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§ 1. Introduction

In this paper we study a non-Galois, totally and tamely ramified field with

prime power discriminant and present a method for the constructions of such fields

with some properties. The existence of such a field is an interesting problem not

only for algebraic number theory but also for theory of association scheme (see

Theorem 1.1, Hanaki-Uno [4]). We also study the Galois groups of the Galois

closure extensions of such fields.

Let p be a prime number. For a monic polynomial f(X) =
∑d

i=0 aiX
i ∈ Q[X] of

degree d we say that f(X) is a p-Eisenstein polynomial if the coefficients ai satisfy

p | ai for 0 ≤ i ≤ d − 1 and p2 - a0. The zeros of a p-Eisenstein polynomial are

called p-Eisenstein numbers. For a number field K we say that K is a p-Eisenstein

field if K is generated by a p-Eisenstein number over Q. It is known that K/Q is

totally ramified at p if and only if K is a p-Eisenstein field (cf. [2]). We define six

conditions (1) to (6) on an algebraic number field K with degree d = [K : Q] by

(1) the field K is not a Galois extension over Q,

(2) the degree d is a divisor of p− 1,

(3) the discriminant disc(K/Q) of K is equal to ±pd−1 ≡ 1 (mod 4),

(4) the field K is a p-Eisenstein field,

(5) the extension K/Q is unramified at all prime numbers other than p,

(6) the field K is totally real or totally imaginary.
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We note that for an algebraic number field K with (2), it holds (3) if and only if K

satisfies (4) and (5) (see Proposition 2.3). Hanaki and Uno showed the following

theorem on the classification of association schemes.

Theorem 1.1 (Hanaki-Uno [4]). Let (X, G) be an association scheme of prime

order p with ]G = d+1. If there exist no algebraic number fields which satisfy all of

the six conditions (1) to (6), then (X, G) is algebraically isomorphic to a cyclotomic

scheme.

The following problem is natural to be considered.

Problem 1.2 (Hanaki [3]). Are there any algebraic number fields K satisfying

all of the six conditions (1) to (6) ?

In this paper we obtain an affirmative answer for the Problem 1.2 with explicit

construction. We give a method for the constructions of fields satisfying all the six

conditions (1) to (6). Let ζ = ζp be a primitive p-th root of unity in Q. Let d be

a positive divisor of p − 1. Let L be the subfield of Q(ζ) with [L : Q] = d and k

a subfield of L whose degree [k : Q] is denoted by n. It holds that n | d | p − 1.

Let r be the ratio d/n ∈ Z which is equal to [L : k]. We assume that there exists

an unramified cyclic extension M of k with degree r. Let E be the composite

field LM of L and M . Then E is a Galois extension of k whose Galois group

G0 = Gal(E/k) is isomorphic to (Z/rZ)2. Let G1 and G2 be subgroups of G0

satisfying EG1 = L and EG2 = M , respectively. Let G3 be a subgroup of G0 such

that G3 ∩ G1 = G3 ∩ G2 = 1 and G3 ' Z/rZ. We define a number field K to be

the subfield EG3 of E fixed by G3.

Theorem 1.3. The field K satisfies all of the six conditions (1) to (6) provided

r ≥ 2. If d divides (p− 1)/2, then K is totally real with disc(K/Q) = pd−1. When

d is not a divisor of (p − 1)/2, the field K is totally imaginary and disc(K/Q) =

(−1)(p−1)/2pd−1 = (−1)d/2pd−1.

For example we may have (p, n, r) = (229, 2, 3) and (277, 3, 2) (see § 5 for the

explicit constructions of K and the definition polynomials of K). The case r = 1

implies that K = L, which is a cyclic field satisfying the five conditions (2) to (6).
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Let K be an algebraic number field with the five conditions (2) to (6). We

denote by K̃ the Galois closure extension of K over Q and G = Gal(K̃/Q). Note

that G is isomorphic to a transitive subgroup of the symmetric group Sd with

degree d.

Proposition 1.4 (Proposition 3.6). If d is odd, then G is contained in the

alternating group Ad with degree d. When d is a prime number , the group G is

simple.

