterization of the

Alexander polynomials we present a family of the Alexander polynomials which

become p-Eisenstein polynomials in the next section.

§ 3. Construction of the Alexander polynomials

For a positive and even integer n = 2r let Bn be the set of polynomials f(t) in

Z[t] such that f(t) = tnf(t−1). Note that An = {f(t) ∈ Bn|degtf(t) = n, f(1) =

±1}.

Lemma 3.1 (cf. Crowell-Fox [3]). The set Bn is a Z-module with free basis

{(t2 − 2t + 1)itr−i|0 ≤ i ≤ r}, that is, Bn = {∑0≤i≤r bi(t
2 − 2t + 1)itr−i|bi ∈ Z}.
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Let p be a prime number and λ ≥ 1 a positive integer such that n ≥ (λ−1)(p−1).

We define a polynomial αλ(t) = αn,p,λ(t) by

αλ(t) = tk(1 + t + · · ·+ tλ−1)p−1 − (λp−1 − 1)tr

where k = r − (λ − 1)(p − 1)/2. For integers ci ∈ Z with 1 ≤ i ≤ r let us denote

αλ(t) + p
∑

1≤i≤r ci(t
2 − 2t + 1)itr−i by fλ(c, t) where c = (c1, c2, . . . , cr). We put

Sr(Z) = Zr and S×r (Z) = {c = (c1, c2, . . . , cr) ∈ Sr(Z)|cr 6= 0}.

Lemma 3.2. The intersection set An ∩ Mp(λ, 1) consists of the polynomials

±fλ(c, t), c = (c1, c2, . . . , cr) where c ∈ Sr(Z) if n = (λ− 1)(p− 1) and c ∈ S×r (Z)

otherwise.

Proof. Let c be an element in Sr(Z) if n = (λ− 1)(p− 1) and in S×r (Z) otherwise.

It follows from the definition that degtfλ(c, t) ≤ n. If n = (λ − 1)(p − 1), then

the coefficient of tp−1 in fλ(c, t) is equal to 1 + pcr. Since cr ∈ Z, one has that

1+ pcr 6= 0 and degtfλ(c, t) = n. When n > (λ− 1)(p− 1), the coefficient of tp−1 in

fλ(c, t) is equal to pcr. Thus it holds that degtfλ(c, t) = n for cr 6= 0. It is easy to

see that ±fλ(c, t) satisfies the conditions (A.2) and (A.3). Hence the polynomial

±fλ(c, t) belongs to An ∩Mp(λ, 1). Let f(t) be a polynomial in An ∩Mp(λ, 1). For

a non-negative integer k ∈ Z with k = r−(λ−1)(p−1)/2, one has ±tk(1+t+ · · ·+
tλ−1)p−1 ∈ Bn. Since Bn is a Z-molude, we have f(t)∓ tk(1+ t+ · · ·+ tλ−1)p−1 ∈ Bn

and (f(t) ∓ tk(1 + t + · · · + tλ−1)p−1)/p ∈ Bn if f(1) = ±1, respectively. Lemma

3.1 implies that f(t) = ±tk(1 + t + · · · + tλ−1)p−1 + p
∑

0≤i≤r ci(t
2 − 2t + 1)itr−i

where ci ∈ Z for 0 ≤ i ≤ r. It follows from f(1) = ±1 that ±λp−1 + pc0 = ±1 and

c0 = ∓(λp−1 − 1)/p ∈ Z. Hence f(t) is of the form ±fλ(c, t).

For considering Question 1.4 we have n = p − 1 ≥ 2, which means that λ = 1

or 2. Here one has that α1(t) = t(p−1)/2 and α2(t) = (1 + t)p−1 − (2p−1 − 1)t(p−1)/2.

Let us define a number εp ∈ Q by εp = −(2p−1 − 1)/(4p). Note that vp(εp) ≥ 0.

Theorem 3.3. Let h(X) =
∑(p−3)/2

j=0 sjX
j ∈ Z[X] be a polynomial of degree

less than (p− 1)/2 such that s0 6≡ εp (mod p) and s0 > εp. Then

f(t) = α2(t) + pt(p−1)/2(t + t−1 − 2)h(t + t−1 + 2)

5



is a polynomial in Ap−1 ∩Mp(2, 1) satisfying ζp ∈ H(Ff ). The polynomial f(t) is

monic if and only if s(p−3)/2 = 0.

Proof. It is easy to check that f(t) ∈ Ap−1 ∩ Mp(2, 1). In fact, it holds that

f(t) = f2(c, t) for an element c = (c1, c2, . . . , c(p−1)/2) ∈ S(p−1)/2(Z) satisfying
∑(p−1)/2

i=1 ci(t + t−1 − 2)i−1 =
∑(p−3)/2

j=0 sj(t + t−1 + 2)j. One has that f(t − 1) ≡
tp−1 (mod p) and f(−1) = (−1)(p+1)/2(2p−1 − 1 + 4ps0). The condition s0 6≡ εp

(mod p) is equivalent to vp(f(−1)) = 1. Thus f(t − 1) is a p-Eisenstein polyno-

mial of degree p − 1. Now put X = t + t−1 + 2. Then we have f(t)/t(p−1)/2 =

X(p−1)/2 − (2p−1 − 1) + p(X − 4)h(X), which is denoted by f̃(X). Here it is seen

that f̃(0) = −(2p−1−1)−4ps0 and f̃(4) = 1. It follows from s0 > εp that f̃(0) < 0.

