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Abstract

This paper presents explicit expressions for algebraic Gauss hypergeometric func-

tions. We consider solutions of hypergeometric equations with the tetrahedral, octahe-

dral and icosahedral monodromy groups. Conceptually, we pull-back such a hyperge-

ometric equation onto its Darboux curve so that the pull-backed equation has a cyclic

monodromy group. Minimal degree of the pull-back coverings is 4, 6 or 12 (for the

three monodromy groups, respectively). In explicit terms, we replace the independent

variable by a rational function of degree 4, 6 or 12, and transform hypergeometric

functions to radical functions.

1 Introduction

Algebraic Gauss hypergeometric functions were studied by many authors; see for example
[Sch72, Fuc75, Bri77, Kle78, Pep81, Bou98, Kat72, BD79, SU93, vdPU98]. This aim of this
paper is to present satisfying explicit forms for these functions.

Let H(e0, e1, e∞) denote the hypergeometric equation

d2Y (Z)
dZ2

+
(

1− e0

Z
+

1− e1

Z − 1

)
dY (Z)

dZ
+

(1− e0 − e1)2 − e2
∞

4 Z (Z − 1)
Y (Z) = 0. (1)

This is a Fuchsian equation on P1 with 3 regular singular points Z = 0, 1, ∞. The local
exponent differences at these points are equal (up to the sign) to e0, e1, e∞, respectively.

Hypergeometric equation (1) has a basis of algebraic solutions if and only if its mon-
odromy group is finite. The following hypergeometric equations (and their fractional-linear
transformations; see Appendix 5.4) have this property and are called standard hypergeomet-
ric equations with algebraic solutions:

• H(1, 1/n, 1/n), where n is a positive integer. The hypergeometric equation degenerates
to a Fuchsian equation with two singular points. Its monodromy group is the cyclic
group with n elements.

∗Supported by the Dutch NWO project 613-06-565, by the ESF NOG-project, and by the 21 Century COE

Programme ”Development of Dynamic Mathematics with High Functionality” of the Ministry of Education,

Culture, Sports, Science and Technology of Japan.
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• H(1/2, 1/2, 1/n), where n is an integer, n ≥ 2. The monodromy group of this equation
is the dihedral group with 2n elements.

• H(1/2, 1/3, 1/3). The monodromy group is the tetrahedral group, isomorphic to A4.

• H(1/2, 1/3, 1/4). The monodromy group is the octahedral group, isomorphic to S4.

• H(1/2, 1/3, 1/5). The monodromy group is the icosahedral group, isomorphic to A5.

The celebrated theorem of Klein [Kle77] states that if a second order linear homogeneous
differential equation only has algebraic solutions, then that equation is a pull-back transfor-
mation of a standard hypergeometric equation from the list above. Explicitly, if the Fuchsian
equation has coefficients in C(X), the pull-back transformation changes the variable Z in
(1) to a rational function ϕ(X). In geometric terms, we have a finite covering ϕ : P1

X → P1
Z

between two projective lines, and we pull-back the standard hypergeometric equation from
P1

Z onto P1
X .

Particularly, the theorem of Klein implies that if a hypergeometric equation H1 only
has algebraic solutions, then it is a pull-back transformation of a standard hypergeometric
equation H0 with algebraic solutions. The proof of Klein implies that the monodromy
group of H1 is either cyclic, or dihedral, or A4, S4 or A5, and that H0 can be chosen to be
a standard hypergeometric equation with the same monodromy group.

Hypergeometric equations with finite monodromy group were first classified by Schwartz
in [Sch72]. Disregarding hypergeometric equations with a cyclic monodromy group, Schwartz
gave a list of 15 types of these hypergeometric equations. One type consists of hypergeo-
metric equations with a dihedral monodromy group. The other types are represented by the
following hypergeometric equations:

• H(1/2, 1/3, 1/3), H(1/3, 1/3, 2/3). The monodromy group is the tetrahedral group.

• H(1/2, 1/3, 1/4), H(2/3, 1/4, 1/4). The monodromy group is the octahedral group.

• H(1/2, 1/3, 1/5), H(1/2, 1/3, 2/5), H(1/2, 1/5, 2/5), H(1/3, 1/3, 2/5), H(1/3, 2/3, 1/5),
H(2/3, 1/5, 1/5), H(1/3, 2/5, 3/5), H(1/3, 1/5, 3/5), H(1/5, 1/5, 4/5), H(2/5, 2/5, 2/5).
The monodromy group is the icosahedral group.

We refer to Schwartz type of hypergeometric equations with algebraic solutions by the triple
of the parameters e0, e1, e∞ of these representative equations. (Usually, Schwartz type is
denoted by a roman numeral from I to XV.) We refer to the listed 14 hypergeometric
equations as main representatives of the Schwartz types.

Hypergeometric equations of the same Schwartz type are characterized by the prop-
erty that their hypergeometric solutions are contiguous to hypergeometric solutions of the
main representative. We refer to Appendix Section 5 for short introductions to pull-back
transformations, Fuchsian equations, contiguous relations and other relevant topics.

Algebraic solutions of differential equations can be represented by minimal polynomial
equations their satisfy [SU93], or (if the Galois group is solvable) by nested radical expres-
sions. In [BvHW03], [Ber04, Chapter 1], [vHW] an algorithm is developed to represent
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algebraic solutions of second order linear differential equations using Klein’s theorem. The
representation form is

θ(x)H(φ(x)), (2)

where φ(x), θ(x) define Klein’s morphism in the notation of (98), and H(z) is a solution of
a corresponding standard hypergeometric equation.

We propose to pull-back a hypergeometric equation with a finite monodromy groups to a
Fuchsian equation with a cyclic monodromy group. Then some hypergeometric solutions are
transformed to rather simple radical functions. We call a pull-back covering φ : D → P1 of
this kind a Darboux covering. The covering curve D is called a Darboux curve. Identification
of algebraic Gauss hypergeometric functions with radical functions on an algebraic curve
offers satisfying geometric intuition, especially when the Darboux covering has low degree.
We use the term Darboux evaluation to refer to the aspired identification of hypergeometric
functions with radical functions.

Theory of Darboux coverings is developed in Section 3. It turns out that Darboux cover-
ings for hypergeometric equations of the same Schwartz type are identical. Therefore we have
finitely many different Darboux coverings and Darboux curves. We compute all Darboux
coverings of minimal degree, which turns out to be 4, 6 or 12 for the tetrahedral, octahedral
and icosahedral types, respectively. The corresponding Darboux curves have genus 0 or
(for some icosahedral types) genus 1. For each Schwartz type, we use Darboux coverings
of minimal degree and compute Darboux evaluations for 2 hypergeometric solutions of the
main representative equation, and for 2 more hypergeometric functions of that Schwartz
type. The evaluations are presented in Section 2. Using these formulas and contiguous
relations, one can compute Darboux evaluations for 2 different hypergeometric solutions of
any hypergeometric equation with the tetrahedral, octahedral or icosahedral monodromy.

Klein evaluations of [BvHW03], [Ber04], [vHW] and Darboux evaluations have compara-
ble visual complexity, especially when Darboux evaluation for the standard hypergeometric
function H(z) in (2) is used. Algorithmically, our proposal looks superior if we restrict
ourselves to hypergeometric equations. In [vHW], [BvHW03], invariants or semi-invariants
of minimal degree have to be computed by solving a symmetric power of the hypergeomet-
ric equation. When the hypergeometric equation has large local exponent differences (in
absolute values), solving the symmetric power equation apparently involves a linear algebra
problem of proportional size. We propose to use the “data base” of Darboux evaluations in
Section 2 and contiguous relations. We do not need to solve any differential equations, except
in computing the data base. Computational aspects of contiguous relations are mentioned
in Appendix 5.6.

Darboux curves and coverings are introduced also in PhD thesis [Vid99, Section 4.2].
Most Darboux coverings of minimal degree, and all corresponding Darboux curves are
presented there. Only Darboux coverings for the types (2/3, 1/5, 1/5), (1/3, 2/5, 3/5),
(1/3, 1/5, 3/5), (1/5, 1/5, 4/5), (2/5, 2/5, 2/5) are not computed explicitly there.
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2 Hypergeometric evaluations

In this Section we present a few Darboux evaluations for each Schwartz type of hypergeo-
metric functions with the tetrahedral, octahedral and icosahedral monodromy group. We
use Darboux coverings of minimal possible degree, which is, respectively, 4, 6 and 12 for the
three monodromy groups; see Lemma 3.2.

For each Schwartz type we evaluate 4 hypergeometric functions. In each evaluated group,
the first and the third functions are solutions of the representative hypergeometric equation
of that Schwartz type, as listed in Section 1. The second function is contiguous to the first
one, and the fourth function is contiguous to the third one. With these evaluations, one
can evaluate 2 independent hypergeometric solutions of any hypergeometric equation of the
same Schwartz type, by using contiguous relations.

For the tetrahedral and octahedral Schwartz types, Darboux coverings are evident from
the arguments of the hypergeometric functions. Darboux coverings for icosahedral Schwartz
types are given in (19), (28), (34), (44), (54), (60). Some of these Darboux coverings are
valid for two different Schwartz types. For 7 icosahedral types, the Darboux curve has genus
1 rather than 0. Weierstrass equations ξ2 = x (1 + α x + β x2), with α, β ∈ C, for these
curves are given in (33), (43), (53), (59).

A method to compute Darboux evaluations is presented in Section 4.1. Most attention is
paid to describing complicated computations on genus 1 Darboux curves. Computer package
Maple was used in the computations. The Darboux evaluations hold locally around x = 0
or, if the Darboux curve has genus 1, around the point (x, ξ) = (0, 0). The simplest way to
check each evaluation is to expand both sides in power series around x = 0. If the Darboux
curve has genus 1, one has to replace ξ by the respective

√
x

√
1 + α x + β x2, and expand

the power series in
√

x.

2.1 Tetrahedral hypergeometric equations

For the Schwartz type (1/2, 1/3, 1/3) we give the following evaluations:

2F1

(
1/4,−1/12

2/3

∣∣∣∣
x (x + 4)3

4(2x− 1)3

)
=

(
1− 2x

)−1/4
. (3)

2F1

(
5/4,−1/12

5/3

∣∣∣∣
x (x + 4)3

4(2x− 1)3

)
=

1 + x(
1 + 1

4x
)2

(
1− 2x

)−1/4
. (4)

2F1

(
1/4, 7/12

4/3

∣∣∣∣
x (x + 4)3

4(2x− 1)3

)
=

1
1 + 1

4x
(1− 2x)3/4

. (5)

2F1

(
1/4,−5/12

1/3

∣∣∣∣
x (x + 4)3

4(2x− 1)3

)
=

(
1 + 5

2x
) (

1− 2x
)−5/4

. (6)

For the Schwartz type (1/3, 1/3, 2/3) we give the following evaluations.

2F1

(
1/2, −1/6

2/3

∣∣∣∣
x (x + 2)3

(2x + 1)3

)
=

(
1 + 2x

)−1/2
. (7)
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2F1

(
1/2, 5/6

2/3

∣∣∣∣
x (x + 2)3

(2x + 1)3

)
=

1
(1− x)2

(
1 + 2x

)3/2
. (8)

2F1

(
1/6, 5/6

4/3

∣∣∣∣
x (x + 2)3

(2x + 1)3

)
=

1
1 + 1

2x

(
1 + 2x

)1/2 (
1 + x

)1/3
. (9)

2F1

(
1/6,−1/6

1/3

∣∣∣∣
x (x + 2)3

(2x + 1)3

)
=

(
1 + 2x

)−1/2 (
1 + x

)1/3
. (10)

2.2 Octahedral hypergeometric equations

For the Swartz type (1/2, 1/3, 1/4) we give the following evaluations.

2F1

(
7/24, −1/24

3/4

∣∣∣∣
108 x (x− 1)4

(x2 + 14x + 1)3

)
=

(
1 + 14x + x2

)−1/8
. (11)

2F1

(
7/24, 23/24

7/4

∣∣∣∣
108 x (x− 1)4

(x2 + 14x + 1)3

)
=

1 + 2x− 1
11x2

(1− x)3
(
1 + 14x + x2

)7/8
. (12)

2F1

(
5/24, 13/24

5/4

∣∣∣∣
108 x (x− 1)4

(x2 + 14x + 1)3

)
=

1
1− x

(
1 + 14x + x2

)5/8
. (13)

2F1

(
5/24, −11/24

1/4

∣∣∣∣
108 x (x− 1)4

(x2 + 14x + 1)3

)
=

1− 22x− 11x2

(
1 + 14x + x2

)11/8
. (14)

For the Swartz type (1/4, 1/4, 2/3) we give the following evaluations.