For a positive integer d ∈ Z with d ≥ 2 let us denote by Td the family of all the

transitive subgroup of the symmetric group Sd with degree d. For integers d ∈ Z
with 2 ≤ d ≤ 7 we define subfamilies Gd of Td by

G2 = {C2}, G3 = {C3}, G4 = {C4, S4}, G5 = {C5, A5},
G6 = {C6,D3 × C3,A4 × C2, S5,S6}, G7 = {C7, PSL2(F7),A7},

respectively. Here Cm, Dm, Am and Sm are the cyclic group, the dihedral group,

the alternating group and the symmetric group of degree m with order m, 2m,

m!/2 and m!, respectively. The group PSL2(F7) is the projective special linear

group of 2× 2 matrices over the finite field F7 with 7 elements.

Proposition 1.5 (Proposition 3.7). The group G is isomorphic to a group in

the family Gd when 2 ≤ d ≤ 7.

In § 2 we study the construction of an algebraic number field with the six

conditions (1) to (6). In § 3 we study the Galois group of the Galois closure

extension of a field satisfying the five conditions (2) to (6). In § 4 we study a

method for finding p-Eisenstein numbers in a p-Eisenstein field. In § 5 we present

some numerical examples of fields satisfying the six conditions (1) to (6) with

explicit definition polynomials.

Acknowledgement. The author is grateful to Doctor Yasushi Mizusawa for dis-

cussing on Problem 1.2. He is supported by the 21st Century COE Program

“Development of Dynamic Mathematics with High Functionality”.

§ 2. Construction of a non-Galois Eisenstein field
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In this section we study the construction of an algebraic number field satisfying

the six conditions (1) to (6). We prepare the following fundamental lemmas on the

ramifications. Let F be an algebraic number field of finite degree.

Lemma 2.1 (cf. [2]). The extension F/Q is totally ramified at a prime number

l if and only if F is a l-Eisenstein field.

Let l be a prime number. For a prime ideal l of F above l we denote by eF,l the

ramification index of l in F/Q and by fF,l the degree of the residue field OF /l over

Fl. Let us define eF,l to be the least common multiple of the indices eF,l and fF,l

to be the sum of the degrees fF,l where l runs through all of the prime ideals l of

F above l.

Lemma 2.2 (cf. [2]). If eF,l is not divisible by l, then l-adic valuation of the

discriminant disc(F/Q) is equal to d− fF,l.

Lemmas 2.1 and 2.2 imply

Proposition 2.3. For an algebraic number field F of degree d less than a prime

number p, the discriminant disc(F/Q) is equal to ±pd−1 ≡ 1 (mod 4) if and only

if F/Q is a p-Eisenstein field and is unramified at all prime numbers other than p.

Let the notation be the same as for Theorem 1.3 in the Introduction. Let p be

a prime ideal E above p. For subfields F of E we denote by pF the prime ideal

p ∩ F of F below p, respectively.

Lemma 2.4. The degree [K : Q] is equal to d. The extension K/Q is a p-

Eisenstein field and is unramified at all prime numbers except for p.

Proof. The degree [K : Q] of K is equal to [E : k][E : K]−1[k : Q] = r2r−1n = d.

The prime ideal pL of L is totally ramified in the extension L/Q and so is in L/k.

On the other hand, pM is unramified in M/k. Thus the inertia field of p in E/k is

equal to M . Since G3 ∩G2 = 1, one sees that p is unramified in E/K. This means

that p is totally ramified in K/k and so is pK . Here pk is totally ramified in k/Q.

Thus pK is totally ramified in K/Q. Lemma 2.1 implies that K is a p-Eisenstein
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field. Since L and M are unramified over Q at all prime numbers except for p, so

is the subfield K of the composite field E = LM .

Proposition 2.3 and Lemma 2.4 imply

Corollary 2.5. The discriminant disc(K/Q) of K is equal to ±pd−1 ≡ 1

(mod 4).

The field K is Galois over k with Gal(K/k) ' Z/rZ. Let k0 be a subfield of k so

that K/k0 is Galois.

Lemma 2.6. The field k0 has a cyclic extension with degree r which is unram-

ified at all prime ideals of k0 and which is contained in E.