This shows that f̃(X) = 0 has a real solution x with 0 < x < 4. For a complex

number z ∈ C with z + z−1 ∈ R, the condition 0 < z + z−1 + 2 < 4 holds if and

only if z is not real. This means that f(t) has a non-real zero in C. Thus Ff is not

totally real but totally imaginary. Hence Lemma 2.4 verifies that ζp ∈ H(Ff ).

Corollary 3.4 (Theorem 1.5). For every odd prime number p > 3 (resp. p = 3)

there exist infinitely many knots K whose Alexander polynomials ∆K(t) are monic

(resp. non-monic) and satisfy the two conditions ∆K(t) ∈ Ap−1∩Mp(2, 1) and (U).

Proof. For example, one may take an arbitrary integer s ∈ Z satisfying s 6≡ εp

(mod p) and s > εp for the polynomial h(X) in Theorem 3.3.

Example 3.5 (Examples 2.2 and 2.6). For the case that p = 3 and h(X) = 1

in Theorem 3.3, one has f(X) = 4t2 − 7t + 4. Since ε3 = −1/4 ≡ 2 (mod 3), we

have ζ3 ∈ H(Ff ). If p = 5 and h(X) = 1, then f(t) = t4 + 9t3 − 19t2 + 9t + 1 and

ζ5 ∈ H(Ff ) for ε5 = −3/4 ≡ 3 (mod 5).

Theorem 3.6. Assume p ≥ 5. Let h(X) =
∑(p−3)/2

i=0 siX
i ∈ Z[X] be a polyno-

mial of degree less than (p− 1)/2. If s0 ≡ εp (mod p) and s1 6≡ εp/4 (mod p), then

f(t) = α2(t)+ pt(p−1)/2(t+ t−1− 2)h(t+ t−1 +2) is a polynomial in Ap−1∩Mp(2, 1)

such that ζp 6∈ H(Ff ). The polynomial f(t) is monic if and only if s(p−3)/2 = 0.

Proof. In the same way as in the proof of Theorem 3.3 one sees f(t) ∈ Ap−1 ∩
Mp(2, 1). For 0 ≤ j ≤ p− 1 let γj ∈ Z be integers such that f(t− 1) =

∑p−1
j=0 γjt

j.
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It is calculated that

γ0 = (−1)(p+1)/24p(s0 − εp),
γ1 = (−1)(p−1)/22p(p− 1)(s0 − εp),

γ2 = (−1)(p−1)/24p(s1 − p2 − 4p + 5

8
s0 − (2p−1 − 1)(p− 1)(p− 3)

32p
).

By the condition s0 ≡ εp (mod p) we have that vp(γ0) = vp(γ1) ≥ 2 and γ2 ≡
(−1)(p−1)/24p(s1 − εp/4) (mod p2). If s1 6≡ εp/4 (mod p), then vp(γ2) = 1. Since

f(t − 1) ≡ tp−1 (mod p), it holds that vp(γj) ≥ 1 for 3 ≤ j ≤ p − 2. Using the

Newton polygon method (cf. [2]), one can show that the ramification index of every

prime ideal of Ff above p is equal to p− 3. Hence we have ζp 6∈ H(Ff ) for Lemma

2.4.

Lemma 3.7. Let us put f(t) = (3s + 1)t2 − (6s + 1)t + 3s + 1 for an integer

s ∈ Z. Then f(t) is a polynomial in A2∩M3(2, 1). The condition ζ3 ∈ H(Ff ) holds

if and only if v3(s + 1/4) is even and s is greater than −1/4.

Proof. The discriminant of the polynomial f(t) is equal to −12(s + 1/4), that is,

Ff = Q(
√
−3(s + 1/4)). The ramification index of 3 in Ff/Q is divisible by 2 if

and only if v3(s + 1/4) is even. The field Ff is totally imaginary if and only if

s > −1/4. Hence the assertion holds.

Theorem 3.6 and Lemma 3.7 imply

Corollary 3.8 (Theorem 1.6). For every odd prime number p > 3 (resp. p = 3)

there exist infinitely many knots K whose Alexander polynomials ∆K(t) are monic

(resp. non-monic) and satisfy the conditions ∆K(t) ∈ Ap−1 ∩Mp(2, 1) but fail the

condition (U).

