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POINT 1

TAKEAKI FUCHIKAMI and HIDEFUMI KAWASAKI

Abstract. The conjugate point was introduced by Jacobi to derive a sufficient optimality
condition for a variational problem. Recently, the conjugate point was defined for an
extremal problem in R

n. The key of the conjugate point is cooperation of variables.
Namely, when there exists a conjugate point for a stationary solution x ∈ R

n, we can
improve the solution by suitably changing some of the variables. We call such a set of
variables a strict conjugate set. This idea leads us to a cooperative game, which we
call a conjugate-set game. The Shapley value is an important value in game theory.
It evaluates player’s contribution in the cooperative game. However, its calculation
is usually very hard. The purpose of this paper is to give an explicit formula of the
Shapley value for the conjugate-set game induced from the shortest path problem on
an ellipsoid.

1. Introduction

The conjugate point was originally introduced to guarantee local optimality of a
stationary solution x(t) for the simplest problem in the calculus of variations

Minimize

∫ T

0

f(t, x(t), ẋ(t))dt

subject to x(0) = A, x(T ) = B

where A and B are given points, see e.g. Gelfand and Fomin [2]. Recently, the conjugate
point was defined for an extremal problem with n variables

(P0) Minimize f(x), x ∈ R
n,

see Kawasaki [3][4].

A B
Xk

k

Figure 1. the shortest polygonal path problem
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One can see the typical example of the conjugate point for (P0) in the shortest polyg-
onal path problem on an ellipsoid

x2

a2
+

y2

a2
+

z2

c2
= 1. (1)

This problem is to find the shortest polygonal path

A = X0, X1, . . . , Xn, Xn+1 = B

joining two given points A := (a, 0, 0) and B := (a cos T, a sin T, 0), where each Xk can
move on a longitude `i that is equally located between A and B. Since each Xk has one-
dimensional freedom, this problem is formulated as (P0), and the equatorial polygonal
path is a stationary solution for (P0).

Further, whether the stationary solution is minimal or not depends on T . It is
minimal when T < aπ/c, and not minimal when T > aπ/c and n is sufficiently large.
In the latter case, we call the first number k satisfying (k + 1)T/(n + 1) > aπ/c a strict
conjugate point, which matches the classical conjugate point, see [4].

When there exists a strict conjugate point k ≤ n, the Hessian matrix A := f ′′(x)
is not positive semidefinite. So, according to Sylvester’s criterion, A has a negative
leading principal minor. Then we can improve the stationary solution x = (x1, . . . , xn)
by suitably changing some variables {xi}i∈I . We call such a subset {xi}i∈I (or I) a strict
conjugate set. Namely, when AI := (aij)i,j∈I has a negative principal minor, we call
{xi}i∈I (or I) a strict conjugate set, see Kawasaki [6][7]. In this paper, we consider a
cooperative game based on strict conjugate sets, and we present an explicit formula of
the Shapley value for this game.

2. Definitions and Notations

In this section, we first define conjugate-set game induced from the shortest path
problem on the ellipsoid (1). Next, we introduce tools I(i; S) and Ker(i; S) to compute
the Shapley value.

Definition 1. Let N = {1, . . . , n} be the players set and 1 ≤ k ≤ n a natural number.
We call a subset

[j, j + k − 1] := {j, j + 1, . . . , j + k − 1}

of N an interval of length k. For any subset S of N , we define a characteristic function
v(S) as the maximum number of disjoint intervals of length k contained in S. We call
this cooperative game a conjugate-set game induced from the shortest path problem on
an ellipsoid and denote it by G(n, k).

k=3 k=3 k=3

Figure 2. When k = 3 and S consists of circles, v(S) = 3.

Throughout this paper, we put

n = pk + r (0 ≤ r ≤ k − 1). (2)
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We denote by φi(n, k) or φi the Shapley value of G(n, k). That is,

φi(n, k) =
∑

i∈S⊂N

(s − 1)!(n − s)!

n!
{v(S) − v(S − {i})}, (3)

where s := #S. The following expression is well-known, see e.g. Aumann et al [1].

φi(n, k) =
∑

π∈Π

1

n!
{v(Sπ,i) − v(Sπ,i − {i})} , (4)

where Π denotes the set of all permutation on N and Sπ,i denotes the union of {i} and
the set of all players that precedes player i with respect to π, that is,

Sπ,i = {π(j) | 1 ≤ j ≤ π−1(i)}. (5)

We note that Sπ,i plays an important role in this paper.
The following proposition is evident from symmetry of the characteristic function.