Proof. Let r0 denote the degree of the extension K/k0. Since pK is totally and

tamely ramified in K/k0, the Galois group Gal(K/k0) is cyclic. This means that

Gal(L/k0) ' Gal(K/k0) ' Z/r0Z. It follows from G3 ∩ G1 = 1 that E = LK.

Thus E = LK is abelian over k0. This implies that Gal(E/k) ' (Z/rZ)2 and

Gal(k/k0) ' Z/r1Z where r1 = r0/r. Let M0 be the inertia field of p in E/k0.

Since E/k0 is abelian, the prime ideal pk0 of k0 is unramified in M0/k0. Here pk0 is

a unique prime ideal of k0 above p. This means that M0 is an abelian extension of

k0 which is unramified at all prime ideals of k0. The prime ideal p is totally ramified

in L/k0 and is unramified in E/L. Thus it holds that [M0 : k0] = [E : L] = r.

By considering the ramification above p, one has L ∩ M0 = k0. It follows from

[L : k0][M0 : k0] = [E : k0] that E = LM0. Thus it satisfies that Gal(M0/k0) '
Gal(E/L) ' Z/rZ. Hence M0 is a cyclic extension of k0 with degree r which is

unramified at all prime ideals of k0. By the construction one has M0 ⊂ E.

Proposition 2.7. The field K is a non-Galois extension of Q if r ≥ 2.

Proof. When K/Q is Galois, one may have k0 = Q. Lemma 2.6 means that Q

has a cyclic extension of degree r which is unramified at all prime numbers. It is

well-known due to Minkowski’s theorem that Q has no non-trivial extensions which

is unramified at all prime numbers. Thus one has r = 1. This shows that K/Q is

non-Galois provided r ≥ 2.
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Proof of Theorem 1.3. Lemma 2.4, Corollary 2.5 and Proposition 2.7 verify that

K satisfies the five conditions (1) to (5) when r ≥ 2. If d divides (p − 1)/2, then

the fields L and M are totally real and so is the subfield K of the composite field

E = LM . The discriminant disc(K/Q) is positive since K is totally real. Let us

assume that d is not a divisor of (p − 1)/2. Then L is totally imaginary. When r

is odd, the field k is totally imaginary and so is the extension K. For the case that

r is even, k is totally real and E is totally imaginary. By the same argument as

that for the prime number p in the proof of Lemma 2.4, one can see that K/k is

ramified at all infinite places of k, that is, K is totally imaginary. Thus K satisfies

the condition (6). The assumption d - (p− 1)/2 means that v2(d) = v2(p− 1) and

(−1)d/2 = (−1)(p−1)/2. Hence we have shown Theorem 1.3.

§ 3. Galois closure extension of an Eisenstein field

In this section we study the Galois group of the Galois closure extension of

a field satisfying the five conditions (2) to (6). Let p be a prime number and d

a positive divisor of p − 1. Let K be a field with the five conditions (2) to (6).

Let K̃ denote the Galois closure extension of K over Q, that is, K̃ is the minimal

extension of K which is Galois over Q. Let p be the prime ideal of K above p.

Lemma 3.1. The extension K̃/K is unramified at p.

Proof. Let z be a p-Eisenstein number such that K = Q(z). Let f(X) =
∑d

i=0 aiX
i

be the minimal polynomial of z overQ. Then it holds that vp(a0) = 1 and vp(ai) ≥ 1

for 1 ≤ i ≤ d − 1 where vp is the p-adic valuation of Q. Let us put f0(X) =

z−df(zX) ∈ K[X]. Then the minimal splitting field SplKf0(X) of f0(X) over K is

equal to that of f(X) over Q. Let bi ∈ K be numbers such that f0(X) =
∑d

i=0 biX
i.

This implies that bd = 1, vp(b0) = 0 and vp(bi) ≥ 1 for 1 ≤ i ≤ d−1 where vp is the

p-adic valuation of K. Let β ∈ Q be a d-th root of−b0, that is, βd+b0 = 0. Now put

N = K(ζd, β) where ζd is a primitive d-th root of unity in Q. The extension N/K

is unramified at p since vp(b0) = vp(d) = 0. Let P be a prime ideal of N above p.