2F1

(
7/12, −1/12

3/4

∣∣∣∣
27 x (x + 1)4

2(x2 + 4x + 1)3

)
=

(
1 + 1

2x
)1/4

(1 + 4x + x2)1/4
. (15)

2F1

(
7/12, 11/12

7/4

∣∣∣∣
27 x (x + 1)4

2(x2 + 4x + 1)3

)
=

(1 + 1
2x)1/4 (1 + 4x + x2)7/4

(1 + x)3
. (16)

2F1

(
1/6, 5/6

5/4

∣∣∣∣
27 x (x + 1)4

2(x2 + 4x + 1)3

)
=

(
1 + 2x

)1/4 (
1 + 4x + x2

)1/2

1 + x
. (17)

2F1

(
1/6, −1/6

1/4

∣∣∣∣
27 x (x + 1)4

2(x2 + 4x + 1)3

)
=

(
1 + 2x

)1/4

(
1 + 4x + x2

)1/2
. (18)

2.3 Icosahedral hypergeometric equations

The Darboux covering for hypergeometric equations of the Schwartz type (1/2, 1/3, 1/5) is

ϕ1(x) =
1728 x (x2 − 11x− 1)5

(x4 + 228x3 + 494x2 − 228x + 1)3
(19)

The simplest evaluations for this Schwartz type are these:

2F1

(
19/60, −1/60

4/5

∣∣∣∣ ϕ1(x)
)

=
(
1− 228x + 494x2 + 228x3 + x4

)−1/20
. (20)
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2F1

(
19/60, 59/60

4/5

∣∣∣∣ ϕ1(x)
)

=
(1+66x−11x2) (1−228x+494x2+228x3+x4)19/20

(1 + x2) (1 + 522x− 10006x2 − 522x3 + x4)
.(21)

2F1

(
11/60, 31/60

6/5

∣∣∣∣ ϕ1(x)
)

=
(1−228x+494x2+228x3+x4)11/20

1 + 11x− x2
. (22)

2F1

(
11/60, −29/60

1/5

∣∣∣∣ ϕ1(x)
)

=
1 + 435x− 6670x2 − 3335x4 − 87x5

(1−228x+494x2+228x3+x4)29/20
. (23)

The Darboux covering for the Schwartz type (1/2, 1/3, 2/5) is the same, ϕ1(x). Here are
evaluations:

2F1

(
13/60, −7/60

3/5

∣∣∣∣ ϕ1(x)
)

=
1− 7x

(
1− 228x + 494x2 + 228x3 + x4

)7/20
. (24)

2F1

(
13/60, 53/60

3/5

∣∣∣∣ ϕ1(x)
)

=
(1+119x+187x2+17x3)(1−228x+494x2+228x3+x4)13/20

(1 + x2) (1 + 522x− 10006x2 − 522x3 + x4)
.

(25)

2F1

(
17/60, 37/60

7/5

∣∣∣∣ ϕ1(x)
)

=

(
1 + 1

7x
)
(1−228x+494x2+228x3+x4)17/20

(1 + 11x− x2)2
. (26)

2F1

(
17/60, −23/60

2/5

∣∣∣∣ ϕ1(x)
)

=
(1+207x−391x2+1173x3+46x4)
(1−228x+494x2+228x3+x4)23/20

. (27)

The Darboux covering for Schwartz type (1/2, 1/5, 2/5) is the following:

ϕ2(x) =
64 x (x2 − x− 1)5

(x2 − 1) (x2 + 4x− 1)5
. (28)

The simplest evaluations are the following:

2F1

(
7/20, −1/20

4/5

∣∣∣∣ ϕ2(x)
)

=
(1 + x)7/20

(1− x)1/20 (1− 4x− x2)1/4
. (29)

2F1

(
7/20, 19/20

4/5

∣∣∣∣ ϕ2(x)
)

=
(1 + 3x) (1 + x)7/20 (1− x)19/20 (1− 4x− x2)7/4

(1 + x2) (1 + 22x− 6x2 − 22x3 + x4)
. (30)

2F1

(
3/20, 11/20

6/5

∣∣∣∣ ϕ2(x)
)

=
(1 + x)3/20 (1− x)11/20 (1− 4x− x2)3/4

1 + x− x2
. (31)

2F1

(
3/20, −9/20

1/5

∣∣∣∣ ϕ2(x)
)

=
(1 + 12x− 6x2 − 2x3 − 9x4) (1 + x)3/20

(1− x)9/20 (1− 4x− x2)9/4
. (32)

Darboux curves for other icosahedral Schwartz types have genus 1.
The Darboux curve for hypergeometric equations of the Schwartz type (1/3, 1/3, 2/5) is

given by the equation
E3 : ξ2 = x (1 + 33x− 9x2). (33)

The Darboux covering is

ϕ3(x, ξ) =
144 ξ

(
1 + 33x− 9x2

)2 (1− 9ξ + 54x)

(1 + 21ξ − 117x + 9xξ − 234x2)3
(34)
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Here are simplest evaluations for this Schwartz type:

2F1

(
3/10, −1/30

3/5

∣∣∣∣ ϕ3(x, ξ)
)

=
(1− 9ξ + 54x)1/30

(1 + 21ξ − 117x + 9xξ − 234x2)1/10
. (35)

2F1

(
3/10, 29/30

3/5

∣∣∣∣ ϕ3(x, ξ)
)

=

(1+21ξ−117x+9xξ−234x2)9/10(1+9x)2(1+198x−99x2)
(1− 9ξ + 54x)29/30 (1−21ξ−117x−9xξ−234x2)2

. (36)

2F1

(
7/10, 11/30

7/5

∣∣∣∣ ϕ3(x, ξ)
)

=

(
1 + 21ξ − 117x + 9xξ − 234x2

)11/10

(1− 9ξ + 54x)11/30 (1 + 33x− 9x2)
. (37)

2F1

(−3/10, 11/30
2/5

∣∣∣∣ ϕ3(x, ξ)
)

=
(1− 9ξ + 54x)19/30 (1− 15ξ − 72x− 54x2)

(1 + 21ξ − 117x + 9xξ − 234x2)9/10 (1 + 9x)
. (38)

The Darboux curve and covering for the Schwartz type (1/3, 2/3, 1/5) are the same as
in (33) and (34). The simplest evaluations are:

2F1

( −1/10, 17/30
4/5

∣∣∣∣ ϕ3(x, ξ)
)

=
(1− 9ξ + 54x)13/30

(1 + 21ξ − 117x + 9xξ − 234x2)3/10
. (39)

2F1

(
9/10, 17/30

9/5

∣∣∣∣ ϕ3(x, ξ)
)

=

(
1 + 21ξ − 117x + 9xξ − 234x2

)17/10 (
1 + 3

7x
)

(1− 9ξ + 54x)17/30 (1 + 33x− 9x2)2
. (40)

2F1

(
1/10, 23/30

6/5

∣∣∣∣ ϕ3(x, ξ)
)

=

(
1+21ξ−117x+9xξ−234x2

)3/10(1−9ξ+54x)7/30(ξ+5x)
ξ (1 + 9x)

.

(41)

2F1

(
1/10,−7/30

1/5

∣∣∣∣ ϕ3(x, ξ)
)

=
(1− 9ξ + 54x)7/30 (1− 21x)

(1 + 21ξ − 117x + 9xξ − 234x2)7/10
. (42)

The Darboux curve for the Schwartz type (2/3, 1/5, 1/5) is given by

E4 : ξ2 = x (1 + 5x− 5x2). (43)

The Darboux covering is given by

ϕ4(x, ξ) =
432 x

(
1− 7

5ξ − 9x− x2
)5 (1+50x−125ξ2+450xξ−500x2)

(5ξ+57x)
(
1+ 18

5 ξ−16x+x2
)5 (1+50x−125ξ2−450xξ−500x2)

. (44)

The simplest evaluations are:

2F1

(
1/6,−1/30

4/5

∣∣∣∣ ϕ4(x, ξ)
)

=

(
1− 3

5ξ − 34
5 x

)1/6

(1+3ξ−20x)1/6 (1+50x−125ξ2−450xξ−500x2)1/30
.(45)

2F1

(
1/6, 29/30

4/5

∣∣∣∣ ϕ4(x, ξ)
)

=

7



(1 + 3ξ − 20x)5/6
(
1− 3

5ξ − 34
5 x

)1/6 (
1− 35

4 ξ − 101
4 x

)

(1+50x−125ξ2−450xξ−500x2)1/30(1− 95
4 ξ+ 83

4 x+ 21
4 ξ2+ 475

4 xξ+10x2
) . (46)

2F1

(
1/6, 11/30

6/5

∣∣∣∣ ϕ4(x, ξ)
)

=
(
1+50x−125ξ2−450xξ−500x2

)11/30 ×

(1 + 3ξ − 20x)5/6
(
1− 3

5ξ − 34
5 x

)1/6 (
1 + 21

4 ξ + 41
4 x

)

(1− 9x)
(
1− 7

4ξ − 15
2 x

)
(1 + 5ξ + 10x)

. (47)

2F1

(
1/6, 11/30

1/5

∣∣∣∣ ϕ4(x, ξ)
)

=
(
1+50x−125ξ2−450xξ−500x2

)11/30 ×

(1 + 3ξ − 20x)5/6
(
1− 3

5ξ − 34
5 x

)1/6 (
1 + 21

4 ξ + 41
4 x

)
(
1− 95

4 ξ+ 83
4 x+ 21

4 ξ2+ 475
4 xξ+10x2

)
(1 + 5ξ + 10x)

. (48)

The Darboux curve and covering for the Schwartz type (1/3, 2/5, 3/5) are the same as
in (43) and (44). The simplest evaluations are:

2F1

(−1/6, 13/30
3/5

∣∣∣∣ ϕ4(x, ξ)
)

=
(1+50x−125ξ2−450xξ−500x2)13/30 (1− 3ξ + 2x)

(1 + 3ξ − 20x)5/6 (
1− 3

5ξ − 34
5 x

)1/6 (1 + 5ξ + 10x)
. (49)

2F1

(
5/6, 13/30

3/5

∣∣∣∣ ϕ4(x, ξ)
)

= (1+50x−125ξ2−450xξ−500x2)13/30 ×

(1 + 3ξ − 20x)13/6 (
1− 7

4ξ + 25
2 x− 245

4 x2
) (

1− 7
20ξ − 79

20x
)

(
1− 3

5ξ− 34
5 x

)1/6(1− 95
4 ξ+ 83

4 x+ 21
4 ξ2+ 475

4 xξ+10x2
)2(1− 5x)2

.(50)

2F1

(
5/6, 7/30

7/5

∣∣∣∣ ϕ4(x, ξ)
)

=
(
1+50x−125ξ2−450xξ−500x2

)7/30 ×
(
1+ 18

5 ξ−16x+x2
)7/6(1+ 1

25x
)5/6(1+5ξ+10x)

(
1− 7

5ξ − 9x− x2
)2 (1− 5x)7/6

. (51)

2F1

(−1/6, 7/30
2/5

∣∣∣∣ ϕ4(x, ξ)
)

=

(
1+50x−125ξ2−450xξ−500x2

)7/30(1− 27
5 ξ+ 58

5 x−2x2
)

(
1+ 18

5 ξ−16x+x2
)5/6 (1 + 1

25x)1/6 (1− 5x)7/6
.

(52)

The Darboux curve for the Schwartz type (1/3, 1/5, 3/5) is given by

E5 : ξ2 = x (1 + x) (1 + 16x). (53)

The Darboux covering is given by

ϕ5(x, ξ) = − 54 (ξ + 5x)3 (1− 2ξ + 6x)5

(1−16x2) (ξ − 5x)2 (1− 2ξ − 14x)5
. (54)

2F1

(−1/15, 8/15
4/5

∣∣∣∣ ϕ5(x, ξ)
)

=
(1 + 4x)8/15 (ξ + 5x)1/6 x1/15

(1− 2ξ − 14x)1/3 (ξ − 3x)3/10
. (55)
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2F1

(
14/15, 8/15

9/5

∣∣∣∣ ϕ5(x, ξ)
)

=

(1−2ξ−14x)8/3
(
1+ 2

3ξ+ 2
3x− 16

3 x2
)
(1+4x)8/15 (ξ−5x)2 x1/15

(1− 2ξ + 6x)4 (ξ + 5x)11/6 (ξ − 3x)3/10
. (56)

2F1

(
2/15, 11/15

6/5

∣∣∣∣ ϕ5(x, ξ)
)

=
(1−ξ+x)(1−2ξ−14x)2/3(ξ+5x)1/6(ξ−3x)13/10

(1 + ξ + x) (1− 2ξ + 6x) (1 + 4x)13/15 x11/15
. (57)

2F1

(
2/15,−4/15

1/5

∣∣∣∣ ϕ5(x, ξ)
)

=
(1+3ξ+x) (1+4x)2/15 (ξ+5x)7/6 (ξ−3x)3/10

(1 + ξ + x) (1− 2ξ − 14x)4/3 x11/15
. (58)

The Darboux curve for the Schwartz type (1/5, 1/5, 4/5) is given by

E6 : ξ2 = x (1 + x− x2). (59)

The Darboux covering is given by

ϕ6(x, ξ) =
16 ξ

(
1 + x− x2

)2 (1− ξ)2

(1 + ξ + 2x) (1 + ξ − 2x)5
. (60)

The simplest evaluations are:

2F1

(
7/10,−1/10

4/5

∣∣∣∣ ϕ6(x, ξ)
)

=
(1− ξ + 2x)1/15 (1− ξ)3/5

(1 + ξ + 2x)7/30
√

1 + ξ − 2x
(61)

