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Abstract. We study an asymptotically efficient estimator for drift parameters of a one-
dimensional small diffusion process with a linear drift. A martingale estimating function can
be constructed for this model, and an estimator obtained from the estimating function has an
explicit form. Under the situation where the sample path is observed at n regularly spaced time
points tk = k/n on the interval [0, 1], we consider asymptotic properties of the estimator as a
small dispersion parameter ε → 0 and n →∞ simultaneously.
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1 Introduction

Consider a one-dimensional diffusion process defined by the stochastic differential equation
(SDE) as follows:

dXt = b(Xt, θ)dt + εσ(Xt)dwt, t ∈ [0, 1], ε ∈ (0, 1], (1)
X0 = x0,

where x0 and ε are known constants, θ ∈ Θ with Θ being a compact convex subset of Rp, b is
an R-valued function defined on R × Θ, σ is an R-valued function defined on R, and w is a
one-dimensional standard Wiener process. We assume that the drift b is known apart from the
parameter θ. The type of data is discrete observations of the process Xt at n regularly spaced
time points tk = k/n on the fixed interval [0, 1], that is, Xn = (Xtk)0≤k≤n. The asymptotics is
when ε → 0 and n →∞ simultaneously.

The above process (1), which is called a small diffusion process, is often applied to a model
of mathematical finance, see Yoshida (1992b), Kunitomo and Takahashi (2001), Takahashi and
Yoshida (2004) and references therein. Because of it, our interest is in statistical inference for
small diffusion processes. For a continuously observed sample path X1 = {Xt; t ∈ [0, 1]}, the
log-likelihood function is

lε(θ) =
1
ε2

∫ 1

0
b(Xt, θ)σ−2(Xt)dXt −

1
2ε2

∫ 1

0
b(Xt, θ)σ−2(Xt)b(Xt, θ)dt. (2)
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The maximum likelihood estimator (MLE) is given by lε(θ̂
(ML)
ε ) = supθ∈Θ lε(θ). The asymptotic

properties of the MLE have been studied carefully, see Kutoyants (1984, 1994) and Yoshida
(1992, 2003). These continuous paths, however, are hardly observed. Therefore, in practice,
statistical inference for a discretely observed small diffusion is regarded as important.

As for asymptotically efficient estimation of a drift parameter based on discrete observations,
we can refer the following two papers. Genon-Catalot (1990) proposed two contrast functions.
One is based on a discretization of the likelihood (2) as follows.

Uε,n(θ) =
1
ε2

n∑
k=1

b(Xtk−1
, θ)σ−2(Xtk−1

)
(

Xtk −Xtk−1
− 1

2n
b(Xtk−1

, θ)
)

. (3)

The maximum contrast estimator (MCE) is defined by Uε,n(θ̂(S)
ε,n ) = supθ∈Θ Uε,n(θ). She showed

that the MCE θ̂
(S)
ε,n has asymptotic efficiency under (εn)−1 → 0 as ε → 0 and n →∞. The other

is based on a Gaussian approximation of the sample path as follows.

Λε,n(θ) = −1
2

n∑
k=1

{
Xtk −X0

tk
(θ)− Htk

(θ)

Htk−1
(θ)(Xtk−1

−X0
tk−1

(θ))
}2

H2
tk

(θ)
∫ tk
tk−1

H−2
s (θ)σ2(X0

s (θ))ds
, (4)

where Ht(θ) = exp
{∫ t

0
∂b
∂u(X0

s (θ), θ)ds
}

and X0
t (θ) is the solution of the ordinary differential

equation (ODE): dX0
t (θ) = b(X0

s (θ), θ)dt,X0
0 = x0. The MCE θ̂

(G)
ε,n defined by Λε,n(θ̂(G)

ε,n ) =
supθ∈Θ Λε,n(θ) has asymptotic efficiency under the weak condition that ε

√
n = O(1) as ε → 0

and n → ∞. Laredo (1990) presented the following estimation procedure. First, solve the
function V (u) from the ODE: ∂