Proposition 1. For any 1 ≤ i ≤ n, it holds that φi = φn−i+1.

Definition 2. Any element of WS := {i
∣

∣ v(S)− v(S −{i}) = 1} is called a pivot of S.

Then the Shapley value (4) is simply written as

φi =
1

n!
#{π

∣

∣ i ∈ WSπ,i
}. (6)

So it suffices to test whether i ∈ S is a pivot of S or not in order to compute φi. For
this aim, we introduce two subsets of S, say I(i; S) and Ker(i; S).

Definition 3. For any i ∈ N and S ⊂ N including i, we denote by I(i; S) ⊂ S the
maximum interval including i. We denote by Ker(i; S) the remainder of I(i; S) after
removing intervals of length k from both sides of i as much as possible with keeping i.

I(i;S)

Ker(i;S)

i

i

i

Figure 3. When k = 3 and S consists of circles, I(i; S) consists of gray
circles and Ker(i; S) consists of black cirlces.

Theorem 1. The following conditions are equivalent to each others.

(i) i ∈ WS,
(ii) i ∈ WI(i;S),
(iii) i ∈ WKer(i;S),
(iv) #Ker(i; S) ≥ k.
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Proof. (i) ⇔ (ii): Obvious. (ii) ⇔ (iii): It is enough to consider the case that [j1, j2] :=
I(i; S) 6= Ker(i; S). Because of symmetry, we may assume that j1 + k < i. Then, since
v([j1, j2]) = v([j1 + k, j2]) + 1 and v([j1, j2] − {i}) = v([j1 + k, j2] − {i}) + 1, we have

i ∈ WI(i;S) ⇔ v([j1, j2]) − v([j1, j2] − {i}) = 1

⇔ v([j1 + k, j2]) − v([j1 + k, j2] − {i}) = 1

⇔ i ∈ WI(i;S)−[j1,j1+k−1].

Repeating this procedure, we finally get Ker(i; S) as the remainder and see the equiv-
alence of (ii) and (iii). (iii) ⇔ (iv): Since we can not remove any interval of length k
from Ker(i; S) without deleting i, this assertion is clear. �

3. The Shapley value of player 1

In this section, we compute the Shapley value φ1. It follows from Theorem 1 that

1 ∈ WS ⇔ #Ker(1; S) ≥ k ⇔ Ker(1; S) = [1, k]. (7)

Since I(1; S) is obtained by adding disjoint intervals of length k to Ker(1; S), we get
from (7) that

{

I(1; S)
∣

∣ 1 ∈ WS

}

=
{

[1, mk]
∣

∣ 1 ≤ m ≤ p
}

. (8)

Lemma 1. Let 1 ≤ m ≤ p. Then π satisfies I(1; Sπ,1) = [1, mk] if and only if

π−1(j) < π−1(1) ∀j ∈ [2, mk] (9)

and either (a) π−1(mk + 1) > π−1(1) or (b) mk = n holds.

Proof. Necessity: Since 1 joins I(1; Sπ,1) = [1, mk] last, (9) is clear. If mk < n and
mk + 1 joins Sπ,1 before 1, then the interval I(1; Sπ,1) contains [1, mk + 1]. Sufficiency
is evident. �

Theorem 2.

φ1 =























p−1
∑

m=1

1

mk(mk + 1)
+

1

pk
if r = 0,

p
∑

m=1

1

mk(mk + 1)
if r 6= 0,

(10)

where n = pk + r (0 ≤ r ≤ k − 1).

Proof. By (6), it suffices to compute #{π | 1 ∈ WSπ,1}. Combining (7) and (8), it
equals #{π | 1 ≤ ∃m ≤ p, I(1; Sπ,1) = [1, mk]}. Further, it equals

#{π | π satisfies (9) and (a)} + #{π | π satisfies (9) and (b)}. (11)

For each m, the first term of (11) is given by
(

n

mk + 1

)

(n − mk − 1)!(mk − 1)! =
n!

mk(mk + 1)
. (12)