2F1

(
7/10, 9/10

9/5

∣∣∣∣ ϕ6(x, ξ)
)

=
(1− ξ + 2x)1/15 (1 + ξ + 2x)23/30 (1 + ξ − 2x)7/2

(1− ξ)7/5 (1 + x− x2)2
(62)

2F1

(
1/10, 9/10

6/5

∣∣∣∣ ϕ6(x, ξ)
)

=
(ξ + 2x + x2) (1 + ξ)1/10 (1− ξ)3/10

ξ (1− ξ + 2x)1/30(1 + ξ + 2x)2/15
√

1 + ξ − 2x
. (63)

2F1

(
1/10,−1/10

1/5

∣∣∣∣ ϕ6(x, ξ)
)

=
(1 + ξ)1/10 (1− ξ)3/10

(1− ξ + 2x)1/30 (1 + ξ + 2x)2/15
√

1 + ξ − 2x
. (64)

The Darboux curve and covering for the Schwartz type (2/5, 2/5, 2/5) are the same as in
(59) and (60). The simplest evaluations are:

2F1

(
3/10,−1/10

3/5

∣∣∣∣ ϕ6(x, ξ)
)

=
(1− ξ + 2x)2/15 (1 + ξ + 2x)1/30 (1− ξ)1/5

√
1 + ξ − 2x

. (65)

2F1

(
3/10, 9/10

8/5

∣∣∣∣ ϕ6(x, ξ)
)

=

(1−ξ+2x)2/15(1+ξ+2x)1/30(1−ξ)1/5(1+ξ−2x)3/2
(
1+ 1

2ξ+ 1
2x

)

(1 + x− x2) (1− ξ + x− x2)
. (66)

2F1

(
3/10, 7/10

7/5

∣∣∣∣ ϕ6(x, ξ)
)

=
(1 + ξ + 2x)7/30 (1 + ξ)1/5 (1 + ξ − 2x)3/2

(1− ξ + 2x)1/15 (1− ξ)2/5 (1 + x− x2)
. (67)

2F1

(
3/10, −3/10

2/5

∣∣∣∣ ϕ6(x, ξ)
)

=
(1 + ξ + 2x)7/30 (1 + ξ)1/5 (1−3ξ+4x−2x2)
(1− ξ + 2x)1/15 (1− ξ)2/5 (1 + ξ − 2x)3/2

. (68)
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3 Darboux curves

Classical definitions [Dar78], [Oll01] in integration theory of vector fields are the follow-
ing. Consider a polynomial vector field on C2 given by a derivation L = f(x, y) ∂/∂x +
g(x, y) ∂/∂y with f, g ∈ C[x, y]. A polynomial p(x, y) is called a Darboux polynomial for the
vector field (or the derivation L) if p(x, y) divides Lp(x, y) in the ring C[x, y]. An algebraic
curve defined as the zero set of a Darboux polynomial is called a Darboux curve. A Dar-
boux curve is infinitesimally invariant under the vector field. Hence an alternative term is
invariant algebraic curve, as in [CLPZ] for example.

In differential Galois theory we have the following definition [Wei95], [Sin92]. Let K

be a differential field, and let R = K[y1, . . . , yn] be a differential ring. Let D denote the
derivation on R, and suppose that it extends the derivation on K. Then p ∈ R is a Darboux
polynomial for D if p divides Dp in R. For example, consider differential equation

y(n) + an−1 y(n−1) + . . . + a1 y′ + a0 y = 0, with a0, a1, . . . , an−1 ∈ K. (69)

Let D be the derivation on K[y, y′, . . . , y(n−1)] defined by Dy = y′, Dy′ = y′′, . . ., Dy(n−2) =
y(n−1), Dy(n−1) = −an−1y

(n−1)− . . .− a1y
′− a0y. Darboux polynomials for this derivation

correspond to semi-invariants of the differential Galois group for (69), see [Wei95, Theorem
38]. If the order n of (69) is equal to 2, then one considers Darboux polynomials in K[u]
for the derivation D defined by Du = −u2− a1u− a0. (See [Wei94, UW96], where Darboux
polynomials are called special polynomials.)

As one may notice, the terminology “Darboux polynomials”, “Darboux curves” is not
consistently accepted. We wish to use the term “Darboux curves” because we consider the
curves geometrically, with little reference to their differential and algebraic properties. We
offer the following definition of Darboux curves and Darboux coverings.

Definition 3.1 Let C denote an algebraic curve (see Appendix 5.1). We suppose that the
function field C(C) is a differential field. Consider differential equation (69) on P1, assuming
K = C(P1). We say that a finite covering φ : C → P1 is a Darboux covering for (69), if a
pull-back of (69) with respect to φ has a solution Y such that:

(i) Its logarithmic derivative u = Y ′/Y is in C(C);

(ii) The algebraic degree of u over K is precisely the degree of φ.

In the described situation, C is called a Darboux curve for (69).

To see connection with previous definitions, let us assume that the order n of (69) is
equal to 2. We assume that K = C(z) with z′ = 1. Let d denote the degree of φ. Then we
have the following facts:

• The logarithmic derivative u is an algebraic solution of the associated Riccati equation
u′ + u2 + a1u + a0 = 0. Let P (u) = 0 denote the minimal monic polynomial equation
defining u over K. The polynomial P has degree d.

• The minimal polynomial P is a Darboux polynomial for the mentioned derivation
Du = −u2 − a1u− a0; see [UW96, Lemma 2.4].
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• The expression yn+1P (y′/y) is a homogeneous polynomial in K[y, y′]. It is a Darboux
polynomial for the specified derivation on K[y, y′].

• Assume that a1, a0 ∈ C[z], and consider the vector field ∂/∂z − (u2 + a1u + a0) ∂/∂u.
Then P is a Darboux polynomial according the first definition above.

Besides, we have the following facts.

• The polynomial P is a defining equation for the Darboux curve C, and C(C) = C(z, u).

• Suppose that P = um +
∑d−1

j=0 bj uj . Then −bd−1 is the logarithmic derivative of an
exponential solution of the d-th symmetric power of (69); see [UW96, Theorem 2.1].
All other coefficients bj are determined by bd−1 and (69); see [SU93, Section 3.2].

• The mentioned exponential solution (which can be expressed as exp
∫ −bd−1) is a

degree d semi-invariant of the differential Galois group [UW96, Section 1.2].

• Inside a Picard-Vessiot extension for (69), the field C(C) is fixed by a 1-reducible
subgroup of the differential Galois group for (69) of finite index [SU93, Lemma 3.1].

• If the differential Galois group of (69) is finite, the 1-reducible subgroups are cyclic
subgroups [UW96, Lemma 1.5].

As we see, Darboux coverings correspond to algebraic Riccati solutions and to semi-invariants
of the differential Galois group. We defined Darboux curves and coverings for general linear
differential equations. It appears to be useful to parameterize Darboux curves of genus 0,
or express Darboux curves of higher genus by convenient birational models. Solving pull-
backed equations gives Darboux evaluations for solutions of an original equation; these can
be handy and satisfying expressions. For example, Darboux evaluations for solutions of
hypergeometric equations with dihedral monodromy groups can be recognized in [Erd53,
2.5.5] or [Vid04, Section 6]. In general, Darboux coverings and Darboux evaluations can
be computed from minimal polynomials for Riccati equation and by direct solution of pull-
backed equations. This routine does not look more effective than algorithms in [BvHW03],
[Ber04], [vHW]. For hypergeometric equations, we can utilize contiguous relations.

We consider hypergeometric equations with the tetrahedral, octahedral or icosahedral
monodromy groups. The differential Galois group is the same. Pull-backed equations on
Darboux curves have cyclic monodromy groups. The following lemma categorizes possible
Darboux coverings.

Lemma 3.2 Suppose that the differential Galois group G of a hypergeometric equation (1)
is either tetrahedral A4, or octahedral S4, or icosahedral A5.

• If G ∼= A4 (tetrahedral group), Darboux coverings for (1) have degree 4, 6 or 12.

• If G ∼= S4 (octahedral group), Darboux coverings have degree 6, 8, 12 or 24.

• If G ∼= A5 (icosahedral group), Darboux coverings have degree 12, 20, 30 or 60.
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• Darboux coverings of each degree are unique up to fractional-linear transformations of
the variable z and automorphisms of the Darboux curve.

Proof. According to [UW96, Corollary 1.7], these are possible degrees of minimal poly-
nomials for solutions of the Riccati equation associated to the normalized equation (100).
Normalization (99) does not change the degree of Riccati solutions, so these are also the
degrees of Darboux coverings for the hypergeometric equation.

In the tetrahedral case, there are 2 minimal polynomials of degree 4 for Riccati solutions
since there are 2 semi-invariants (up to scalar multiplication) of degree 4. The two semi-
invariants are interchanged by a change of solution basis. For example, in the form presented
in [SU93, Section 4.3.1], the basis change is (y1, y2) 7→ (

√−1 y1, y2) or (y2,
√−1 y1). One can

check connection formulas for Gauss hypergeometric series [IKSY91, Chapter 4] that such a
basis can be realized by 2 pairs of hypergeometric series; by a basis of hypergeometric series
around one singularity, and by a basis of hypergeometric series around other singularity. The
fractional-linear transformation which permutes those 2 singularities acts on the solution
basis as noted above. The conclusion is that this fractional-linear transformation permutes
the 2 semi-invariants, and hence the 2 minimal polynomials for Riccati solutions. Hence the
2 Darboux coverings are isomorphic.

For other listed degrees, minimal polynomials for Riccati solutions are unique, except
for the maximal degrees 12, 24 and 60. There are infinitely many minimal polynomials of
maximal degree, but their all generate the same Piccard-Vessiot extension for the hyperge-
ometric series. Hence Darboux coverings are unique in all cases, up to isomorphism. 2

3.1 Darboux coverings for standard hypergeometric equations

Here are the main facts about Darboux coverings for standard hypergeometric equations.

Lemma 3.3 Let H denote a standard hypergeometric equation with tetrahedral, octahedral
or icosahedral differential Galois group G. Let ϕ : D → P1 be a Darboux covering for H of
degree m. Then:

(i) The Darboux curve D has genus zero.

(ii) Let ϕ̃ : D̃ → P1 be a Darboux covering for H of the maximal degree |G|. Then we have
a factorization ϕ̃ = γ◦ϕ, where the covering γ : D̃ → D is given (up to fractional-linear
transformations of D and D̃) by x 7→ x|G|/m.

(iii) Let X ∈ P1 be a regular singular point of the hypergeometric equation. Assume that
the local exponent difference at X has denominator k. Then there are bm/kc points
above X with branching index k, and other points above X are unramified.

Proof. First we prove this Theorem for the Darboux covering ϕ̃ of maximal degree m = |G|.
The first statement follows classically from [Kle84]. In particular, there is an action of G on
D̃ ∼= P1, and the projection P1 → P1/G ∼= P1 is precisely ϕ̃. This map is also the inverse
of a Schwartz map for the hypergeometric equation. At each fiber of ϕ̃ the points have the
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same branching index, since C(D̃) ⊃ C[z] is a Galois extension. This extension is also the
Piccard-Vessiot extension for H, so a suitable pull-back of H with respect to ϕ̃ has trivial
Galois group. Hence all local exponent differences of any pull-back of H with respect to ϕ̃

are integers. As a consequence, in the situation of part (iii) the branching indices should be
integer multiples of k. Since g(D̃) = 0, Hurwitz theorem leaves only one possibility which
is described in part (iii). Part (ii) is trivial in the considered case.

Now we consider a general Darboux covering ϕ : D → P1. Let u be a corresponding
Riccati solution of degree m, so that C(D) ∼= C(z, u). Let K ⊃ C(z) denote the the Piccard-
Vessiot extension of (101). We have K ∼= C(D̃) as just above. Consider the tower of field
extensions K ⊃ C(D) ⊃ C(z). Here K ⊃ C(D) is the Piccard-Vessiot extension for the
differential equation y′ = uy, so its Galois group must be a cyclic subgroup of G of index
m. The existence of the corresponding covering γ : D̃ → D implies (i). Hurwitz theorem
implies that there are exactly two branching points of γ. This implies (ii). We see that the
equation y′ = uy has exactly two singular points, so in the situation of part (iii) branching
indices are equal to either k or 1, and that there in total only two unramified points above
the three regular singular points of (101). This information gives part (iii). 2

Note that the rational functions for the Darboux coverings ϕ̃ of maximal degree are
invariants of A4, S4, A5 with respect to the classical action these groups on C[x] (or on
homogeneous polynomials in C[x, y]); see [Kle84].