∂uV (u, θ) = b(u, θ)σ−2(u), V (x0, θ) = 0. Next, create a process
{Yt}0≤t≤1 such that Yt = Xtk−1

+ t−tk−1

tk−tk−1
(Xtk − Xtk−1

) for tk−1 ≤ t ≤ tk. Then, the contrast
function of Laredo (1990) is as follows.

l̃ε,n(θ) =
1
ε2

{
V (Y1, θ)−

1
2

∫ 1

0
b2(Ys, θ)σ−2(Ys)ds

}
. (5)

She proved that the MCE θ̂
(L)
ε,n defined by l̃ε,n(θ̂(L)

ε,n ) = supθ∈Θ l̃ε,n(θ) is asymptotically efficient
under (εn2)−1 → 0 as ε → 0 and n →∞. Among these three estimators, θ̂

(G)
ε,n is the best because

of the weak condition of asymptotics.
In the same way as in Bibby and Sørensen (1995), it is possible to discuss a martingale

estimating function Mε,n(θ) = (M (i)
ε,n(θ))i=1,...,p, where for i = 1, . . . , p,

M (i)
ε,n(θ) =

1
ε2

n∑
k=1

(
∂b

∂θi

)
(Xtk−1

, θ)σ−2(Xtk−1
)(Xtk−1

− Eθ[Xtk |Xtk−1
]). (6)

Uchida (2004) showed that under some regularity conditions, an M-estimator θ̂
(M)
ε,n obtained from

the estimating equation Mε,n(θ) = 0 is asymptotically efficient under the weakest condition that
ε → 0 and n → ∞. Although the conditional expectation Eθ[Xtk |Xtk−1

] does not generally
have an explicit form for diffusion processes, the estimator θ̂

(M)
ε,n is the best of the above four

estimators in the case that the conditional expectation is explicitly obtained. In particular,
when the drift term is linear, that is, b(x, θ) = θ1 + θ2x, the conditional expectation always has
an explicit expression.

In this paper, we consider the one-dimensional SDE with a linear drift b(x, θ) = θ1 + θ2x.
Compared with SDE (1), it seems that the model we treat is somewhat restricted. However,
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there are a number of examples for financial models and it is an appealing model from the
viewpoint of asymptotically statistical estimation.

This paper is organized as follows. In section 2, we present an explicit martingale estimating
function. An M-estimator obtained from the martingale estimating function has asymptotic
efficiency as ε → 0 and n →∞. Section 3 gives three examples and simulation studies. Section
4 is devoted to the proof of the result stated in section 2.

2 Martingale estimating functions

In this paper, we consider the following one-dimensional SDE

dXt = (θ1 + θ2Xt)dt + εσ(Xt)dwt, t ∈ [0, 1], ε ∈ (0, 1], (7)
X0 = x0,

where x0 and ε are known constants, w is a one-dimensional standard Wiener process, θ1 and
θ2 are unknown parameter and assume that θ2 6= 0. Let θ0 = (θ1,0, θ2,0) be a true value of
θ = (θ1, θ2) and assume that θ0 ∈ Θ ⊂ R2. Let X0

t be the solution of the ODE: dX0
t =

(θ1,0 + θ2,0X
0
t )dt, X0

0 = x0. Define that C∞↑ (R;R) is a space of functions h which satisfies
the following conditions: (i) h : R → R is continuously infinitely differentiable with respect to
x, (ii) for n ≥ 0, there exists C > 0 such that |∂n/∂xnh(x)| ≤ C(1 + |x|)C for ∀x ∈ R. Let
I(θ0) =

(
I(i,j)(θ0)

)
i,j=1,2

denote the asymptotic Fisher information matrix, where

I(1,1)(θ) =
∫ 1

0
σ−2(X0

s )ds, I(2,2)(θ) =
∫ 1

0
(X0

s )2σ−2(X0
s )ds,

I(1,2)(θ) = I(2,1)(θ) =
∫ 1

0
(X0

s )σ−2(X0
s )ds.