Indeed, such a permutation π satisfies

π−1(j) < π−1(1) < π−1(mk + 1) ∀j ∈ [2, mk]. (13)
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There are nCmk+1 ways to choose P := π−1([1, mk + 1]) ⊂ N . Since π−1([2, mk]) can
freely share the first mk − 1 places of P , and since the complement of P can be freely
shared by other n − mk − 1 numbers, we get (12). On the other hand, since case (b)
occurs only when m = p and n = pk (so that r = 0), we similarly see that the second
term of (11) is given by

(n − 1)!. (14)

In the case of r = 0, φ1 is equal to the total sum of (12)/n! (m = 1, . . . , p − 1) and
(14)/n!. Otherwise, φ1 is equal to the total sum of (12)/n! (m = 1, . . . , p). �

4. A recurrence relation of {φi}: Case 1

Starting with φ1, we compute φ2, φ3, and so on. For this aim, we compute the
difference between φi and φi+1. Because of symmetry of the game, it suffices to consider
1 ≤ i ≤

[

n−1
2

]

, where [·] denotes Gauss’s symbol. We will deal with this problem in
three cases.

Case 1: n − k + 1 ≤ i ≤ k − 1 (This is the case that k ≤ n
2

+ 1),
Case 2: 1 ≤ i ≤ min{n − k, k − 1},
Case 3: k ≤ i ≤

[

n−1
2

]

.

Before dealing with Case 1, we present a lemma that is applicable to any case.

Lemma 2.

φi+1 = φi + δ+
i − δ−i , (15)

where
δ+
i := #{π

∣

∣i /∈ WSπ,i+1
, i + 1 ∈ WSπ,i+1

}/n! (16)

and
δ−i := #{π

∣

∣i ∈ WSπ,i
, i + 1 /∈ WSπ,i

}/n!. (17)

Proof. Since

n!(φi+1 − φi)

= #
{

π
∣

∣i + 1 ∈ WSπ,i+1

}

− #
{

π
∣

∣ i ∈ WSπ,i

}

= #
{

π
∣

∣ i, i + 1 ∈ WSπ,i+1

}

+ #
{

π
∣

∣ i /∈ WSπ,i+1
, i + 1 ∈ WSπ,i+1

}

−#{π
∣

∣i, i + 1 ∈ WSπ,i
} − #{π

∣

∣ i ∈ WSπ,i
, i + 1 /∈ WSπ,i

}.

it suffices to prove

#
{

π
∣

∣i, i + 1 ∈ WSπ,i+1

}

= #
{

π
∣

∣i, i + 1 ∈ WSπ,i

}

. (18)

We define a bijection f : Π → Π by f(π) := (i, i+1)◦π, where (i, i+1) is a transposition.
Then, for any π ∈ Π such that i, i + 1 ∈ WSπ,i

, due to definition of WS,

v(Sπ,i) − v(Sπ,i − {i}) = v(Sπ,i) − v(Sπ,i − {i + 1}) = 1. (19)

Since Sπ,i = Sf(π),i+1, (19) implies that i, i+1 ∈ WSf(π),i+1
. That is, f(

{

π
∣

∣i, i + 1 ∈ WSπ,i

}

) ⊂
{

π
∣

∣i, i + 1 ∈ WSπ,i+1

}

. Since f is an injection, we have

#
{

π
∣

∣i, i + 1 ∈ WSπ,i

}

≤ #
{

π
∣

∣i, i + 1 ∈ WSπ,i+1

}

. (20)

The converse inequality is similarly obtained. �
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Let us now consider Case 1.

Theorem 3. For any i such that n − k + 1 ≤ i ≤ k − 1, it holds that

δ+
i = δ−i = 0. (21)

Therefore, φn−k+1 = φn−k+2 = · · · = φk−1.

Proof. By Theorem 1, i ∈ WSπ,i
if and only if #Ker(i; Sπ,i) ≥ k. For such a π, since

n − k + 1 ≤ i ≤ k − 1 and since we can not remove any intervals of length k from
Ker(i; Sπ,i) without removing i, we have

{

Ker(i; Sπ,i)
∣

∣ i ∈ WSπ,i

}

=















[1, k], [1, k + 1], . . . [1, n],
[2, k + 1], . . . [2, n],

. . .
...