Here are explicit expressions for Darboux coverings for a standard tetrahedral equation
(up to permutations of the regular singular points on the P1 below and fractional-linear
transformations of the Darboux curve):

x 7→ z =
x (x + 4)3

4 (2x− 1)3
, x 7→ z =

(
x2 − 6 x− 3

)3

(x2 + 6 x− 3)3
, x 7→ z =

x3
(
x3 + 4

)3

4 (2x3 − 1)3
. (70)

Darboux coverings of degree 6, 8, 12 for a standard octahedral equation are given by:

27 x (x + 1)4

2 (x2 + 4x + 1)3
,

(x2 + 20x− 8)4

256 x (x + 1)3 (x− 8)3
,

27(x− 1)4(x2 + 6x + 1)4

(x2 − 10x + 1)3 (3x2 + 2x + 3)3
. (71)

Darboux coverings of degree 12, 20, 30 for a standard icosahedral equation are given by:

1728 x (x2 − 11x− 1)5

(x4+228x3+494x2−228x+1)3
,

64 (x4 + 55x3 − 165x2 − 275x + 25)5

125x(x2+5x+40)3(x2−40x−5)3(8x2−5x+5)3
,

27 (x2 + 2x + 5)5 (x4 + 20x3 − 210x2 + 100x + 25)5

(3x2−10x+15)3(x4+70x2+25)3(x4−60x3−370x2−300x+25)3
. (72)

Expressions for the Darboux covering of maximal degree 60 can be obtained by substituting,
respectively, x 7→ x5, x 7→ x3 or x 7→ x2 into the functions in (72). The obtained 3
expressions are related by fractional-linear transformations of x. This relation can be used
to compute other Darboux coverings once a Darboux covering of the minimal (or maximal)
degree is known. A similar remark applies to Darboux coverings for standard octahedral or
tetrahedral equations.
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All coverings in (70)–(72) can be computed from scratch by part (iii) of Lemma 3.3,
which determines the branching pattern for the Darboux coverings, and by using Algorithm
1 in [Vid05, Section 3].

3.2 Properties of Darboux curves

The following Lemma is the key for effectiveness of our proposal to use Darboux evaluations.
It implies that there are only finitely many different Darboux coverings for all hypergeometric
equations.

Lemma 3.4 Let H1, H2 denote two hypergeometric equations of the same Schwartz type.
Suppose that φ1 : D1 → P1 and φ2 : D2 → P1 are Darboux coverings for H1, H2 respectively
of the same degree. Then the Darboux curves D1, D2 are isomorphic, and the coverings φ1,
φ2 are the same (up to automorphisms of P1 and of the Darboux curve).

Proof. Let y1 be a hypergeometric solution of H1. Since H1 and H2 have the same Schwartz
type, there is a hypergeometric solution y2 which is contiguous to y1. Note that y′1 is con-
tiguous to y1. Therefore there is a contiguous relation y2 = ay1 + by′1, with a, b ∈ C(z).
There is also a contiguity relation y′2 = cy1 + dy′1, with c, d ∈ C(z). Let u1 denote the
Riccati solution y′1/y1 for H1, and let u2 denote the Riccati solution y′2/y2 for H2. Then
u2 = (c + du1)/(a + bu1). This implies that the function fields C(z, u1) and C(z, u2) are
isomorphic, and so are the corresponding Darboux curves. 2

The following lemma allows us to compute all necessary Darboux coverings once Darboux
coverings for standard hypergeometric equations (from Subsection 3.1) are known. For this
purpose we usually take H1 to be a main representative equation of a chosen Schwartz type,
and we usually take H0 to be the corresponding standard equation.

Lemma 3.5 Let H0, H1 denote two linear differential equations. Suppose that H1 is a
pull-back of H0 with respect to a covering ψ : P1 → P1. Suppose that φ0 : D0 → P1 is a
Darboux covering for H0. Then the fiber product D1 of ψ : P1 → P1 and φ0 : D0 → P1 is a
Darboux curve for H1, and the projection φ1 : D1 → P1 (to the source of ψ) is a Darboux
covering for H1 of the same degree as φ0.

Proof. Let z denote a projective parameter for the P1 below, and let x denote a projective
parameter of the other P1, so that the covering ψ corresponds to the extension C(x) ⊃ C(z).
Suppose that u0 be a Riccati solution for H0 which determines D0, so that C(D0) ∼= C(z, u0).
Then there is a solution y for H0 which satisfies y′ = u0y. The logarithmic derivative of the
pull-back of y with respect to (98) is u0ψ

′ + θ′/θ. It is a Riccati solution for H1, and it lies
in C(x, u0) ∼= C(x)⊗C(z) C(x, u0) which is the function field for the fiber product of ψ and
φ0. Since the degree of the projection to P1 is equal to the degree of ψ, the claim follows.2

The simplest coverings for Klein pull-backs ψ from standard hypergeometric equations
to other main representatives were first computed in [Sch72]. These Klein coverings are
familiar from classical transformations of hypergeometric series (see for instance [AAR99] or
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Denominators Schwartz Klein g(D), when deg γ : D̃→ D is equal to

k, `, m type degree m ` k 1

2, 3, 3 (1/2, 1/3, 1/3) 1 0 0 0 0
(1/3, 1/3, 2/3) 2 0 0 1 1

2, 3, 4 (1/2, 1/3, 1/4) 1 0 0 0 0
(2/3, 1/4, 1/4) 2 0 1 2 3

2, 3, 5 (1/2, 1/3, 1/5) 1 0 0 0 0
(1/2, 1/3, 2/5) 7 0 0 0 0
(1/2, 1/5, 2/5) 3 0 2 2 4
(1/3, 1/3, 2/5) 2 1 1 3 5
(1/3, 2/3, 1/5) 6 1 1 3 5
(2/3, 1/5, 1/5) 2 1 3 5 9
(1/3, 2/5, 3/5) 10 1 3 5 9
(1/3, 1/5, 3/5) 4 1 3 5 9
(1/5, 1/5, 4/5) 6 1 5 7 13
(2/5, 2/5, 2/5) 6 1 5 7 13

Table 1: Genus of Darboux curves

[Vid04, Section 5]), except the ones for the Schwartz types (1/2, 1/3, 2/5), (1/3, 2/3, 1/5),
(1/3, 2/5, 3/5). Here are rational functions that define Klein pull-backs for their main rep-
resentatives:

x2 (189− 64x)5

(3584x2+2457x−2916)3
,

4 x (25x− 9)5

27(x−1)(125x+3)3
,

3125 x2(x− 1)3(5x + 27)5

4(625x3−2875x2+675x−729)3
. (73)

Table 1 shows the genus of all Darboux curves; this information can be computed using
Lemma 3.5, part (iii) of Lemma 3.3, remarks in Appendixes 5.7 and 5.2. The third column
shows the degree of Klein morphism for the main representatives of each Schwartz type. We
explicitly compute and utilize Darboux coverings of minimal degree.

3.3 Hypergeometric functions on Darboux curves

First we describe radical solutions of a Fucshian equation with cyclic monodromy.

Lemma 3.6 Let C be an algebraic curve. Consider a second order Fuchsian differential
equation (69) on C. Suppose that its differential Galois group G is finite and cyclic. Suppose
that there are singular points with non-integer local exponent differences. Then:

(i) There exist exactly two independent radical solutions f1, f2.

(ii) For any regular singular point P ∈ C of (69) where the local exponent difference is not
an integer, the Q-valuations of f1 and f2 are different.
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Proof. Let KPV ⊃ C(C) be the Piccard-Vessiot extension of the differential equation (69),
and let V denote its space of solutions in KPV . The monodromy group G acts does not act
on V by scalar multiplication, because otherwise the quotient of two independent solutions
would be in C(C). Hence the representation of G on V splits into two irreducible represen-
tations. Let f1, f2 ∈ V be generators of the two G-invariant subspaces. If P ∈ C is a point
where the local exponent difference is not an integer, f1, f2 are in different spaces invariant
under the the local monodromy group. Hence they have well-defined Q-valuations, and the
valuations should be different. 2

Hypergeometric functions which pull-back to radical solutions under a Darboux covering
are characterized as follows.

Lemma 3.7 Let H denote a hypergeometric equation. Suppose that its monodromy group
G is tetrahedral, octahedral or icosahedral. Let φ : D → P1 denote a Darboux morphism for
H, of degree d. Let θ(z) 2F1

(
A,B
C

∣∣∣ f(z)
)

denote a hypergeometric solution of H, with f(z)
a fractional-linear function, and θ(z) a radical factor. Assume that the denominator of the
lower parameter C is equal to |G|/d. Then the hypergeometric function is pull-backed to a
radical function. Conversely, each radical solution of the pull-backed eqaution represents (up
to a scalar multiple) a hypergeometric equation with the assumed property.

Proof. Set m = |G|/d. Suppose that the pull-backed equation is normalized so that its
monodromy group is the cyclic group of order m. Then all non-integer local exponents of
the pull-backed equation have denominator m. We may assume that f(z) = z. There is a
point P above z = 0 such that the local exponent difference δ for the pull-backed equation
at P is non-integer. The denominator of δ is m. Let λ1, λ2 denote the local exponents at P ,
and let t denote a local parameter at P . For each local exponent λj there is a unique power
series solution of the form tλj (1 + α1t + α2t + . . .). By part (ii) of Lemma 3.6, both power
series represent radical functions.

The hypergeometric function is pull-backed, up to a constant multiple, to one of the
two mentioned power series. Hence the pull-back is a radical function. Conversely, push-
forwards of the two power series must me hypergeometric series. 2

Lemma 3.8 Let F1, F2 denote two contiguous algebraic (but not rational) Gauss hypergeo-
metric functions. Let D denote their common Darboux curve. Then the pull-back of F1/F2

is a rational function on D.

Proof. The logarithmic derivative F ′1/F1 is a rational function D. Up to a factor in C(D),
F ′1 is Gauss hypergeometric function contiguous to F1. The contiguous relation between F1,
F ′1 and F2 has coefficients in C(x), hence the claim follows. 2

Note that if we take any pair of contiguous evaluations in Section 2, the quotient of
the right-hand sides is a rational (rather then radical) function on the Darboux curve, as
suggested by Lemma 3.8. This allows us to express other contiguous evaluations conveniently
as product of a fixed radical function and some rational function on the Darboux curve.
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4 Computation of Darboux evaluations

This is an outline of actual computations that led us to the list of Darboux evaluations
in Section 2. If the Darboux curve has genus 0, computations are quite straightforward.
Subsections 4.2 and 4.3 are devoted to difficulties of expressing rational and radical functions
on genus 1 Darboux curves.

4.1 Computation of Darboux curves and coverings

Darboux coverings for the 3 standard Schwartz types are considered in Subsection 3.1.
Lemma 3.5 was used to compute other Darboux coverings and curves and curves. Let us fix
an Schwartz type which is not standard, and let H denote its representative hypergeometric
equation as listed in Section 1. Suppose that ϕ : P1

z 7→ P1
Z is a Darboux covering (of

minimal degree) for the corresponding standard hypergeometric equation. Suppose that
ψ : P1

X 7→ P1
Z is a Klein covering for H. Then the Darboux curve is a fiber product of ϕ and

ψ. An equation for it is given by the equation ψ(X) = φ(z); see Subsection 5.7.
If the Darboux curve has genus 0, then a parameterization of it immediately gives the

Darboux covering. As an example, consider the icosahedral type (1/2, 1/3, 2/5). We apply
Lemma 3.5 with H0 = H(1/5, 1/2, 1/3) and H1 = H(2/5, 1/2, 1/3). By formulas (19) and
(73) we get the following equation for the Darboux curve:

X2 (189− 64X)5

(3584X2+2457X−2916)3
=

1728 z (z2 − 11z − 1)5

(z4 + 228z3 + 494z2 − 228z + 1)3
. (74)

This is a rational curve. It can be parameterized by standard algorithms and computer
algebra packages such as Maple. Here is a parameterization:

X =
1728 x (x2 − 11x− 1)5

(x4 + 228x3 + 494x2 − 228x + 1)3
, z =

(7x− 1)5

x2 (x + 7)5
. (75)

(Recall that parameterizations are unique up to fractional-linear transformations on P1
x.)

The parametric expression for X gives the Darboux covering for H(2/5, 1/2, 1/3). We
recognize that this is the same Darboux covering (19) as for the Schwartz type (1/2, 1/3, 1/5).

With a computer algebra package and standard algorithms [vH94], [Kov86] at hand, it
is straightforward to pull-back a hypergeometric equation to a Darboux curve of genus 0,
and solve the pull-backed differential equation. Lemma 3.7 characterizes hypergeometric
functions which have to be identified with radical solutions. Since there are only 2 radical
solutions by Lemma 3.6, computer algebra systems should return them. (Otherwise we may
consider a simplified version of the procedure in Subsection 4.3.)

If the Darboux curve D has genus 1, we first wish to compute a convenient Weierstrass
model from the equation ψ(X) = ϕ(z). With such a model at hand, we identify D with the
elliptic curve (D,O), where O denotes the point at infinity. We intend to have the point
(x, ξ) = (0, 0) on D above X = 0, so to allow easy power series verification of the evaluations
in (35)–(68). This intention eventuates conveniently.

The Darbox covering is given by the X-component of an isomorphism between the elliptic
curve and the model ψ(X) = ϕ(z). We wish to express the covering function in such a way
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that multiplicities of its zeroes and poles would be well visible. This is not a straightforward
problem; it is discussed in Subsection 4.2. Pull-backs of hypergeometric equations onto
elliptic curves and finding radical solutions of those pull-backs are discussed in Subsection
4.3. In the rest of this Subsection, we derive the four elliptic curves E3, E4, E5, E6,
introduced in (33), (43), (53), (59) as Darboux curves for some icosahedral Schwartz types.

