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A duality theorem based on triangles separating three
convex sets. 1

Hidefumi Kawasaki2

Abstract. Separation theorems play the central role in duality theory. Recently,
the author proposed a duality theorem for a three-phase partition problem in [4].
It is based on triangles separating three convex sets. However, the dual problem in
[4] includes a variable of the primal problem. The aim of this paper is to remove
the variable from the dual problem.
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1. Introduction

The three-phase partition problem is to divide a given domain Ω ⊂ R
2 into three

subdomains with a triple junction having least interfacial area (Fig.1). Sternberg
and Zeimer [6] established the existence of local minimizers to the problem. Ikota
and Yanagida [1] investigated not only stability but also instability for stationary
curves in terms of the curvature of the boundary ∂Ω.
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Figure 1. Three-phase partition problem

They formulated the problem as a variational problem. However, since the short-
est curve joining two points is the line segment, it can be formulated as an extremal
problems in R

n. From this point of view, the author discussed stability and insta-
bility of the three-phase partition problem and studied its game-theoretic aspect in
[2][3]. Further, he gave a duality theorem for the following problem in [4].

(P0)
Minimize f(X0, . . . , X3) :=

3∑

i=1

||Xi − X0||

subject to X0 ∈ Ω, Xi ∈ Ci (i = 1, 2, 3),

where || · || denotes the Euclidean norm and Ci (i = 1, 2, 3) are closed convex sets
with non-empty interior in R

2 such that Ω := cl(∩3
i=1C

c
i ) is non-empty (Fig. 2) .
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Figure 2. Primal problem (P0)

Let (X0, . . . , X3) be a non-degenerate minimum solution for (P0), that is, X0

does not coincide with any Xi (i = 1, 2, 3). Assume that Ω is bounded. Then, for
the following dual problem (D∗

0), we have min(P0) = max(D∗

0) ([4]).

(D∗

0)
Maximize the smallest height of a triangle ∆
subject to X0 ∈ ∆ ⊂ Ω.

The main aim of this paper is to remove X0 from the dual problem (D∗

0). For
this aim, we slightly change the primal problem as follows.

(P )
Minimize

3∑

i=1

||Xi − X0||

subject to X0 ∈ R
2, Xi ∈ Ci (i = 1, 2, 3).

The only difference between (P ) and (P0) is the domain of X0. When we emphasize
the domain Ω, we denote (P ) by (PΩ).

This paper is organized as follows. In Section 2, we briefly review classical duality
theorems and introduce the concept of separation of three convex sets by a triangle.
In Section 3, we characterize minimum solutions for (P ). In Section 4, we define
the dual problem (D) and show duality.

We close this section with our notations. For any closed convex sets C1 and
C2, we define d(C1, C2) := min{||X1 − X2|| | Xi ∈ Ci (i = 1, 2)}. We denote by
N(Xi;Ci) the normal cone of Ci at Xi. When Xi 6= X0, we denote by ei the unit
vector (Xi − X0)/||Xi − X0||.

2. Separation by a triangle

In this section, we first review classical duality theorems in brief. Next, we
introduce separation of three convex sets by a triangle.

One of the simplest duality theorems is the following. Let C1 be a non-empty
convex set in R

2 and A /∈ C1 a point. Then the primal problem is

(P1)
Minimize ||X1 − A||
subject to X1 ∈ C1.

Its dual problem (D1) is to maximize the distance from A to a hyperplane H that
separates A and C1. We can rephrase it as maximizing the width of a strip that
separates A and C1 (Fig. 3), where a strip stands for the area sandwiched between
two parallel lines.



3

X1

C1

A

Figure 3. Dual problem (D1)

If we replace A with a convex set C2 such that C1 ∩ C2 = φ, then the primal
problem is as follows.

(P2)
Minimize ||X1 − X2||
subject to Xi ∈ Ci (i = 1, 2).

Its dual problem (D2) is to minimize the width of a strip that separates C1 and C2

(Fig. 4).
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Figure 4. Dual problem (D2)

If we take the epigraph of a convex function f and the hypograph of a concave
function g as C1 and C2, respectively, and measure the width of the strip in the
vertical direction, duality between (P2) and (D2) reduces to Fenchel’s duality, see
e.g. [5, Theorem 31.1].

Therefore, classical dual problems can be described in terms of strips or hyper-
planes separating two convex sets. In this paper, we need a concept of triangles
separating three convex sets in order to deal with (P ).

Definition 2.1. ([4]) Let Ci (i = 1, 2, 3) be convex sets in R
2 such that Ω =

cl(∩3
i=1C

c
i ) is not empty, and let ∆ ⊂ Ω a triangle. Then, we say that ∆ separates

{Ci}
3
i=1 if there are three closed half spaces {H−

i }3
i=1 such that Ci ⊂ H−

i for every

i and ∆ = ∩3
i=1H

+
i , where H+

i denotes the closed half space opposite to H−

i (Fig.
5).