Hensel’s lemma shows that P splits completely in the extension SplNf0(X)/N , in

particular, P is unramified in SplNf0(X)/N . Thus p is unramified in SplNf0(X)/K

and so is in the subextension SplKf0(X)/K. Here SplKf0(X) = SplQf(X) is a
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Galois extension of Q containing K. This means that K ⊆ K̃ ⊆ SplQf(X). Hence

K̃/K is unramified at p.

Proposition 3.2. The extension K̃/K is unramified.

Proof. Lemma 3.1 implies that K̃/K is unramified at p. Since K/Q is unramified

at all prime numbers other than p, so are the conjugate fields of K over Q. Thus

the composite field K̃ of the fields conjugate to K over Q is unramified at all prime

numbers other than p. It follows from the definition that K satisfies the condition

(6) if and only if K̃/K is unramified at all infinite places of K. Hence K̃/K is

unramified.

Let G denote the Galois group of Gal(K̃/Q). Let p̃ be a prime ideal of K̃ above p.

Let θ be a generator of K over Q, that is, K = Q(θ). The minimal polynomial f(X)

of θ over Q has degree d and satisfies that SplQf(X) = K̃. Thus G is isomorphic

to a transitive subgroup of the symmetric group Sd with degree d. Let {θj}d
j=1 be

the zero set of f(X), that is, f(X) =
∏d

j=1(X − θj). In the following we identify G

with the image of an injective homomorphism G → Sd, σ 7→ τ where σ ∈ G and

τ ∈ Sd have relations σ(θj) = θτ(j) for all 1 ≤ j ≤ d.

Lemma 3.3. The group G has an element of order d.

Proof. Since K is p-Eisenstein with degree d, the ramification index of p in K/Q is

equal to d. Lemma 3.1 implies that K̃/K is unramified at p. Thus the ramification

index of p in K̃/Q is equal to d. Note that the ramification of p in K̃/Q is tame

for p - d. This means that the inertia group of p̃ in K̃/Q is isomorphic to Cd. This

shows that G contains Cd as a subgroup.

Let us define a positive integer λ to be the minimal prime divisor of d.

Lemma 3.4. If G1 is a subgroup of G with index [G : G1] < λ, then G = G1.

Proof. Let K1 be the fixed field K̃G1 of K̃ by G1. Let p1 be the prime ideal of K1

below p̃. If [G : G1] < λ, then the ramification index of p1 in K1/Q is a divisor of d

less than λ, which is equal to 1. This means that p1 is unramified in K1/Q. Thus

K1/Q is an extension of degree [G : G1] which is unramified at all prime numbers.

By Minkowski’s theorem, we have [G : G1] = 1.
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Lemma 3.5. Let G1 be a proper, normal subgroup of G. Then d and the index

[G : G1] have a common prime divisor. If the group G/G1 is abelian, then G/G1 is

a subgroup of Cd.

Proof. Since G1 is a normal subgroup of G, the fixed field K1 = K̃G1 is a Galois

extension whose Galois group Gal(K1/Q) is isomorphic to the quotient group G/G1.

The ramification index of p in K1/Q divides d and [G : G1]. When d and [G : G1]

are relatively prime to each other, the extension K1/Q is unramified at p. Thus

Minkowski’s theorem implies that K1 = Q and G1 = G. If G/G1 is abelian, then

so is K1/Q. By Minkowski’s theorem one can see that Gal(K1/Q) is isomorphic to

a subgroup of Cd.

Proposition 3.6 (Proposition 1.4). If d is odd, then G is contained in the

alternating group Ad with degree d. When d is a prime number , the group G is

simple.

Proof. Let sgn : Sd → {±1} be the signature map so that sgn(σ) = 1 (resp.

−1) if σ is an even (resp. an odd) permutation. Then the map sgn is a group

homomorphism and the kernel G1 of the restricted map sgn|G to G is a normal

subgroup of G. When G 6⊆ Ad, one has that sgn(G) = {±1} and [G : G1] = 2.