For the Schwartz type (1/3, 1/3, 2/5), we use Lemma 3.5 with H0 = H(1/5, 1/2, 1/3)
and H1 = H(2/5, 1/3, 1/3). This gives the equation X2

/
4(X−1) = ϕ1(z) for the Darboux

curve. After applying the fractional-linear transformation F 7→ F/(F − 1) to both sides we
get:

X2

(X − 2)2
= − 1728 z (z2 − 11z − 1)5

(z2 + 1)2 (z4 − 522z3 − 10006z2 + 522z + 1)2
. (76)

We collect full squares onto the left-hand side and observe that the Darboux curve is iso-
morphic to the genus 1 curve

ξ̃2 = −1728 z (z2 − 11z − 1). (77)

This curve is isomorphic to E3 via the isomorphism (z, ξ̃) 7→ (3x, 72ξ). The Darboux covering
is given by the X-component of the isomorphism between E3 and (76). We have

X

X − 2
=

72 ξ (9x2 − 33x− 1)2

(9x2+ 1)(81x4 − 14094x3 − 90054x2 + 1566x + 1)
,

so

ϕ3(x, ξ) = 2
/ (

1 +
(9x2+ 1)(81x4 − 14094x3 − 90054x2 + 1566x + 1)

72 ξ (9x2 − 33x− 1)2

)
. (78)

Expression (34) is derived by methods of Subsection 4.2.
For the Schwartz type (1/3, 2/3, 1/5), we use Lemma 3.5 with H0 = H(2/5, 1/2, 1/3)

and H1 = H(4/5, 1/3, 1/3). Then we get the same equation X2
/
4(X−1) = ϕ1(z). Hence

the Darboux curve is the same as for the type (1/3, 2/3, 1/5).
For the Schwartz type (2/3, 1/5, 1/5), we use Lemma 3.5 with H0 = H(1/5, 1/2, 1/3)

and H1 = H(1/5, 1/5, 2/3). This gives the equation 4X(1 − X) = ϕ1(z) for the Darboux
curve. After applying the fractional-linear transformation F 7→ 1− F to both sides we get:

(1− 2X)2 =
(z2 + 1)2 (z4 − 522z3 − 10006z2 + 522z + 1)2

(z4 + 228z3 + 494z2 − 228z + 1)3
. (79)

We collect full squares to the left-hand side and observe that the Darboux curve is isomorphic
to the genus 1 curve

ξ̃2 = z4 + 228z3 + 494z2 − 228z + 1. (80)

This curve is isomorphic to E4 by the isomorphism

(z, ξ̃) 7→
(

57x− 5ξ

x + 25
,

25 (ξ2 − 570ξ − 380x2 + 248x + 25)
(x + 25)2

)
. (81)

Like with ϕ3(x, ξ), we identify ϕ4(x, ξ) with the X-component of the isomorphism between
E4 and (79), and apply methods of Lemma 4.2 to get expression (44).
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Elliptic Mordell-Weil Rational
curve group points

E3 Z/6Z O, (0, 0), (− 1
9 , 5

9 ), (− 1
9 ,− 5

9 ), (1,−5), (1, 5)

E4 Z⊕ Z/2Z O, O∗= (0, 0), An = n
(

1
5 , 3

5

)
, Ãn = −n

(
1
5 , 3

5

)
,

A∗n = n
(

1
5 , 3

5

)
+O∗, Ã∗n = −n

(
1
5 , 3

5

)
+O∗

E5 Z/4Z⊕ Z/2Z O, (0, 0), (− 1
4 ,− 3

4 ), (− 1
4 ,− 3

4 ),

(−1, 0), (− 1
16 , 0), ( 1

4 ,− 5
4 ), ( 1

4 , 5
4 )

E6 Z/6Z O, (0, 0), (−1, 1), (−1,−1), (1,−1), (1, 1)

Table 2: Rational points on elliptic curves

For the Schwartz type (1/3, 2/5, 3/5), we use Lemma 3.5 with H0 = H(2/5, 1/2, 1/3)
and H1 = H(2/5, 2/5, 2/3). Then we get the same equation 4X(1−X) = ϕ1(z). Hence the
Darboux curve is the same as for the type (2/3, 1/5, 1/5).

For the Schwartz type (1/3, 1/5, 3/5), we use Lemma 3.5 with H0 = H(1/5, 1/2, 1/3)
and H1 = H(1/5, 1/3, 3/5). This gives the equation −64X

/
(X − 1)(9X − 1)3 = ϕ1(z)

for the Darboux curve. This curve is isomorphic to E5, though it is not straightforward
to compute a handy isomorphism with current computer algebra packages. The package
algcurves of Maple 9.0 can be used to obtain a Weierstrass form and an isomorphism. The
isomorphism ought to be simplified using methods of Subsection 4.2. Eventually, we obtain
an isomorphism given by z = −2(ξ − 3x)2

/
(ξ + 3x)(4x + 1) and X = ϕ5(x, ξ) as in (54).

For the Schwartz type (1/5, 1/5, 4/5), we use Lemma 3.5 with H0 = H(1/5, 1/2, 2/5)
and H1 = H(1/5, 1/5, 4/5). This gives the equation 4X(1 − X) = ϕ2(z) for the Darboux
curve. After applying the fractional-linear transformation F 7→ 1− F to both sides we get

(1− 2X)2 = − 64 x (x2 − x− 1)5

(x2 + 1)2(x4 − 22x3 − 6x2 + 22x + 1)2
. (82)

We collect full squares to the left-hand side and easily observe that the Darboux curve is
isomorphic E6.

For the Schwartz type (2/5, 2/5, 2/5), we use Lemma 3.5 with H0 = H(2/5, 1/2, 1/5)
and H1 = H(2/5, 2/5, 2/5). Then we get the same equation 4X(1−X) = ϕ2(z). Hence the
Darboux curve is the same as for the type (1/5, 1/5, 4/5).

Notice that the elliptic curves E3, E4, E5, E6 are defined over Q. It is useful to know
rational points on them. Table 2 gives this arithmetic information [Sil86]. It was computed
using Maple package Apecs [Con]. Recall that by O we denote the point at infinity. As
we see, only the curve E4 has infinitely many rational points. In Table 2 we introduce the
notation O∗, An, Ãn, A∗n, Ã∗n (with positive n ∈ Z) for the rational points on E4.
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4.2 Representing functions on genus 1 curves

Here we consider the problem of representation of rational functions on elliptic curves.
Foremost, we use techniques of this Subsection to compute expressions (34), (44), (54),
(60) for Darboux coverings from genus 1 Darboux curves. Subsection 4.3 extends these
techniques for computation of expressions on the right-hand sides of (35)–(42), (45)–(52),
(55)–(58), (61)–(68).

A canonical way to represent a rational functions F on a (hyper)elliptic curve ξ2 = G(x)
(with G(x) ∈ C[x]) is the sum f1(x) + ξf2(x), with f1(x), f2(x) ∈ C(x). This representation
suits well algebraic computations, but it gives little geometric information about the func-
tion. For example, the principal divisor for a function can be much simpler than the degree
of f1(x) and f2(x) may suggest. We would like to have a compact expression that reflects
well multiplicities in the principal divisor. We do not give strict definitions or algorithms
for an alternative representation. Rather, we give Tables of principal divisors on the elliptic
curves E3, E4, E5, E6, and propose to combine those principal divisors to make the divisor
for F . The corresponding multiplicative expression in C[x, ξ]-polynomials from our Tables
will give, up to a constant multiple, a compact expression for F that we hopefully seek. We
need to compute only finitely many rational and radical functions on elliptic curves, and our
Tables will be give enough information for these purposes.

Concretely, we start with Darboux covering ϕ3(x, ξ). Its principal divisor can be com-
puted from (78) to be the following:

(0, 0) +O + 5
(

11+5
√

5
6 , 0

)
+ 5

(
11−5

√
5

6 , 0
)
− 3R1 − 3R2 − 3R3 − 3R4. (83)

Here the four points R1, R2, R3, R4 are defined by the equations

81x4 + 6156x3 + 4446x2 − 684x + 1 = 0, 150ξ = 27x3 + 1989x2 + 741x− 7. (84)

Table 3 gives a list of principal divisors on E3. For i ∈ {1, 2, 3, 4}, by R̃i we denote the
inverse of Ri in the group structure of E3. Divisor (83) can be rewritten as follows:
{

(0, 0) +
(

11+5
√

5
6 , 0

)
+

(
11−5

√
5

6 , 0
)
−3O

}
+ 2

{
2

(
11+5

√
5

6 , 0
)
+2

(
11−5

√
5

6 , 0
)
−4O

}

+
{

3
(− 1

9 ,− 5
9

)− 3O
}
− 3

{
R1 + R2 + R3 + R4 +

(− 1
9 ,− 5

9

)− 5O
}

.

Observe that each divisor in curled brackets is present in Table 3. We can immediately build
the corresponding multiplicative combination of the functions ξ, 1+33x−9x2, 1−9ξ +54x,
1 + 21ξ − 117x + 9xξ − 234x2. Up to undetermined constant multiple, the multiplicative
expression is (34). The constant multiple can be determined by evaluating the multiplicative
expression and (78) a convenient point, say (− 1

9 , 5
9 ).

As an extra exercise, one may consider the function 1−ϕ3. Its divisor can be computed
from (34) or (78) to be

3R̃1 + 3R̃2 + 3R̃3 + 3R̃4 − 3R1 − 3R2 − 3R3 − 3R4. (85)
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Function Divisor

ξ (0, 0) +
(

11+5
√

5
6 , 0

)
+

(
11−5

√
5

6 , 0
)
− 3O

1 + 33x− 9x2 2
(

11+5
√

5
6 , 0

)
+ 2

(
11−5

√
5

6 , 0
)
− 4O

1− 9ξ + 54x 3
(− 1

9 ,− 5
9

)− 3O
1 + 9ξ + 54x 3

(− 1
9 , 5

9

)− 3O
1 + 9x

(− 1
9 ,− 5

9

)
+

(− 1
9 , 5

9

)− 2O
ξ + 5x (0, 0) + (− 1

9 , 5
9 ) + (1,−5)−3O

1+21ξ−117x+9xξ−234x2 R1 + R2 + R3 + R4 +
(− 1

9 ,− 5
9

)− 5O
1−21ξ−117x−9xξ−234x2 R̃1 + R̃2 + R̃3 + R̃4 +

(− 1
9 , 5

9

)− 5O

Table 3: Principal divisors on E3

A straightforward combinatorial work suggests the expression

1− ϕ3(x, ξ) =
(1− 21ξ − 117x− 9xξ − 234x2)3 (1− 9ξ + 54x)
(1 + 21ξ − 117x + 9xξ − 234x2)3 (1 + 9ξ + 54x)

. (86)

Our proposal boils down in building a sufficient table of principal divisors, and combining
the known principal divisors to arrive at the principal divisor of a target function. In practise,
both things are done in parallel. We start with the functions we wish to express, and compute
their divisors. We look at Q-rational points that occur, and use knowledge of the Mordell-
Weil group (see Table 2) to foresee and compute suitable C[x, ξ]-polynomials that vanish only
on rational points. Then we distinguish Q-irreducible divisor components of higher degree.
For each such divisor component Γ, we use Gröbner bases to find C[x, ξ]-polynomials of
minimal degree that vanish on Γ with sufficient multiplicities. We choose those polynomials
whose divisors enlarge Γ minimally or least awkwardly. We look at additional components
that occur (usually they are rational points); if they are new, we introduce new polynomials
that could compensate the additional components.

For example, consider the Q-irreducible component R1 + R2 + R3 + R4 defined by (84).
A Gröbner basis gives the following quadratic polynomials that vanish on it:

9xξ − 234x2 + 21ξ − 117x + 1, 3ξ2 − 2088x2 + 150ξ − 744x + 7. (87)

Other quadratic polynomials are obtained by linear combination. We have chosen the
first polynomial in (87), and consequently we had to compensate its additional component
(− 1

9 ,− 5
9 ). A reasonable alternative is the quadratic polynomial ξ2−21xξ−150x2 + ξ +25x,

whose divisor is R1 + R2 + R3 + R4 + (0, 0) + (1,−5)− 6O.
Now consider computation of expression (44) for the Darboux covering ϕ4(x, ξ). This is

the most complicated case, so our description of the computational method reaches deeper
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refinement level. Let us introduce the functions N and L on the rational points of E4:

N(An) = n, N(A∗n) = n, N(Ãn) = −n, N(Ã∗n) = −n, N(O∗) = 0,

L(An) = 0, L(A∗n) = 1, L(Ãn) = 0, L(Ã∗n) = 1, L(O∗) = 1.
(88)

Principal divisors of C[x, ξ]-polynomials have the form
∑n

j=1 Sj − nO. If all points Sj are
rational, by Lemma 5.1 we must have

n∑

j=1

N(Sj) = 0 and
n∑

j=1

L(Sj) even. (89)

A preliminary expression for ϕ4(x, ξ) can be computed by composing the obvious iso-
morphism between the curves in (79) and (80) with isomorphism (81). The principal divisor
of ϕ4(x, ξ) is:

(0, 0) +O + 5P1 + 5P2 −
(

1
125 , 57

625

)− (−25, 285)− 5Q1 − 5Q2, (90)

where
P1,2 =

(
− 3

2 ± 7
2
√

5
, 7∓ 3

√
5
)

, Q1,2 =
(
−4± 9√

5
,−27± 12

√
5
)

.