Proof. When p ≥ 5, for the polynomial h(X) in Theorem 3.6 one may take a

polynomial s1t + s0 where s1 and s0 ∈ Z are integers such that s0 ≡ εp (mod p)

and s1 6≡ εp/4 (mod p). In fact, ε5 = −3/4 6≡ 0 (mod 5), which means that we can

have s(p−3)/2 = s1 = 0 for the case p = 5. For p = 3 let us set s = −(3u2 + 3u + 1)

in Lemma 3.7 where u ∈ Z is an integer. Then one has f(t) = −((3u + 1)t− (3u +

2))((3u + 2)t− (3u + 1)), which implies that Ff = Q.
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Example 3.9 (Example 2.3). When p = 5 and h(X) = −2, one has f(t) =

t4 − 6t3 + 11t2 − 6t + 1. Since ε5 = −3/4 ≡ 3 (mod 5), the polynomial h(X) =

s1X+s0 = −2 satisfies that s0 ≡ ε5 (mod 5) and s1 6≡ ε5/4 ≡ 2 (mod 5). Theorem

3.6 shows that ζ5 6∈ H(F∆K
).

Example 3.10. For an integer s ∈ Z let us put fs(t) = t4 + (5s + 4)t3− (10s +

9)t2 + (5s + 4)t + 1, which is obtained as p = 5 and h(X) = s in Theorems 3.3 and

3.6. It is calculated that the discriminant δ(s) of the polynomial fs(t) is equal to

−55(s + 2)2(5s + 6)2(4s + 3). Here f−3(t) (resp. f−1(t)) have four real (resp. four

non-real) zeros. It holds that f−2(t) = (t − (3 +
√

5)/2)2(t − (3 − √5)/2)2. The

polynomial f0(t) has two real and two non-real zeros. Thus Ffs is totally real (resp.

totally imaginary) provided s = −3,−2 (resp. s = −1, 0). Note that there exist no

zeros of δ(s) in the areas s ≤ −3 or s ≥ 0. Hence Ffs is totally real (resp. totally

imaginary) when s ≤ −2 (resp. s ≥ −1). Theorems 3.3 and 3.6 with the argument

above imply that Heilbronn’s conjecture is true for fs(t) if and only if s ≥ −1 and

s 6≡ 3 (mod 5).
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[6] H. Seifert, Über das Geschlecht von Knoten, Math. Ann. 110 (1935), no. 1, 571–592
[7] H.F. Trotter, Periodic automorphisms of groups and knots, Duke Math. J. 28 (1961), 553–557.

(Toru KOMATSU) Faculty of Mathematics, Kyushu University, 6-10-1 Hakozaki
Higashiku, Fukuoka, 812-8581 Japan

E-mail address: trkomatu@math.kyushu-u.ac.jp

8



List of MHF Preprint Series, Kyushu University
21st Century COE Program

Development of Dynamic Mathematics with High Functionality

MHF2003-1 Mitsuhiro T. NAKAO, Kouji HASHIMOTO & Yoshitaka WATANABE
A numerical method to verify the invertibility of linear elliptic operators with
applications to nonlinear problems

MHF2003-2 Masahisa TABATA & Daisuke TAGAMI
Error estimates of finite element methods for nonstationary thermal convection
problems with temperature-dependent coefficients

MHF2003-3 Tomohiro ANDO, Sadanori KONISHI & Seiya IMOTO
Adaptive learning machines for nonlinear classification and Bayesian informa-
tion criteria

MHF2003-4 Kazuhiro YOKOYAMA
On systems of algebraic equations with parametric exponents

MHF2003-5 Masao ISHIKAWA & Masato WAKAYAMA
Applications of Minor Summation Formulas III, Plücker relations, Lattice
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MHF2004-15 Kouji HASHIMOTO, Ryohei ABE, Mitsuhiro T. NAKAO & Yoshitaka
WATANABE
Numerical verification methods of solutions for nonlinear singularly perturbed
problem

MHF2004-16 Ken-ichi MARUNO & Gino BIONDINI
Resonance and web structure in discrete soliton systems: the two-dimensional
Toda lattice and its fully discrete and ultra-discrete versions

MHF2004-17 Ryuei NISHII & Shinto EGUCHI
Supervised image classification in Markov random field models with Jeffreys
divergence

MHF2004-18 Kouji HASHIMOTO, Kenta KOBAYASHI & Mitsuhiro T. NAKAO
Numerical verification methods of solutions for the free boundary problem

MHF2004-19 Hiroki MASUDA
Ergodicity and exponential β-mixing bounds for a strong solution of Lévy-
driven stochastic differential equations

MHF2004-20 Setsuo TANIGUCHI
The Brownian sheet and the reflectionless potentials

MHF2004-21 Ryuei NISHII & Shinto EGUCHI
Supervised image classification based on AdaBoost with contextual weak clas-
sifiers

MHF2004-22 Hideki KOSAKI
On intersections of domains of unbounded positive operators

MHF2004-23 Masahisa TABATA & Shoichi FUJIMA
Robustness of a characteristic finite element scheme of second order in time
increment

MHF2004-24 Ken-ichi MARUNO, Adrian ANKIEWICZ & Nail AKHMEDIEV
Dissipative solitons of the discrete complex cubic-quintic Ginzburg-Landau
equation

MHF2004-25 Raimundas VIDŪNAS
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