The following lemma is useful in this paper.

Lemma 2.1. Let (X0, . . . , X3) be a feasible solution for (P ) and let a triangle ∆

separate {Ci}
3
i=1. Then min(P∆) ≤

∑3

i=1 ||Xi − X0||.

Proof. Since Xi ∈ Ci ⊂ H−

i , we have
∑3

i=1 ||Xi − X0|| ≥
∑3

i=1 d(X0,H
−

i ) ≥
min(P∆). �
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Figure 5. ∆1 separates Ci’s and ∆2 does not separate Ci’s.

3. Characterization of minimum solutions

In this section, we first give a characterization theorem of minimum solutions for
(P ). Next, we consider the special case that Ci’s are closed half spaces.

Although (P0) is not a convex program, the present primal problem (P ) is a
convex program. So optimal solutions are characterized by the first-order optimality
condition below. Since the proof is almost same with [4, Theorem 3.1], we omit the
proof.

Theorem 3.1. Let (X0, . . . , X3) be a non-degenerate feasible solution for (P ). Then

it is a minimum solution if and only if it satisfies Young’s law

∠XiX0Xj = 120◦ for any i 6= j (3.1)

and the transversality condition

X0 − Xi ∈ N(Xi;Ci) (i = 1, 2, 3). (3.2)
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Figure 6. Young’s law and the transversality condition

Next, we consider the special case that Ω is a triangle determined by closed half
spaces Ci (i = 1, 2, 3). Then it is clear that the minimum is attained by (X0, . . . , X3)
satisfying X0 ∈ Ω. So, (P ) reduces to (P0). Hence, Corollary 1 in [4] is available to
(P ).

Proposition 3.1. When Ω is a triangle, min(P ) equals to the smallest height of Ω.

4. Duality theorem

The dual problem (D) is defined as follows.

(D)
Maximize the smallest height of a triangle ∆
subject to there exists a triangle ∆′ such that ∆ ⊂ ∆′ ⊂ Ω,

∆′ separates {Ci}
3
i=1.
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When Ω is bounded, it has a simplified form (D∗) defined in Theorem 4.2 below.

Theorem 4.1. Let (X0, X1, X2, X3) and ∆ be feasible solutions for (P ) and (D),

respectively, then it holds that min(P∆) ≤
∑3

i=1 ||Xi − X0||, so that

sup(D) ≤ inf(P ). (4.1)

Furthermore, if (P ) has a non-degenerate minimum, then

min(P0) = min(P ) = max(D). (4.2)

Proof. Let ∆ be a feasible solution for (D). Then there exists a triangle ∆′ such
that ∆ ⊂ ∆′ ⊂ Ω and ∆′ separates {Ci}

3
i=1. Let (X0, X1, X2, X3) be a feasible

solution for (P ). Then, combining Lemma 2.1 and Proposition 3.1, we have

min(P∆) ≤ min(P∆′) ≤

3∑

i=1

||Xi − X0||, (4.3)

which implies the weak duality (4.1). By Theorem 3.1, the non-degenerate minimum
solution forms a regular triangle ∆∗ such that

min(PΩ) = the height of ∆∗ = min(P∆∗). (4.4)

It follows from definition of the normal cone that ∆∗ itself separates {Ci}
3
i=1. There-

fore, ∆∗ attains the maximum of (D). So we get the strong duality min(P ) =
max(D). On the other hand, since X0 is in the interior of Ω, there exists a convex
neighborhood C0 of X0 such that C0 ⊂ Ω. Since the primal problem (P0) restricted
on C0 is a convex program, (X0, X1, X2, X3) is a minimum solution for (P ). �

Theorem 4.2. When Ω is bounded, the dual problem (D) is simplified as follows.

(D∗) Maximize the smallest height of a triangle ∆ ⊂ Ω.

Proof. Assume that ∆ ⊂ Ω. Then, by separation theorem, there are closed half
spaces H−

i (i = 1, 2, 3) such that Ci ⊂ H−

i and ∆ ⊂ ∩3
i=1(H

+
i )c =: ∆′. Since Ω is

bounded and since ∆′ ⊂ ∩3
i=1C

c
i = Ω, ∆′ is a triangle separating {Ci}

3
i=1. �
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Figure 7. Separating hyperplanes form an unbounded polygon ∆′
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5. Concluding remarks

When Ω is not bounded, separating hyperplanes do not necessarily form a trian-
gle, see Fig. 7. So duality relationship min(P ) = max(D∗) does not always hold.
Indeed, since we can enlarge ∆ rightward within the dark gray area as we like,
sup(D∗) equals +∞.

We can replace a triangle by a regular triangle in our dual problems (D) and
(D∗), because the maximum is attained by a regular triangle. However, it is clear
that regular triangles are not enough when Ω is a (general) triangle. That’s why we
defined the dual problem with (general) triangles.
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