In the notation of Table 2, we have
(

1
125 , 57

625

)
= A5 and (−25, 285) = A∗5.

It seems convenient to consider the lines through P1, P2 and through Q1, Q2. Their
equations are 7ξ = 4 − 30x and 3ξ = 20x − 1, respectively. The third points on these two
lines are, respectively, Ã∗6 and Ã∗4. But if we add and subtract extra divisor terms 5Ã∗6 and
5Ã∗4 in (90), it is very cumbersome to compensate them due to (89). The C[x, ξ] polynomials
for compensating principal divisors are expected to have very large coefficients.

We may define functions in (88) on the divisors P1+P2 and Q1+Q2 and keep consistency
with (89) by considering the two divisors as equivalents of A∗6 and A∗4, respectively. Rather
than introducing the sub-expression P1 + P2 + Ã∗6 − 3O in (90), we may try to work with
the principal divisor P1 + P2 + Ã∗4 + Ã2 − 4O. Then Ã∗4 is compensated automatically. We
can work out the following expressions of (90) as sums of principal divisors:

5
(
P1 + P2 + Ã∗4 + Ã2 − 4O

)
+

(
A5 + Ã∗5 +O∗ − 3O

)

−5
(
Q1 + Q2 + Ã∗4 − 3O

)
−

(
5Ã2 + 2A5 − 7O

)
−

(
A∗5 + Ã∗5 − 2O

)
,

and

5
(
P1 + P2 + Ã∗4 + Ã2 − 4O

)
+

(
A10 + Ã∗10 +O∗ − 3O

)

−5
(
Q1 + Q2 + Ã∗4 − 3O

)
−

(
5Ã2 + A10 − 6O

)
−

(
A5 + A∗5 + Ã∗10 − 3O

)
.

Now we can build a table of C[x, ξ]-polynomials of the involved principal divisors. Eventually,
the two decompositions of (90) give the following expressions for ϕ4(x, ξ):

8208 (1− 7y + 15x + 15x2)5 (−5ξ + 57x)
(1+3ξ−20x)5(59375x2ξ+12350xξ+475ξ−166250x3−49875x2−3800x−19)(x+25)

,
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Function Divisor Function Divisor

x 2O∗ − 2O 1− 15x− 5x2 P1 + P2 + P̃1 + P̃2 − 4O
1− 5x A1 + Ã1 − 2O 1− 40x− 5x2 Q1+Q2+Q̃1+Q̃2−4O
25 + x A∗5 + Ã∗5 − 2O 5−7ξ−45x−5x2 P1 + P2 + Ã∗5 + Ã1 − 4O

1− 125x A5 + Ã5 − 2O 5+18ξ−80x+5x2 Q1 + Q2 + Ã∗5 + A1 − 4O
5ξ + 57x A∗5+Ã5+O∗ − 3O 1− 7y + 15x + 15x2 P1 + P2 + Ã∗4 + Ã2 − 4O
−5ξ + 57x Ã∗5+A5+O∗ − 3O 4− 7ξ − 30x P1+P2 +Ã∗6 − 3O
1+5ξ+10x 2Ã1+A2 − 3O 1 + 3ξ − 20x Q1+Q2+Ã∗4 − 3O
1− 3ξ + 2x A2+A∗2+Ã∗4 − 3O 1−8ξ+22x−15x2 2A1 + A∗2 + Ã∗4 − 4O
4+21ξ+41x A2+A∗4+Ã∗6 − 3O 4− 35ξ − 101x A∗1+A5+Ã∗6 − 3O
5− 3ξ − 34x A∗5+Ã∗4+Ã1 − 3O 20− 7ξ − 79x A1+A∗5+Ã∗6 − 3O

Function Divisor

1+50x−125ξ2+450xξ−500x2 5A1 + Ã5 − 6O
1+50x−125ξ2−450xξ−500x2 5Ã1 + A5 − 6O
25−570ξ+248x+ξ2−380x2 R1 + R2 + R3 + R4 + 2Ã∗5 − 6O

4+95ξ+83x+21ξ2−475xξ+40x2 R1 + R2 + R3 + R4 + Ã∗6 + Ã∗4 − 6O

Table 4: Principal divisors on E4

Function Divisor

ξ + 5x 2
(

1
4 ,− 5

4

)
+ (0, 0)− 3O

ξ − 5x 2
(

1
4 , 5

4

)
+ (0, 0)− 3O

ξ + 3x 2
(− 1

4 , 3
4

)
+ (0, 0)− 3O

ξ − 3x 2
(− 1

4 ,− 3
4

)
+ (0, 0)− 3O

1 + ξ + x
(− 1

4 ,− 3
4

)
+

(
1
4 ,− 5

4

)
+ (−1, 0)

1− 2ξ + 6x P1 + P2 +
(

1
4 , 5

4

)− 3O
1 + 12x + 16x2 P1 + P2 + P̃1+P̃2 − 4O
1− 2ξ − 14x Q1 + Q2 +

(
1
4 ,− 5

4

)− 3O
1− 28x + 16x2 Q1 + Q2 + Q̃1+Q̃2 − 4O

1 + 8ξ − 28x + 8xξ − 104x2 R1 + R2 + R3 + R4 +
(

1
4 , 5

4

)− 5O

Table 5: Divisors on E5
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and, respectively,

432 (1− 7ξ + 15x + 15x2)5 (49495ξ + 292441x)
(1+3ξ−20x)5(2375ξ2+7400xξ+1150ξ−42000x2−10200x−521)(2605ξ+29678x−475)

.

Compensation of 5Ã2 look quite awkward in both formulas.
As the last attempt, we try to introduce P1+P2+Ã∗5+Ã1−4O and Q1+Q2+Ã∗5+A1−4O

in (90), forgetting divisors of the linear polynomials 7ξ+30x−4 and 3ξ−20x+1. A natural
effort to compensate 5Ã1 and 5A1 leads to the following expression decomposition of (90):

5
(
P1 + P2 + Ã∗5 + Ã1 − 4O

)
+

(
5A1 + Ã5 − 6O

)
+ (2O∗ − 2O)

−5
(
Q1 + Q2 + Ã∗5 + A1 − 4O

)
−

(
5Ã1 + A5 − 6O

)
−

(
A∗5 + Ã5 +O∗ − 3O

)
.

This expression gives formula (44). The most convenient principal divisors are listed in
Table 4. The points R1, R2, R3, R4 on E4 are the points in the fiber z = 1 of ϕ4(x, ξ).

The principal divisor for ϕ5(x, ξ) turns out to be

(0, 0) +O + 5P1 + 5P2 −
(− 1

4 , 3
4

)− (− 1
4 ,− 3

4

)− 5Q1 − 5Q2, (91)

where
P1,2 =

(
−3±√5

8 , −5±3
√

5
8

)
, Q1,2 =

(
7±3

√
5

8 , −45∓21
√

5
8

)
.

As mentioned in Subsection 4.1, computation of a preliminary expression for ϕ5(x, ξ) was
not straightforward. A natural effort leads to the following expression decomposition of (91):

3
(
2

(
1
4 ,− 5

4

)
+ (0, 0)− 3O

)
+ 5

(
P1 + P2 +

(
1
4 , 5

4

)− 3O
)

−
( (

1
4 , 5

4

)
+

(
1
4 ,− 5

4

)
+

(− 1
4 , 3

4

)
+

(− 1
4 ,− 3

4

)− 4O
)

−2
(
2

(
1
4 , 5

4

)
+ (0, 0)− 3O

)
− 5

(
Q1 + Q2 +

(
1
4 ,− 5

4

)− 3O
)
. (92)

This expression gives formula (54). The most convenient principal divisors are listed in
Table 5. The points R1, R2, R3, R4 on E5 are the points in the fiber z = 1 of ϕ5(x, ξ).

The principal divisor for ϕ6(x, ξ) turns out to be

(0, 0) +O + 5P1 + 5P2 − (1, 1)− (−1, 1)− 5Q1 − 5Q2. (93)

where
P1,2 =

(
1±√5

2 , 0
)

, Q1,2 =
(−2±√5,−5± 2

√
5
)
.

We naturally arrive at the following expression for (93):
(
P1 + P2 + (0, 0)−O

)
+ 2

(
2P1 + 2P2 − 4O

)
+ 2

(
2(1, 1) + (1,−1)− 2O

)

−
(
3(−1, 1)− 3O

)
− 5

(
Q1 + Q2 + (1, 1)− 3O

)
.

This expression gives formula (60). The most convenient principal divisors are listed in
Table 6. The points R1, R2 on E6 are in the fiber z = 1 of ϕ6(x, ξ).
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Function Divisor Function Divisor

ξ (0, 0) + P1 + P2 − 3O 1 + x− x2 2P1 + 2P2 − 4O
1− ξ (−1, 1) + 2(1, 1)− 3O 1− 4x− x2 Q1+Q2+R1+R2−4O
1 + ξ (−1,−1) + 2(1,−1)− 3O ξ + 2x + x2 (0, 0) + Q1 + Q2 − 3O

1 + ξ + 2x 3(−1, 1)− 3O 1 + ξ − 2x Q1 + Q2 + (1, 1)− 3O
1− ξ + 2x 3(−1,−1)− 3O 1− ξ − 2x R1 + R2 + (1,−1)− 3O

Table 6: Divisors on E6

4.3 Computation of hypergeometric evaluations

In principle, evaluations (35)–(42), (45)–(52), (55)–(58), (61)–(68) can be computed by
pulling-back their hypergeometric equations onto E3, E4, E5, E6, respectively, and finding
radical solutions of the pull-backed differential equations. We use divisors (on Darboux
curves) with coefficients in Q, introduced in Appendix 5.1. But standard computer algebra
systems do not handle differential equations on higher genus curves.

The pull-backed equations are cumbersome as we will see. On the other hand, their
singular points and local exponent differences are quite easy to see, see Appendix 5.5. The
local exponents tell us possible coefficients in the principal divisors of the radical solutions.
Possible principal divisors are restricted by Lemma 5.2 and Lemma 3.6. For simplest hy-
pergeometric equations, we may end up with just 2 possible principal divisors for radical
solutions; then we can find those solutions without computing the pull-back equation explic-
itly. Additional contiguous evaluations can be obtained by differentiating known solutions
and contiguous relations, while respecting Lemma 3.8 and avoiding explicit computation
with pull-back equation again.

Otherwise we may have several candidates for radical solutions, which we must check
by substituting into the pull-back equation. If we have one undetermined simple zero for a
radical solution, its location can be restricted by the arithmetical argument that the principal
divisor should be invariant under the Galois action of Q.

We start with computation of evaluations (35)–(38). We use Riemann notation (102)
and consider the icosahedral hypergeometric equation with the solution space

P





0 1 ∞
0 0 −1/30

2/5 1/3 3/10

z





.

Its pull-back z 7→ ϕ3(x, ξ), y(z) 7→ Y (ϕ3(x, ξ)) onto E3 has the following regular singular
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points and local exponents:




(0, 0) O
(

11+5
√

5
6 , 0

) (
11−5

√
5

6 , 0
)

R1 R2 R3 R4

0 0 0 0 − 1
10 − 1

10 − 1
10 − 1

10
2
5

2
5 2 2 9

10
9
10

9
10

9
10





Condition (i) of Lemma 5.2 leaves only two candidates for the divisors of radical solutions:

2
5 O − 1

10R1 − 1
10R2 − 1

10R3 − 1
10R4,

2
5 (0, 0)− 1

10R1 − 1
10R2 − 1

10R3 − 1
10R4. (94)

They must represent divisors of the two solutions of Lemma (3.6) and, by identification of
local solutions, the hypergeometric series (35) and (37). Since the point x = 0 corresponds to
(0, 0) ∈ E3, the first divisor obviously the series in (35). The right-hand side of that formula
is easy to construct from the divisor by using Table 3 and the known value of left-hand side
at x = 0. Similarly, the second divisor in (94) implies the identity

ϕ3(x, ξ)2/5
2F1

(
7/10, 11/30

7/5

∣∣∣∣ ϕ3(x, ξ)
)

=
x1/5 (1− 9ξ + 54x)1/30

(1 + 21ξ − 117x + 9xξ − 234x2)1/10
.

This gives formula (37). We derived these identities without even computing the pull-back
differential equation on E3. Now we can derive formulas (36), (38) without any reference to
pull-back equations as well. Contiguous companion (36) for (35) can be computed (using a
computer algebra package) as follows:

1. Differentiate both sides of (36) and obtain an expression for 2F1

(
13/10, 29/30

8/5

∣∣∣ ϕ3

)
. At

this stage we are satisfied with any radical expression for this function.

2. Using contiguous relations, find some expressions for the hypergeometric series which
are contiguous to the series in (35), and the integer differences between the correspond-
ing upper and lower parameters are at most ±1.