[n − k + 1, n]















. (22)

We similarly see that
{

Ker(i + 1; Sπ,i+1)
∣

∣ i + 1 ∈ WSπ,i+1

}

coincides with set (22). So

{π
∣

∣ i ∈ WSπ,i
, i+1 /∈ WSπ,i

} is empty. (Remark that not i+1 /∈ WSπ,i+1
but i+1 /∈ WSπ,i

.)
Indeed, if π is an element of this set, then Ker(i; Sπ,i) is one of the intervals in (22) and
i is its element. Since i + 1 ≤ k, i + 1 belongs to the interval, which implies that i + 1
is also an element of Sπ,i. Since the length of the interval is greater than or equal to k,
we see from Theorem 1 and (22) that i + 1 ∈ WSπ,i

. Therefore δ−i = 0. Similarly, we
have δ+

i = 0. �

5. A recurrence relation of {φi}: Case 2

In this section, we consider the case that 1 ≤ i ≤ min{n − k, k − 1}.
Since i ≤ k and k + i − 1 ≤ n, we get

{Ker(i; Sπ,i)
∣

∣ i ∈ WSπ,i
} =















[1, k], [1, k + 1], . . . [1, k + i − 1],
[2, k + 1], . . . [2, k + i − 1],

. . .
...

[i, k + i − 1]















(23)

as well as (22), where the difference between (22) and (23) is caused from k + i− 1 ≤ n.
Since i+1 ≤ k and k + i ≤ n, we similarly see that {Ker(i+1; Sπ,i+1)

∣

∣ i+1 ∈ WSπ,i+1
}

equals


























[1, k], [1, k + 1], . . . [1, k + i − 1], [1, k + i],

[2, k + 1], . . . [2, k + i − 1],
...

. . .
...

...
[i, k + i − 1], [i, k + i],

[i + 1, k + i]



























. (24)

Comparing (23) and (24), we get δ−i = 0 as well as Theorem 3. On the other hand,

{Ker(i + 1; Sπ,i+1)
∣

∣ i /∈ WSπ,i+1
, i + 1 ∈ WSπ,i+1

}

= {[j1, k + i]
∣

∣ 1 ≤ j1 ≤ i + 1}. (25)
6



Indeed, since i belongs to any interval in (24) except [i + 1, k + i], Theorem 1 asserts
that i /∈ WSπ,i+1

implies #Ker(i; Sπ,i+1) < k. The intervals in (24) that satisfy this
condition are those in the last column of (24). So we get (25).

Since I(i + 1; Sπ,i+1) is an interval obtained by adding disjoint intervals of length k
to Ker(i + 1; Sπ,i+1), we get from (25) that

{I(i + 1; Sπ,i+1)
∣

∣ i /∈ WSπ,i+1
, i + 1 ∈ WSπ,i+1

}

= {[j1, mk + i]
∣

∣ 1 ≤ j1 ≤ i + 1, m ≥ 1, mk + i ≤ n}. (26)

Lemma 3. Let m ≥ 1 satisfy mk + i ≤ n. Then there exists 1 ≤ j1 ≤ i + 1 such that
I(i + 1; Sπ,i+1) = [j1, mk + i] if and only if

π−1(j) < π−1(i + 1) ∀j ∈ [i + 2, mk + i] (27)

and either (c) π−1(mk + i + 1) > π−1(i + 1) or (d) mk + i = n holds.

Proof. Necessity: Since i+1 joins Sπ,i+1 last, I(i+1; Sπ,i+1) = [j1, mk + i] implies that
(27) and mk + i + 1 dose not joint Sπ,i+1 before i + 1 if mk + i < n. Conversely, it
follows from (c) or (d) that any number greater than mk + i does not join Sπ,i+1 before
i + 1. Hence mk + i is the maximum number of I(i + 1; Sπ,i+1). Since I(i + 1; Sπ,i+1) is
an interval, it has a form of [j1, mk + i] for some 1 ≤ j1 ≤ i + 1. �

Theorem 4. In the case of 1 ≤ i ≤ min{n − k, k − 1}, it holds that

δ+
i =











































p
∑

m=1

1

mk(mk + 1)
1 ≤ i ≤ r − 1,

p−1
∑

m=1

1

mk(mk + 1)
+

1

pk
i = r,

p−1
∑

m=1

1

mk(mk + 1)
r + 1 ≤ i ≤ k − 1,

(28)

δ−i = 0, (29)

where n = pk + r (0 ≤ r ≤ k − 1).