Lemmas 3.4 and 3.5 imply that 2 | d. Thus we have G ⊆ Ad provided d is odd. We

assume that d is equal to a prime number l. Let G1 be a proper, normal subgroup

of G and denote by K1 the fixed field K̃G1 of K̃ by G1. Note that K1 is Galois over

Q since G1 is normal of G. It follows from Lemma 3.5 that l divides the degree

[K1 : Q] = [G : G1] of K1/Q. Here K ∩ K1 is equal to Q or K since K/Q is of

prime degree l. Now suppose that K ∩ K1 = Q. Galois theory implies that the

lift KK1/K of the Galois extension K1/Q by K is a Galois extension whose Galois

group is isomorphic to Gal(K1/K∩K1) = Gal(K1/Q). This means that [KK1 : K]

and [K : Q] are both divisible by l. Note that KK1 is a subfield of K̃. Then one

has that [K̃ : Q] = [K̃ : KK1][KK1 : K][K : Q] ≡ 0 (mod l2). On the other hand,

G satisfies vl(]G) ≤ vl(]Sl) = 1 for G ⊆ Sl. It is a contradiction. Thus we have

K ∩K1 = K, which means that K ⊆ K1. This implies that K1 = K̃ and G1 = 1

due to the minimality of the Galois closure K̃. Hence the group G is simple.
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For a positive integer d ∈ Z with d ≥ 2 let Td be the family of all the transitive

subgroup of Sd. For integers d ∈ Z with 2 ≤ d ≤ 7 we define subfamilies Gd of Td

as in the Introduction, that is,

G2 = {C2}, G3 = {C3}, G4 = {C4, S4}, G5 = {C5, A5},
G6 = {C6,D3 × C3,A4 × C2, S5,S6}, G7 = {C7, PSL2(F7),A7}.

Proposition 3.7 (Proposition 1.5). We have G ∈ Gd for 2 ≤ d ≤ 7.

The families Td for 2 ≤ d ≤ 7 are well-known.

Lemma 3.8 (cf. [1] §6.3). We have

T2 = { C2},
T3 = { C3,S3},
T4 = { C4, (C2)

2,D4, A4, S4},
T5 = { C5,D5,M20,A5, S5},
T6 = { C6,S3,D6,A4,D3 × C3,A4 × C2,S

−
4 ,S+

4 , (D3)
2,

(C3)
2 o C4, S4 × C2, A5, (C3)

2 oD4,S5,A6,S6},
T7 = { C7,D7,M21,M42, PSL2(F7),A7,S7},

where Mdm is the metagroup Cd o Cm. Here S+
4 and S−

4 are groups isomorphic to

S4 whose images of the signature map are equal to {1} and {±1}, respectively.

Proof of Proposition 3.7. It is easy to see that the groups S3, D5, M20, S5 D7,

M21, M42 and S7 are not simple. Thus Proposition 3.6 shows the assertions of

the cases d = 3, 5 and 7. Let us assume d = 4. Here (C2)
2 has no elements of

order 4. Lemma 3.3 means that G 6' (C2)
2. The groups D4 (resp. A4) have normal

subgroups H ' C2 (resp. (C2)
2) such that D4/H ' (C2)

2 (resp. C3). Lemma 3.5

implies that G 6' D4,A4. This shows the assertion for d = 4. Next consider the

case d = 6. One can see that the groups S3, A4, S−
4 , S+

4 , A5, A6 have no elements

of order 6, respectively. The groups D6, (D3)
2, S4×C2 and (C3)

2oD4 have normal

subgroups whose quotient groups are isomorphic to (C2)
2, respectively. The group

(C3)
2oC4 has a normal subgroup whose quotient group is isomorphic to C4. Lemmas

3.3 and 3.5 prove the assertion for d = 6.