We make the following assumptions.

Assumption 1 (i) Equation (1) has a unique strong solution on [0,1]. (ii) For ∀m > 0,
sup0≤t≤1 E [| Xt |m] < ∞. (iii) σ(x) ∈ C∞↑ (R;R). (iv) infx σ2(x) > 0. (v) I(θ0) =

(
I(i,j)(θ0)

)
i,j=1,2

is positive definite.

Since Ito’s formula yields that

Xt = eθ2t
[
X0 −

θ1

θ2
(e−θ2t − 1) + ε

∫ t

0
e−θ2sσ(Xs)dws

]
,

the conditional expectation is as follows:

E
[
X 1

n
|X0 = x

]
= e

θ2
n x +

θ1

θ2
(e

θ2
n − 1).

We then have the martingale estimating function Mε,n(θ) of the model (7),

Mε,n(θ) =

 ε−2∑n
k=1 σ−2(Xtk−1

)
{

Xtk − e
θ2
n Xtk−1

− θ1
θ2

(e
θ2
n − 1)

}
ε−2∑n

k=1 Xtk−1
σ−2(Xtk−1

)
{

Xtk − e
θ2
n Xtk−1

− θ1
θ2

(e
θ2
n − 1)

}
 . (8)
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Let θ̂
(M)
ε,n = (θ̂(1)

ε,n, θ̂
(2)
ε,n) be the solution of the estimating equation Mε,n(θ̂(M)

ε,n ) = 0. It then follows
that

θ̂(1)
ε,n =

[
n log

{
g2g3 − g1g4

(g2)
2 − g1g5

}]
1
g1

{
g2g3 − g1g4

(g2)
2 − g1g5

− 1

}−1 [
g3 − g2

{
g2g3 − g1g4

(g2)
2 − g1g5

}]
,

θ̂(2)
ε,n = n log

{
g2g3 − g1g4

(g2)
2 − g1g5

}
,

where

g1 =
n∑

k=1

1
σ2(Xtk−1

)
, g2 =

n∑
k=1

Xtk−1

σ2(Xtk−1
)
, g3 =

n∑
k=1

Xtk

σ2(Xtk−1
)
,

g4 =
n∑

k=1

XtkXtk−1

σ2(Xtk−1
)
, g5 =

n∑
k=1

X2
tk−1

σ2(Xtk−1
)
.

The main result is as follows.

Theorem 1 Suppose that assumption 1 holds true. Then, as ε → 0 and n →∞, θ̂
(M)
ε,n → θ0 in

probability and ε−1(θ̂(M)
ε,n − θ0) → N

(
0, I−1(θ0)

)
in distribution.

It follows from theorem 1 that the estimator θ̂
(M)
ε,n is asymptotically efficient under the general

condition that ε → 0 and n →∞. This means that in the sense of the asymptotics with respect
to ε and n, the estimator θ̂

(M)
ε,n is better than the three estimators, θ̂

(S)
ε,n , θ̂

(G)
ε,n and θ̂

(L)
ε,n .

3 Examples

In this section, we study the asymptotic behaviour of our estimators for three examples through
simulations. In all examples, for each ε = 0.1, 0.05, 0.01 and n = 5, 10, 50, we simulated 1000
independent sample paths with θ = θ0 (true parameter value) and the initial value x0. The
simulations were done by using the Euler-Maruyama scheme, see Kloeden and Platen (1992).
For each sample path, the estimator θ̂

(M)
ε,n in theorem 1 was calculated. In order to evaluate

the estimator θ̂
(M)
ε,n , we also calculate the three estimators, θ̂

(S)
ε,n , θ̂

(G)
ε,n and θ̂

(L)
ε,n . For the resulting

1000 values of the estimators, the means and the standard deviations of the estimators were
computed.