Proof. Assume that π satisfies that i /∈ WSπ,i+1
and i + 1 ∈ WSπ,i+1

. Then it is easily
seen from (26) and Lemma 3 that (27) and either (c) or (d) hold. The number of π’s
satisfying (27) and (c) is given by

(

n

mk + 1

)

(mk − 1)!(n − mk − 1)! =
n!

mk(mk + 1)
. (30)

Indeed, such a permutation π satisfies

π−1(j) < π−1(i + 1) < π−1(mk + i + 1) ∀j ∈ [i + 2, mk + i]. (31)

There are nCmk+1 ways to choose P := π−1([i+1, mk+ i+1]). Since π−1([i+2, mk+ i])
can freely share the first mk − 1 places of P , and since the complement of P can be
freely shared by other n − mk − 1 numbers, we get (30).
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Since case (d) occurs only when m = p, we similarly see that the number of π’s
satisfying (27) and (d) is given by

(

n

pk

)

(pk − 1)!(n − pk)! =
n!

pk
. (32)

In the cases of 0 ≤ i < r, since mk + i < n for any 1 ≤ m ≤ p, δ+
i equals the total

sum of (30)/n! (m = 1, . . . , p). In the cases of i = r, since mk + i equals n only when
m = p, δ+

i equals the total sum of (30)/n! (m = 1, . . . , p − 1) and (32)/n!. In the cases
of i > r, since mk + i < n for any 1 ≤ m ≤ p − 1, δ+

i equals the total sum of (30)/n!
(m = 1, . . . , p − 1). �

6. A recurrence relation of {φi}: Case 3

In this section, we consider the case of k ≤ i ≤ [n−1
2

]. Then i is expressed as

i = qk + s (33)

for some q ≥ 1 and 0 ≤ s ≤ k − 1. Since i + k ≤ n, we get from Theorem 1 that
{

Ker(i; Sπ,i)
∣

∣i ∈ WSπ,i

}

is given by















[i − k + 1, i] [i − k + 1, i + 1] . . . [i − k + 1, i + k − 1]
[i − k + 2, i + 1] . . . [i − k + 2, i + k − 1]

. . .
...

[i, i + k − 1]















(34)

and
{

Ker(i + 1; Sπ,i+1)
∣

∣ i + 1 ∈ WSπ,i+1

}

is given by















[i − k + 2, i + 1] . . . [i − k + 2, i + k − 1] [i − k + 2, i + k]
. . .

...
...

[i, i + k − 1] [i, i + k]
[i + 1, i + k]















. (35)

So, as well as (25), we have

{Ker(i + 1; Sπ,i+1)
∣

∣ i /∈ WSπ,i+1
, i + 1 ∈ WSπ,i+1

}

= {[j1, i + k]
∣

∣ i − k + 2 ≤ j1 ≤ i + 1} (36)

and

{Ker(i; Sπ,i)
∣

∣ i ∈ WSπ,i
, i + 1 /∈ WSπ,i

}

= {[i − k + 1, j2]
∣

∣ i ≤ j2 ≤ i + k − 1}. (37)

A well as (26), we get from (36) and (37) that

{I(i + 1; Sπ,i+1)
∣

∣ i /∈ WSπ,i+1
, i + 1 ∈ WSπ,i+1

}

= {[j1, mk + i]
∣

∣ 1 ≤ j1 ≤ i + 1, m ≥ 1, mk + i ≤ n} (38)
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and

{I(i; Sπ,i)
∣

∣ i ∈ WSπ,i
, i + 1 /∈ WSπ,i

}

= {[i − mk + 1, j2]
∣

∣ i ≤ j2 ≤ n, m ≥ 1, 1 ≤ i − mk + 1}. (39)

Lemma 4. Let m ≥ 1 satisfy mk + i ≤ n. Then there exists i ≤ j2 ≤ n such that
I(i; Sπ,i) = [i − mk + 1, j2] if and only if

π−1(j) < π−1(i) ∀j ∈ [i − mk + 1, i − 1] (40)

and either (e) π−1(i − mk) > π−1(i) or (f) i − mk + 1 = 1 holds.