§ 4. Eisenstein number in an Eisenstein field

In this section we study a method for finding p-Eisenstein numbers in a p-

Eisenstein field. Let K be a p-Eisenstein field with degree d ≥ 2 and p the prime

ideal of K above p. Let OK,p be the completion at p of the ring OK of integers in K.
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Let {xj}d
j=1 be a free basis of OK,p over Zp, that is, OK,p = {∑d

j=1 mjxj|mj ∈ Zp}.
One may assume vp(x1) = 0. Since OK/p ' Fp, there exist rational integers cj ∈ Z
such that x1cj ≡ xj (mod p) for 2 ≤ j ≤ d. Now put zj = xj − x1cj ∈ OK for

2 ≤ j ≤ d, respectively. Note that zj 6= 0 since the basis {xj}d
j=1 is free.

Lemma 4.1. There exists a p-Eisenstein number z in the finite set {zj|j ∈
Z, 2 ≤ j ≤ d} such that K = Q(z).

Proof. It follows from cj ∈ Z that {x1} ∪ {zj}d
j=2 is also a free basis of OK,p over

Zp. Let π be a number in OK such that vp(π) = 1 where vp is the p-adic valuation

of K. Then there exist numbers mj ∈ Zp such that π = m1x1 +
∑d

j=2 mjzj. Let

us denote min{vp(zj)|j ∈ Z, 2 ≤ j ≤ d} by µ. Then one has µ ≥ 1 for zj ∈ p. Now

suppose µ ≥ 2. If vp(m1) = 0, then vp(π) = 0, which is a contradiction. When

vp(m1) ≥ 1, one has vp(π) ≥ min{vp(m1), µ} ≥ 2 for vp(m1) = dvp(m1) ≥ 2. It

is contrary to the fact that vp(π) = 1. Thus we have µ = 1 and vp(zj) = 1 for

some integer j ∈ Z with 2 ≤ j ≤ d. For such a number zj the valuations vp(z
i
j)

with 0 ≤ i ≤ d − 1 have distinct images by the natural map Z → Z/dZ, m 7→ m

(mod d). This means that the degree of the minimal polynomial of zj over Q is

not less than d. Thus we have K = Q(zj). Let f(X) =
∑d

i=0 aiX
i ∈ Q[X] be

the minimal polynomial of zj over Q. If the set {0 ≤ i ≤ d − 1|vp(ai) = 0} is not

empty, then vp(f(zj)) = min{0 ≤ i ≤ d − 1|vp(ai) = 0} < ∞, which contradicts

that f(zj) = 0. Thus it satisfies that vp(ai) ≥ 1 for every 0 ≤ i ≤ d− 1. Then one

has that vp(a0) = vp(z
d
j ) = d, which means vp(a0) = 1. Hence zj is a p-Eisenstein

number.

§ 5. Some numerical examples

In this section we present some numerical examples of fields satisfying the

six conditions (1) to (6) with explicit definition polynomials. Let us denote by

SplF f(X) the minimal splitting field of a polynomial f(X) ∈ F [X] over a field F .

We first consider the case that p = 229 and (n, r) = (2, 3). Here one has

d = nr = 6. The quadratic field k contained in Q(ζp) is equal to SplQg0(X) where

g0(X) = X2 − 229. The cyclic field L of degree d = 6 in Q(ζp) is Splkg1(X)

for g1(X) = X3 − 4X − 1 (cf. Cohen [1], Komatsu [6]). It is calculated that
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Cl(k) ' Z/3Z where Cl(k) is the ideal class group of k. This means that there

exists an unramified cyclic cubic extension M of k. One can see that M is equal

to Splkg2(X) = SplQg2(X) where g2(X) = X3 − 687X − 5038 (cf. Komatsu [5]).

Now put E = LM . Then E is Galois over k with Gal(E/k) ' (Z/3Z)2. Let αi and

βj be numbers in Q such that g1(X) =
∏3

i=1(X − αi) and g2(X) =
∏3

j=1(X − βj),

respectively. Let σ1 and σ2 be elements in Gal(E/k) so that σ1 : αi 7→ αi, β1 7→
β2 7→ β3 7→ β1 and σ2 : α1 7→ α2 7→ α3 7→ α1, βj 7→ βj for i, j ∈ {1, 2, 3},
respectively. Then it holds that L = EG1 , M = EG2 and Gal(E/k) = 〈σ1, σ2〉
where Gi = 〈σi〉 for i = 1 and 2. Let us define θ = α1β1 + α2β2 + α3β3 ∈ E.