3. Find Q-principal divisors of the just computed expressions. Choose one divisor which
looks most convenient. For example, we chose the following divisor for 2F1

(
3/10, 29/30

3/5

∣∣∣ ϕ3

)
:

9
10R1 + 9

10R2 + 9
10R3 + 9

10R4 + S1 + S2 + S̃1 + S̃2 + 2
5O − 2R̃1 − 2R̃2 − 2R̃3 − 2R̃4,

where S1, S2, S̃1, S̃2 are the points with the x-coordinate equal to 1 ± 10/3
√

11. An
example of other candidate is the following divisor for 2F1

(
3/10, 29/30

8/5

∣∣∣ ϕ3

)
:

9
10R1 + 9

10R2 + 9
10R3 + 9

10R4 + P̂1 + P̂2 + P̂3 − 3
5O − 3

(
11+5

√
5

6 , 0
)
− 3

(
11−5

√
5

6 , 0
)

,

where the points P̂1, P̂2, P̂3 are defined by the equations 9x3 + 378x2 + 117x− 4 = 0,
5ξ = 3x2 + 24x− 2.

26



4. Using Table 3 and techniques of Subsection 4.2, compute a convenient expression for
a fractional-linear function with the chosen principal divisor. For example, we rewrite
our chosen divisor as

9
10

{
R1+ R2+ R3+ R4+

(− 1
9 ,− 5

9

)− 5O}− 2
{

R̃1+ R̃2+ R̃3+ R̃4 +
(− 1

9 , 5
9

)− 5O
}

+
{
S1+ S2+ S̃1+ S̃2− 4O}

+ 2
{(− 1

9 ,− 5
9

)
+

(− 1
9 , 5

9

)− 2O}− 29
30

{
3
(− 1

9 ,− 5
9

)− 3O}

and replace the five terms by the corresponding polynomials from Table 3.

For more comfortable calculations, we can express contiguous function in the form G(x, ξ)×
2F1

(
3/10,−1/30

3/5

∣∣∣ ϕ3

)
with G(x, ξ) ∈ C(E3), following Lemma 3.8. A contiguous companion

for (37), such as (38), can be found by a similar procedure.
Now we consider computation of evaluations (39)–(42). The pull-back z 7→ ϕ3(x, ξ),

y(z) 7→ Y (ϕ3(x, ξ)) of the icosahedral hypergeometric equation with the solution space

P





0 1 ∞
0 0 −1/10

1/5 1/3 17/30

z





.

is the following differential equation (with coefficients in a convenient form):

Y ′′ +
3(3+47ξ+1974x−2051ξ2+2676xξ+54348x2+33ξ3−1002xξ2−1548x2ξ)

10 ξ2 (1 + 21ξ − 117x + 9xξ − 234x2)
Y ′

+
51 ξ (1− 9ξ + 54x) (1− 21ξ − 117x− 9xξ − 234x2)

25 x2 (1 + 9x) (1 + 21ξ − 117x + 9xξ − 234x2)2
Y = 0. (95)

Like in the previous case above, we know singularities and local exponents of this equation
without cumbersome computations. Here they are:





(0, 0) O R1 R2 R3 R4

0 0 − 3
10 − 3

10 − 3
10 − 3

10
1
5

1
5

17
10

17
10

17
10

17
10





Condition (i) of Lemma 5.2 gives the following candidates for the divisors of radical solutions:

1
5 O + X − 3

10R1 − 3
10R2 − 3

10R3 − 3
10R4,

1
5 (0, 0) + Y − 3

10R1 − 3
10R2 − 3

10R3 − 3
10R4.

Here X and Y are regular points of (95). By condition (ii) and the additional statement of
the same lemma, these should be torsion points on E3 defined over Q. The possibilities for
X and Y are: (− 1

9 ,− 5
9 ), (− 1

9 , 5
9 ), (1,−5), (1, 5). This gives 8 possible divisors of a radical

solution. For each possibility, one has to construct a radical function (in any form) with that
divisor, and to check whether it is a solution of (95). Alternatively, candidate solutions can
be expanded in power series around (x, ξ) = (0, 0) and compared with the hypergeometric
series in (39) and (41). Then one does not have to know explicit equation (95), but has
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to find enough power series terms of all candidate solutions (so that the right candidates
could be selected). It turns out that actual solutions have X = (− 1

9 ,− 5
9 ) and Y = (1,−5).

These two solutions and evaluations (39), (41) can be expressed in a convenient form by
using methods of subsection 4.2. Eventually, both companion evaluations (40), (42) can be
obtained by the same four-step procedure as in the previous case.

In principle, one can find all our evaluations by combining the local exponents of the
corresponding pull-back equations, and trying all candidate principal divisors of possible
solutions. But the number of possibilities is usually very large. Needless to say, all our
computations need assistance of computer algebra packages.

Now we consider evaluation of formulas (45)–(48). A pull-back of a hypergeometric
equation with the local exponent differences (1/5, 1/5, 2/3) has the following singularities
and local exponents:





O∗ O R1 R2 R3 R4 A5 A∗5 Q1 Q2

0 0 0 0 0 0 − 1
30 − 1

30 − 1
6 − 1

6
1
5

1
5 2 2 2 2 1

6
1
6

5
6

5
6





Condition (i) of Lemma 5.2 gives the following candidates for the divisors of radical solutions:

− 1
6Q1 − 1

6Q2 + 1
6A5 + 1

6A∗5,
1
5 O + 1

5 (0, 0)− 1
6Q1 − 1

6Q2 − 1
30A5 − 1

30A∗5,
1
5O − 1

6Q1 − 1
6Q2 + 1

6A5 − 1
30A∗5,

1
5 (0, 0)− 1

6Q1 − 1
6Q2 − 1

30A5 + 1
6A∗5,

1
5O − 1

6Q1 − 1
6Q2 − 1

30A5 + 1
6A∗5,

1
5 (0, 0)− 1

6Q1 − 1
6Q2 + 1

6A5 − 1
30A∗5.

The candidate divisors are grouped into possible pairs of divisors of actual solutions accord-
ing to Lemma 3.6. The divisors in the first pair do not satisfy condition (ii) of Lemma 5.2.
To decide the right pair, one may take one divisor from each of the one two pairs, construct
an expression for a corresponding radical function, and compare its power series around
(0, 0). The last pair is the right one. Once we have the right divisors for (45) and (47), we
can proceed similarly as in the pervious cases. Application of the methods of Subsection 4.2
may require some combinatorial creativeness. For example, here is a convenient splitting of
the right divisor for (45):

1
6

(
Ã∗4+A∗5+Ã1 − 3O

)
− 1

6

(
Q1+Q2+Ã∗4 − 3O

)
− 1

30

(
5Ã1+A5 − 6O

)
.

Now we consider evaluation of formulas (49)–(52). We comment only the most compli-
cated step of choosing the divisors of the actual solutions of the pull-back of a hypergeomet-
ric equation with the local exponent differences (2/5, 3/5, 1/3). The singularities and local
exponents are the following:





O∗ O P1 P2 A5 A∗5 Q1 Q2

0 0 0 0 − 1
6 − 1

6 − 5
6 − 5

6
2
5

2
5 2 2 13

30
13
30

13
6

13
6
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Condition (i) of Lemma 5.2 gives the following candidates for the divisors of radical solutions:

− 1
6 A5 − 1

6 A∗5 − 5
6 Q1 − 5

6 Q2 + 2P1, − 1
6 A5 − 1

6 A∗5 − 5
6 Q1 − 5

6 Q2 + 2P2,

− 1
6 A5 − 1

6 A∗5 − 5
6 Q1 − 5

6 Q2 + X + Y, X + Y ∈ {A5, A
∗
5}

2
5O + 2

5O∗ + 13
30 A5 + 13

30 A∗5 − 5
6 Q1 − 5

6 Q2,
2
5O + 13

30 A5 − 1
6 A∗5 − 5

6 Q1 − 5
6 Q2 + X, X ∈ {A2, A

∗
2}

2
5O − 1

6 A5 + 13
30 A∗5 − 5

6 Q1 − 5
6 Q2 + X, X ∈ {A2, A

∗
2},

2
5O∗ + 13

30 A5 − 1
6 A∗5 − 5

6 Q1 − 5
6 Q2 + X, X ∈ {A2, A

∗
2}

2
5O∗ − 1

6 A5 + 13
30 A∗5 − 5

6 Q1 − 5
6 Q2 + X, X ∈ {A2, A

∗
2}.

Here the restrictions on the additional points X, Y follow from condition (ii) and the
additional statement of Lemma 5.2. The first three possibilities can paired only with the
fourth divisor as (divisors of) functions f1, f2 of Lemma 3.6. To refute them, one has to
check only that a function with the fourth divisor (as the principal divisor) is not a solution
of the pull-back equation. Other possibilities have to be paired and checked as we did for
equation (95). The right divisors are these:

2
5O + 13

30 A5 − 1
6 A∗5 − 5

6 Q1 − 5
6 Q2 + A∗2,

2
5O∗ − 1

6 A5 + 13
30 A∗5 − 5

6 Q1 − 5
6 Q2 + A2.

Now we can compute (49), (51) like in the previous cases, etc.
Computation of evaluations (55)–(58), (61)–(68) is similar and no more complicated: first

find singularities and local exponents of the pull-backed equation (of a corresponding main
hypergeometric equation); make a list of possible divisors for radical solutions of the pull-
back; use Lemma 3.6 to make a short divisor list for necessary check, find radical functions
for the candidate divisors from the short list; compare their power series around (0, 0) with
the expansions of the hypergeometric series; take the right divisors and find a convenient
expression for their functions (using methods of Subsection 4.2); and by the described four-
step procedure find evaluations of the two contiguous companion hypergeometric series.

5 Appendix

Here we recall definitions and facts which are important to us. This material is widely
known, but quite rarely presented in a way which is most convenient for our purposes. We
concentrate the details that we use. For similar introductions, we refer to [vdW02], [Beu02],
[Ber04].

5.1 Algebraic curves

For general theory of algebraic curves we refer to [Ful69] or to [Sha74]. We assume algebraic
curves to be reduced, irreducible, smooth, complete (or projective), defined over C. In
particular, the projective line P1 is C ∪ {∞} set-theoretically. (All curves in this paper are
defined over Q, but we do not consider airthmetic properties here.)

29



Let C denote an algebraic curve. We denote the field of rational functions on C by C(C).
It can be generated by 2 functions, since C is birationally isomorphic to a (possibly singular)
curve in P2. The function field C(P1) can be generated by 1 function; such a generator is
called a rational parameter.

If P ∈ C and f ∈ C(C), then ordP (f) denotes the valuation of f at P . If negative,
this is the order of a pole of f at P ; otherwise this is the vanishing order of f at P . A
local parameter at P is a function tP ∈ C(C) such that ordP (tP ) = 1. For example, if C is
the projective line, then x − α is a local parameter at the point x = α, and 1/x is a local
parameter at x = ∞.

A divisor on C is a finite formal sum
∑

P∈C aP P , with aP ∈ Z. The degree of such a
divisor is the integer

∑
P∈C aP . The divisors form a commutative group under addition.

For a function f ∈ C(C) we have its principal divisor
∑

P∈C ordP (f) P , which has degree 0.
Principal divisors form a subgroup of degree 0 divisors. The quotient of these two groups
is a Piccard group of C; it is denoted by Pic(C). For example, Pic(P1) is the trivial group
because all degree zero divisors on P1 are principal.

Explicit curves in this paper have either genus 0 (i.e., isomorphic to P1) or genus 1. Let
E denote a curve of genus 1. It can be represented in a Weierstrass form ξ2 = G3(x), where
G3(x) is a cubic polynomial in C[x]. The point at infinity in this model by O. The Piccard
group of E is isomorphic (set-theoretically) to E itself. As usual, we identify a point P ∈ E

with the element of Pic(E) represented by the divisor P −O. Then the additive group law
on E can be given by the known chord-and-tangent method. In particular, if three points of
E lie on one line of P2, they add up to the neutral element O. The curve E with this group
law is an elliptic curve (E,O). Recall that a torsion point on E is a point of finite order.

Lemma 5.1 Let (E,O) denote an elliptic curve, and let T =
∑

P∈E aP P be a divisor on
E. Then T is a principal divisor if and only if

∑
P∈E aP P = O in the additive group of

(E,O).

Proof. Follows from the specified identification of (E,O) with Pic(E). 2

We also consider radical functions on C, that is, products of Q-powers of functions from
C(C). These are multi-valued functions, but their branching points are poles or zeroes
with finitely many complex branches coming together. Valuations of those functions are
well defined at any point, and have values in Q at the branching points. Accordingly, we
consider their principal divisors

∑
P∈C aP P with coefficients aP ∈ Q.

Lemma 5.2 Let (E,O) denote an elliptic curve, and let T =
∑

P∈E aP P be a divisor with
coefficients in Q. Then T is the principal divisor for a radical function if and only if the
following conditions hold:

(i) The degree
∑

P∈E aP is zero.

(ii) Let
∑

P∈E ãP P be an integer multiple of T such that all coefficients ãP are integers.
Then, in the additive group of E, the point

∑
P∈C ãP P must be a torsion point.
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Proof. Under these conditions, an integer factor nT of T would be a principle divisor with
integer coefficients. Then T is a divisor of G1/n for some G ∈ C(E).