Proof. Almost same with Lemma 3. The only difference is that we make I(i; Sπ,i) by
attaching intervals of length k to Ker(i; Sπ,i) from not the right side of i but the left
side of i. �

Theorem 5. In the case of k ≤ i ≤ [n−1
2

], it holds that

δ+
i =











































p−q
∑

m=1

1

mk(mk + 1)
0 ≤ s ≤ r − 1,

p−q−1
∑

m=1

1

mk(mk + 1)
+

1

(p − q)k
s = r,

p−q−1
∑

m=1

1

mk(mk + 1)
r + 1 ≤ s ≤ k − 1,

(41)

and

δ−i =























q−1
∑

m=1

1

mk(mk + 1)
+

1

qk
s = 0,

q
∑

m=1

1

mk(mk + 1)
s 6= 0,

(42)

where q and j are defined by (33).

Proof. One can easily prove (41) as well as (28). The only difference is that p is
replaced by p − q. The difference comes from that i is expressed as i = qk + s. So, the
condition m ≥ 1 and mk + i ≤ n in (38) is equivalent to m ≥ 1 and (m + q)k + s ≤ n.
When s > r, the latter implies that 1 ≤ m ≤ p − q − 1. When s ≤ r, it implies that
1 ≤ m ≤ p − q. In particular, when s = r, m = p − q corresponds to (d) in Lemma 3.

We use (39) and Lemma 4 to prove (42). By Lemma 4, π satisfies i ∈ WSπ,i
and

i + 1 /∈ WSπ,i
if and only if π satisfies (40) and either (e) or (f). The condition m ≥ 1

and 1 ≤ i−mk+1 in (39) is equivalent to 1 ≤ m ≤ q. In particular, when s = 0, m = q
corresponds to (f). So we get (42). �

Following is the graphs of the Shapley values of 28 players.
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Figure 4. Shapley values of 28 players. Left: k = 3, Right: k = 12
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Figure 5. Shapley values of 28 players when k = 20.

7. The maximal values of the Shapley value

In Figure 4, the maximum value of the Shapley value is attained by i = k and
i = n + 1 − k. The aim of this section is to show that this is true for any 2 ≤ k ≤ n/2.
Otherwise, the graph of the Shapley value has a shape in Figure 5. We first cosider the
case of k ≥ n/2 + 1.

Theorem 6. When k ≥ n/2 + 1, it holds that

φ1 < φ2 < · · · < φn−k+1 = · · · = φk > φk+1 > · · · > φn.

Proof. The assertion is a direct consequence of Theorems 3 and 4. �

Next, we consider the case of 2 ≤ k ≤ n/2. We list up the maximal values of the
Shapley value. By virtue of symmetry of the Shapley value, it suffices to consider
i ≤ [(n − 1)/2], so that i + 1 ≤ [(n + 1)/2]. Since n and i are expressed as n = pk + r
and i = qk + s, i ≤ [(n − 1)/2] implies that

(p − 2q)k + r − 2s − 1 ≥ 0. (43)

Since r ≤ k, we see from (43) that p ≥ 2q.

Theorem 7. The maximal points of {φi}i on the interval [1, [(n+1)/2]] are {k, 2k, . . . }.

Proof. Figure 6 below shows the outline of the proof. Step 1. It follows from Theorem
4 that φ1 < φ2 < · · · < φk. Step 2. We show

φqk+1 − φqk < 0 (q = 1, 2, . . . ). (44)
10



i
qk

k qk+1

q(k+1)

Step 1

Step 2

Step 3

Figure 6. φqk > φqk+1 ≤ φqk+2 ≤ · · · ≤ φq(k+1).

We get from Theorem 5 that, for any q = 1, 2, . . . ,

φqk+1 − φqk =























p−q
∑

m=q

1

mk(mk + 1)
−

1

qk
r > 0

p−q−1
∑

m=q

1

mk(mk + 1)
+

1

(p − q)k
−

1

qk
r = 0.

(45)

Indeed, since s = 0 for i = qk, the first two cases in (41) and the first case in (42) are
applicable, and we easily get (45). Further, we get (44) from (45). Indeed, for any r > 0
and p = 2q, we have

φqk+1 − φqk =
1

qk

(

1

qk + 1
− 1

)

< 0. (46)

For any r > 0 and p > 2q, we have

φqk+1 − φqk =

p−q−1
∑

m=q

1

mk(mk + 1)
+

1

(p − q)k{(p − q)k + 1}
−

1

qk

<

p−q−1
∑

m=q

1

mkmk
+

1

(p − q)k
−

1

qk

=
1

k

(

1

k

p−q−1
∑

m=q

1

m2
+

1

p − q
−

1

q

)

.