Then one has k(θ) ⊆ EG3 for G3 = 〈σ1σ2〉. Note that G3 ∩ G1 = G3 ∩ G2 = 1

and G3 ' Z/3Z. One can see that the minimal polynomial h(X) of θ over Q is

equal to X6− 16488X4− 136026X3 +67963536X2 +1121398344X − 30392443755.

This implies that [Q(θ) : Q] = 6 and Q(θ) = k(θ) = EG3 , which is denoted

by K. Theorem 1.3 shows that K satisfies the six conditions (1) to (6). By

6 = d | (p− 1)/2 = 114, the field K is totally real. Unfortunately, the number θ is

not p-Eisenstein since the constant term a0 of h(X) satisfies vp(a0) = 2. Theorem

1.3 implies that disc(K/Q) = 2295. On the other hand, it is calculated that

discXh(X) = 212 · 330 · 22913 · 247932. Let us put

x1 = 1, x2 = θ, x3 = θ2, x4 = θ3/229, x5 = θ4/229, x6 = θ2(θ3/229− 68)/229.

Then {xj}6
j=1 ⊆ OK is a free basis of OK,p over Zp with vp(x1) = 0 where p is the

prime ideal of K above p. The numbers c2 = 0, c3 = 0, c4 = 68, c5 = 0 and c6 = 158

satisfy that x1cj ≡ xj (mod p), respectively. By putting zj = xj−x1cj one can see

that vp(z2) = 2, vp(z3) = 4, vp(z4) = 2, vp(z5) = 2 and vp(z6) = 1. The minimal

polynomial f(X) of z6 over Q is equal to

f(X) = X6 − 96180X5 − 37394605380X4 + 1703530969560862X3

+72724266171681226116X2 + 147851737295298813149160X
+27821740949946705377847421

= X6 − 22 · 3 · 5 · 7 · 229X5

−22 · 3 · 5 · 11 · 229 · 401 · 617X4

+2 · 13 · 229 · 286115379503X3

+22 · 3 · 7 · 229 · 367 · 853 · 1213 · 9956087X2

+23 · 3 · 5 · 229 · 5380339785127322167X
+229 · 1519169 · 79972878961273721,
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which is a p-Eisenstein polynomial. Thus z6 is a p-Eisenstein number with K =

Q(z6). The field SplQf(X) = E is a Galois (D3×C3)-extension of Q with degree 18.

By using a calculator Pari-GP one can find a unit ε ∈ K whose minimal polynomial

f1(X) over Q is equal to

f1(X) = X6 + 564X5 + 76206X4 + 70094X3 − 21032X2 + 346X + 1.

Then it satisfies that

f1(X − 94) = X6 − 56334X4 + 4639998X3 + 506979436X2

−75182965726X + 2442021793125
= X6 − 2 · 3 · 41 · 229X4 + 2 · 3 · 11 · 229 · 307X3

+22 · 229 · 553471X2 − 2 · 11 · 229 · 14923177X
+3 · 54 · 229 · 5687387.

The prime numbers p ≡ 1 (mod 12) less than 2000 with 3 | h(Q(
√

p)) are p = 229,

733, 1129 and 1489 (cf. Komatsu [5]). In the same way as above one can calculate

Proposition 5.1. For p = 229, 733, 1129 and 1489, the zeros of polynomials

X6 − 56334X4 + 4639998X3 + 506979436X2

−75182965726X + 2442021793125,
X6 + 1466X5 + 517498X4 − 215438962X3 − 199612437946X2

−49974959030498X − 4171953628526171,
X6 − 2258X5 + 1287060X4 + 402900585X3 − 513889910560X2

+66733203945617X + 19658366564838499,
X6 − 2978X5 − 3195881178465X4 + 3940122374968794844X3

−2048598115826151476248505X2 + 504906652334980646172265142534X
−48608237799042834668269234616457255

are p-Eisenstein numbers, respectively. Such a p-Eisenstein number generates a

non-Galois, totally real and sextic field with discriminant p5.