On the other hand, if T is a divisor of a radical function f , then an integer power fn is
a rational function. The divisor nT sums up to O by Lemma 5.1. Other integer factors of
T with integral coefficients may sum up to a torsion point. 2

5.2 Finite coverings and pull-back transformations

Consider a finite covering φ : C → D from C to other algebraic curve D. It induces an
algebraic field extension C(C) ⊃ C(D). We denote the degree of φ by deg φ. The genus
g(C) and g(D) of both curves and branching data are related by the Hurwitz formula:

2 g(C)− 2 =
(
2 g(D)− 2

)
deg φ +

∑

P∈C

(rP − 1) . (96)

Here rP is the branching order at P . It is equal to ordP (tφ(P ) ◦ φ).
Now we convene what we mean by a pull-back of hypergeometric equation (1) with

respect to a finite covering. Let C denote an algebraic curve. Suppose that the function
field C(C) of C is generated by functions x, ξ. If C is a rational curve, we may assume that
ξ is not used and x is a rational parameter of C.

Consider a finite covering φ : C → P1. Let z denote a rational parameter for P1. Then
a pull-back of (1) with respect to φ is a differential equation is defined by transformation:

z 7−→ φ(x, ξ), y(z) 7−→ Y (x, ξ) = θ(x, ξ) y(φ(x, ξ)). (97)

Here θ(x, ξ) is a radical function. Note that such a function has the property that its
logarithmic derivative θ′(x, ξ)/θ(x, ξ) is in C(C). We use the derivation on C(C) that extends
the usual derivative on C(x). If C ∼= P1, then transformation (97) is the following:

z 7−→ φ(x), y(z) 7−→ Y (x) = θ(x) y(φ(x)). (98)

5.3 Differential Galois theory

A differential field K is a field with a derivation, i.e., a map D : K → K which satisfies
D(a + b) = D(a)+ D(b) and the Leibnitz rule D(ab) = aD(b) + bD(a). One usually denotes
D(a) by a′. An extension of the differential field K is a differential field L which contains
K and whose derivation extends the derivation of K. The basic example of a differential
field is the field C(z) of rational functions on P1 with the usual derivation. Other example
is the field C(C) of rational functions on an algebraic curve. To give a derivation on C(C)
one may consider a finite covering φ : C → P1 and the corresponding unique extension of
the usual derivation of C(z).

Fix a differential field K and consider a linear homogeneous differential equation (69).
Solutions in any extension of K form a linear space over the constant field {a ∈ K | a′ = 0}.
The dimension of the solution space is at most n. A Piccard-Vessiot extension KPV ⊃ K for
(69) is, roughly speaking, a minimal extension of differential fields, such that the solutions
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of (69) in KPV form a linear space of dimension n. The differential Galois group G of (69)
is the group of autocoverings of K that fix the elements of KPV . The action of G on the
n-dimensional space of solutions in KPV gives a faithful n-dimensional representation of G.
Therefore the differential Galois group G is usually considered as an algebraic subgroup of
GL(n,C).

In Section 3, we utilize the Riccati equation associated to (69). Solutions for the Riccati
equation are precisely the logarithmic derivatives y′/y of solutions for (69). Explicitly, the
Riccati equation for (69) with n = 2 is u′ + u2 + a1u + a0 = 0. Rational or algebraic
solutions of the Riccati equation are important in finding “closed form” solutions of the
original equation (69), see [Kov86]. We refer to algebraic solutions of the Riccati equation
in our working definition of Darboux curves.

Suppose that hypergeometric equation (1) has a finite monodromy group G. Then the
differential Galois group is isomorphic to G. (More generally, the differential Galois group of
a Fuchsian equation is isomorphic to the Zariski closure of a representation of the monodromy
group.) The Piccard-Vessiot extension KPV ⊃ C(z) is a finite Galois extension, the usual
Galois group is isomorphic to G as well. If y(z) ∈ KPV is a solution of (1), then KPV =
C(z, y).

In most papers on differential Galois theory, second order differential equations are nor-
malized to the form y(z)′′ = r(z)y(z), with r(z) ∈ C(z). Hypergeometric equation (1) can
be normalized by the transformation

y(z) 7−→ z(e0−1)/2 (1− z)(e1−1)/2 y(z). (99)

The normalized equation is:

d2y(z)
dz2

=
(

e2
1 − 1

4 (z − 1)2
+

e2
0 − 1
4 z2

+
1 + e2

∞ − e2
0 − e2

1

4 z (z − 1)

)
y(x). (100)

If the monodromy group G of a hypergeometric equation is isomorphic to A4, S4 or A5, then
the differential Galois group of the normalized equation (100) is G×{1,−1}. This does not
change facts that are important to us. Algebraic degree of Riccati solutions for (1) is the
same as of Riccati solutions for (100).

5.4 Hypergeometric equations

If we permute the parameters e0, e1, e∞ in (1) or multiply some of them by −1, we get
hypergeometric equations related by well-known fractional-linear transformations [AAR99].
In general, there are 24 hypergeometric equations related in this way, and they share the
same (up to radical factors and fractional-linear change of the independent variable) 24
hypergeometric Kummer’s solutions.

Hypergeometric equation (1) is usually written in the following form:

z (1− z)
d2y(z)
dz2

+
(
C − (A+B+1) z

) dy(z)
dz

−AB y(z) = 0. (101)

The parameters are relates as follows: e0 = 1 − C, e1 = C − A − B, e∞ = A − B. The
local exponents of (101) at z = 0 are 0 and 1− C. The local exponents at z = 1 are 0 and
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C − A− B. The local exponents at z = ∞ are A and B. We use the Riemann P -notation
to denote the linear space of solutions for (101):

P





0 1 ∞
0 0 A

1− C C −A−B B

z





. (102)

As we see, the first row contains the regular singular points, and the other rows contain the
local exponents and the variable z. This information determines a Fuchsian equation with
three regular singular points. In general, a basis of solutions for (102) is

2F1

(
A, B

C

∣∣∣∣ z

)
, z1−C

2F1

(
A+1−C, B+1−C

2− C

∣∣∣∣ z

)
, (103)

where 2F1

(
A, B

C

∣∣∣ z
)

:= 1+ A B
C·1! z + A(A+1)B(B+1)

C(C+1)·2! z2 + . . . is the Gauss hypergeometric series.

5.5 Fuchsian equations

All differential equations that we explicitly consider are Fuchsian equations. These equations
have only regular singular points. For equation (69) this means the following: if K = C(C)
for an algebraic curve C, then for any point P ∈ C and for i = 1, . . . , n we must have
ordP (ai) ≥ (n − i) (ordP (tP′)− 1), where tP is a local parameter at P . Local exponents
at P can be defined as follows: substitute y = tµP into the Fuchsian equation and consider
the terms to the power µ + n((ordP (tP′)− 1) of tP as an equation in µ; the roots of that
equation are precisely the local exponents. The local exponents at regular points are equal
to 0, 1, . . . , n− 1.

In general, singularities and local exponents do not determine a Fuchsian equation
uniquely. Hence we cannot always use the P -notation for general Fuchsian equations. How-
ever, in Section 4.3 we write down arrays of singularities and local exponents similar to
(102).

5.6 Contiguous relations of Gauss hypergeometric functions

Two Gauss hypergeometric functions are called contiguous (or associated in [Erd53]) if they
have the same argument z and their parameters a, b and c differ respectively by integers. As
is known [AAR99, Section 2.5], for any three contiguous 2F1 functions there is a contiguous
relation, which is a linear relation between the three functions where the coefficients are
rational functions in the parameters a, b, c and the argument z. A straightforward (though
not efficient) method to compute a contiguous expression for 2F1

(
a+k,b+`

c+m

∣∣∣ z
)

in terms of

2F1

(
a+1,b

c

∣∣∣ z
)

and 2F1

(
a,b
c

∣∣∣ z
)

is the following. By using the contiguous relations

b 2F1

(
a, b + 1

c

∣∣∣∣ z

)
= (b− a) 2F1

(
a, b

c

∣∣∣∣ z

)
+ a 2F1

(
a+ 1, b

c

∣∣∣∣ z

)
, (104)

(c− 1) 2F1

(
a, b

c− 1

∣∣∣∣ z

)
= (c− a− 1) 2F1

(
a, b

c

∣∣∣∣ z

)
+ a 2F1

(
a+ 1, b

c

∣∣∣∣ z

)
, (105)
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one eliminates the shifts in b and c, and then by using the contiguous relation

a(1− z) 2F1

(
a+ 1, b

c

∣∣∣∣ z

)
= (2a− c− az + bz) 2F1

(
a, b

c

∣∣∣∣ z

)
+(c− a) 2F1

(
a− 1, b

c

∣∣∣∣ z

)
(106)

one gets an expression with two contiguous terms. Effective computation of contiguous
relations is considered in [Vid03a]. They can be computed in O(log(max(k, l, m)) steps,
but complexity of expressions in each such step grows exponentially, and the output is
O(max(k, l, m)).

One can rewrite contiguity conditions in terms of local exponent differences at z = 0,
1, ∞ for the hypergeometric equation, since the parameters a, b, c determine the local
exponent differences and vice versa (if the sign of local exponent differences is taken into
account). The main hypergeometric solutions (103) of two hypergeometric equations (101)
are contiguous if for each X ∈ {0, 1,∞} the difference of signed local exponent differences
at X of the two equations is an integer, and the sum of the three integer differences is even.
Two hypergeometric equations have solutions contiguous to each other (or equivalently, they
have the same Schwartz type) if one can choose a permutation of local exponent differences
and their sign in such a way that the just described situation occurs.

For example, the parameters e0, e1, e∞ of hypergeometric equations of the Schwartz type
(1/3, 1/3, 2/3) can be characterized as follows: they are rational numbers, their denominators
are equal to 3, and the sum of their numerators is even.

5.7 Fiber products of curves

Let C1 and C2 denote two curves over C. Let φ1 : C1 → P1 and φ2 : C2 → P1 be two
finite coverings of degree m and n respectively. The fiber product of φ1 : C1 → P1 and
φ2 : C2 → P1 is a curve B with two coverings ψ1 : B → C1 and ψ2 : B → C2 such that
φ1 ◦ ψ1 = φ2 ◦ ψ2, and for any other curve B̃ with coverings ψ̃1 : B̃ → C1 and ψ̃2 : B̃ → C2

satisfying φ1 ◦ ψ̃1 = φ2 ◦ ψ̃2 there is a unique covering ξ : B̃ → B such that ψ̃1 = ψ1 ◦ ξ and
ψ̃2 = ψ2 ◦ ξ. Then the following diagram commutes:

P1

@
@

@R

¡
¡

¡ª

C1 C2

¡
¡

¡ª

@
@

@R

BB̃

@
@

@R

PPPPPPPPPPPq

-

φ1 φ2

ζ

ψ̃1

ψ1

ψ̃2

ψ2

We have deg ψ1 = deg φ2 and deg ψ2 = deg φ1. On the level for function fields, we have
C(B) = C(C1)⊗C(P1) C(C2).

A birational model for B is the curve on C1×C2 of those points (X1, X2) ∈ C1×C2 which
satisfy ϕ1(X1) = ϕ2(X2). This is a singular model in general. A singular point corresponds
to a pair (X1, X2) ∈ B such that X1 and X2 have branching indices r1 > 1, r2 > 1
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respectively (with respect to φ1 and φ2). Such a singularity is of type xr1
1 −xr2

2 ; by resolving
it we get gcd(r1, r2) points that correspond to (X1, X2) on a non-singular model for B; see [?].
This information allows us to compute the branching data for the projections ψ : B → C1

and ψ : B → C2 and the genus of B. For example, if X1 ∈ C1 has branching index r1 (with
respect to φ1), and the branching data of φ2 above φ1(X1) is a1+. . .+ak, then the branching

data for ψ1 above X1 is the following: gcd(a1, r1) ∗ lcm(a1,r1)
r1

+ . . .+gcd(ak, r1) ∗ lcm(ak,r1)
r1

.
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Askey-Wilson relations and Leonard pairs

MHF2005-18 Kenji KAJIWARA & Atsushi MUKAIHIRA
Soliton solutions for the non-autonomous discrete-time Toda lattice equation

MHF2005-19 Yuu HARIYA
Construction of Gibbs measures for 1-dimensional continuum fields

MHF2005-20 Yuu HARIYA
Integration by parts formulae for the Wiener measure restricted to subsets
in R

d

MHF2005-21 Yuu HARIYA
A time-change approach to Kotani’s extension of Yor’s formula

MHF2005-22 Tadahisa FUNAKI, Yuu HARIYA & Mark YOR
Wiener integrals for centered powers of Bessel processes, I

MHF2005-23 Masahisa TABATA & Satoshi KAIZU
Finite element schemes for two-fluids flow problems

MHF2005-24 Ken-ichi MARUNO & Yasuhiro OHTA
Determinant form of dark soliton solutions of the discrete nonlinear Schrödinger
equation

MHF2005-25 Alexander V. KITAEV & Raimundas VIDŪNAS
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