For r = 0, we have from (45) that

φqk+1 − φqk <
1

k

(

1

k

p−q−1
∑

m=q

1

m2
+

1

p − q
−

1

q

)

.

So, letting f(p) :=
1

k

p−q−1
∑

m=q

1

m2
+

1

p − q
−

1

q
, we see that

0 ≥ f(2q + 1) > f(2q + 2) > · · · > f(p). (47)
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In fact,

f(2q + 1) =
1

kq2
+

1

q + 1
−

1

q
=

1 − q(k − 1)

kq2(q + 1)
≤ 0

and

f(2q + j + 1) − f(2q + j) =
1

k(q + j)2
+

1

q + j + 1
−

1

q + j
=

1 − (q + j)(k − 1)

k(q + j)2(q + j + 1)
< 0.

Hence f is nonincreasing, so that (44) has been proved. Step 3. We show φqk+s ≤
φqk+s+1 for any s ≥ 1 and q 6= 0. (i) When 1 ≤ s ≤ r − 1, we see from the first case of
(41) and the second case of (42) that

φqk+s+1 − φqk+s =

p−q
∑

m=q+1

1

mk(mk + 1)
≥ 0, (48)

where the summation equals 0 when p− q < q + 1. (ii) When s = r, it follows from the
second case of (41) and the second case of (42) that

φqk+s+1 − φqk+s =

p−q−1
∑

m=q+1

1

mk(mk + 1)
+

1

(p − q)k
≥ 0. (49)

(iii) When s > r, it follows from the third case of (41) and the second case of (42) that

φqk+s+1 − φqk+s =

p−q−1
∑

m=q+1

1

mk(mk + 1)
≥ 0. (50)

Therefore φqk+s+1 ≥ φqk+s. �

Theorem 8. When 2 ≤ k ≤ n/2, the maximum points of {φi} are i = k and i =
n − k + 1.

Proof. By Theorem 7, the maximum value is attained by either i = qk. In the case of
r = 0, it follows from the second case of (45) and (50) that

φ(q+1)k −φqk =

k−1
∑

s=0

(φqk+s+1 −φqk+s) = k

p−q−1
∑

m=q+1

1

mk(mk + 1)
+

1

(p − q)k
−

1

qk + 1
. (51)

Here, remark that the summations in (45) and (48) are taken from m = q + 1 to not
p − q − 1 but p − q. So, in the case of r > 0, it follows from the first case of (45), (48),
(49), and (50) that

φ(q+1)k − φqk =

k−1
∑

s=0

(φqk+s+1 − φqk+s)

=k

p−q−1
∑

m=q+1

1

mk(mk + 1)
+

r

(p − q)k{(p − q)k + 1}
+

1

(p − q)k
−

1

qk + 1
.

(52)

Since (52) reduces to (51) when r = 0, (52) is correct for r = 0.
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For 1 ≤ q, 2q+2 ≤ p, 0 ≤ r ≤ k−1, and 2 ≤ k, let f1(p, q, r, k) := φ(q+1)k−φqk. Then,
it is obvious that f1(p, q, r, k) ≤ f1(p, q, k − 1, k) =: f2(p, q, k) for any 0 ≤ r ≤ k − 1.
Further,

f2(p + 1, q, k) − f2(p, q, k) =
−(k − 1)

(p − q + 1){(p − q + 1)k + 1}{(p − q)k + 1}
< 0.

Hence f2(p, q, k) is the strict decreasing w.r.t. p. So, let f3(q, k) := f2(2q + 2, q, k).
Then

f3(q, k) =
1

(q + 1){(q + 1)k + 1}
+

k − 1

(q + 2)k{(q + 2)k + 1}
+

1

(q + 2)k
−

1

qk + 1

=
−2q2k2 + 2qk2 − 5qk2 + 3qk − 4k2 + 2q + k + 3

(q + 1)(q + 2)(qk + 1)(qk + k + 1)(qk + 2k + 1)
.

Since the numerator of the right-hand side is expressed as

−(k − 1)

{

2k

(

q +
5k + 2

4k

)2

−
(5k + 2)2

8k
+ 4k + 3

}

,

the maximum value of f3(q, k) on q ≥ 1 is attained by q = 1. Then the numerator
of f3(1, k) is −(k − 1)(11k + 5) < 0. So, f1(p, q, k, r) ≤ f2(p, q, k) ≤ f3(q, k) < 0 as
desired. �
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