Next consider the case that p = 277 and (n, r) = (3, 2). Then one has d =

nr = 6. The cyclic cubic field k contained in Q(ζp) is equal to SplQg0(X) where

g0(X) = X3 − 831X − 7202 (cf. Cohen [1], Komatsu [6]). The cyclic field L of

degree d = 6 in Q(ζp) is Splkg1(X) for g1(X) = X2 − 277. It is calculated that

Cl(k) ' (Z/2Z)2. This means that there exists an unramified quadratic extension

of k. Let x ∈ k be a solution of g0(X) = 0 and put ξ = −(x2− 10x− 740)/9. Then

the minimal polynomial of ξ over Q is equal to g̃0(X) = X3−62X2 +81X−4. Let

us define g2(X) = g̃0(X
2). Then M1 = SplQg2(X) is an unramified Galois extension

of k with Gal(M1/k) ' Cl(k) ' (Z/2Z)2. Let β be a solution of g2(X) = 0. Then

12



M = k(β) is an unramified quadratic extension of k. Now put E = LM . Then

E is Galois over k with Gal(E/k) ' (Z/2Z)2. Let α be a solution of g1(X) = 0.

We define θ = αβ ∈ E. In the same way as for the case (p, n, r) = (229, 2, 3), it is

seen that K = Q(θ) satisfies the six conditions (1) to (6). The minimal polynomial

h(X) of θ over Q is equal to

h(X) = g̃0(X
2/277)2773 = X6 − 17174X4 + 6215049X2 − 85015732

Here h(X) is not a p-Eisenstein polynomial for v277(85015732) = 3. In the same

way as for (p, n, r) = (229, 2, 3) one can calculate that z6 = θ(26(θ2/277)2 +

218(θ2/277) + 148)/277 is a p-Eisenstein number with K = Q(z6). The minimal

polynomial of z6 over Q is equal to

f(X) = X6 − 2605040960X4 + 2681576423424X2 − 12566269001728
= X6 − 26 · 5 · 277 · 29389X4 + 216 · 33 · 277 · 5471X2 − 228 · 132 · 277.

One can see that SplQf(X) = LM1 is a Galois (A4 × C2)-extension of Q with

degree 24. By using a calculator Pari-GP one can find a unit ε ∈ K whose minimal

polynomial f1(X) over Q is equal to

f1(X) = X6 − 83X5 + 1093X4 + 9510X3 − 1093X2 − 83X − 1.

Then it satisfies that

f1(X + 60) = X6 + 277X5 + 30193X4 + 1603830X3

+40439507X2 + 334128757X − 1669299781
= X6 + 277X5 + 109 · 277X4 + 2 · 3 · 5 · 193 · 277X3

+277 · 145991X2 + 31 · 167 · 233 · 277X − 277 · 1699 · 3547.

Proposition 5.2. Every zero of the polynomial

X6 + 277X5 + 30193X4 + 1603830X3

+40439507X2 + 334128757X − 1669299781

is a 277-Eisenstein number which generates a non-Galois, totally real and 277-

Eisenstein field of degree 6 with discriminant 2775.

We obtain the following polynomials by considering the unramified extensions

of certain algebraic number fields in a similar way as above.
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Proposition 5.3. For p = 2713, 2777, 2857 and 3137, the polynomials

X4 − 2713X2 − 2713X + 5426,
X4 − 2777X2 − 8331X − 5554,
X4 − 5714X2 − 22856X + 48569,
X4 − 3137X2 − 47055X − 156850

are p-Eisenstein polynomials whose minimal splitting fields over Q are Galois S4-

extensions, respectively. Every zero of the above p-Eisenstein polynomial is a p-

Eisenstein number which generates a non-Galois, totally real and quartic field with

discriminant p3.

Let K be an algebraic number field of finite degree and K̃ the Galois closure

extension of K over Q. Let (d,G) be a pair of an integer d and a group G such

that (d,G) = (5,A5), (6,S5), (6,S6), (7, PSL2(F7)) or (7,A7).

Problem 5.4. Do there exist any algebraic number fields K of degree d with

Gal(K̃/Q) ' G which satisfy all of the six conditions (1) to (6) ?
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