3.1 The Ornstein-Uhlenbeck process

Consider the one-dimensional diffusion process defined by the SDE

dXt = −θXtdt + εdwt, t ∈ [0, 1], ε ∈ (0, 1], X0 = x0, (9)

where x0 and ε are known constants and θ > 0 is an unknown parameter. This diffusion process
is a version of the Ornstein-Uhlenbeck process. By setting that ε = 0, the dynamical system is
X0

t (θ) = x0e
−θt. Furthermore, the asymptotic Fisher information is I(θ0) = x2

0(1− e−2θ0)/(2θ0).
Since the first contrast function in Genon-Catalot (1990) is

Uε,n(θ) = − 1
ε2

n∑
k=1

θXtk−1

(
Xtk −Xtk−1

+
1
2n

θXtk−1

)
,
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the MCE is given by

θ̂(S)
ε,n = −

∑n
k=1 Xtk−1

(Xtk −Xtk−1
)

1
n

∑n
k=1 X2

tk−1

.

The second contrast function in Genon-Catalot (1990) is

Λε,n(θ) = − θ

1− e−2θ/n

n∑
k=1

(Xtk − e−θ/nXtk−1
)2.

Since the MCE does not have an explicit form, we will obtain an approximate solution by using
numerical analysis. The contrast function in Laredo (1990) is given by

l̃ε(θ) =
1

2ε2

{
−θ(X2

1 − x2
0)− θ2

{
1
n

n∑
k=1

Xtk−1
Xtk +

1
3n

n∑
k=1

(Xtk −Xtk−1
)2
}}

.

Solving ∂θ l̃ε(θ) = 0, we obtain the MCE

θ̂(L)
ε,n = −

1
2(X2

1 − x2
0)

1
n

∑n
k=1 Xtk−1

Xtk + 1
3n

∑n
k=1(Xtk −Xtk−1

)2
.

The estimator obtained from the martingale estimating function is

θ̂(M)
ε,n = n

{
log

(∑
X2

tk−1

)
− log

(∑
XtkXtk−1

)}
.

Table 1 shows the means and the standard deviations of the four estimators for θ = 10 and
x0 = 20. For the case that n ≤ 10, though θ̂

(S)
ε,n and θ̂

(L)
ε,n have considerable biases, θ̂

(G)
ε,n and

θ̂
(M)
ε,n perform quite well. For the case that n is large, there is no difference between the three

estimators, θ̂
(L)
ε,n , θ̂

(G)
ε,n and θ̂

(M)
ε,n . In this model, both θ̂

(G)
ε,n and θ̂

(M)
ε,n are acceptable. It is worth

mentioning that θ̂
(M)
ε,n has an simple expression while θ̂

(G)
ε,n does not have an explicit form.

Table 1: (The Ornstein-Uhlenbeck process) The mean and standard deviation of the estimators,
which are determined from 1000 independent simulated sample paths for θ = 10 and x0 = 20.

θ̂
(S)
ε,n θ̂

(L)
ε,n θ̂

(G)
ε,n θ̂

(M)
ε,n

ε n mean s.d. mean s.d. mean s.d. mean s.d.
0.10 5 4.33002 0.00553 6.39373 0.00971 10.04956 0.04121 10.04987 0.04121
0.10 10 6.33991 0.00960 8.66041 0.01662 10.05079 0.02622 10.05101 0.02622
0.10 50 9.10495 0.01846 9.98337 0.02213 10.05047 0.02258 10.05070 0.02257
0.05 5 4.33006 0.00276 6.39385 0.00486 10.04998 0.02062 10.05006 0.02062
0.05 10 6.33979 0.00480 8.66030 0.00831 10.05061 0.01311 10.05066 0.01311
0.05 50 9.10479 0.00923 9.98336 0.01106 10.05045 0.01129 10.05051 0.01129
0.01 5 4.33009 0.00055 6.39392 0.00097 10.05027 0.00413 10.05027 0.00413
0.01 10 6.33970 0.00096 8.66017 0.00166 10.05040 0.00262 10.05040 0.00262
0.01 50 9.10468 0.00185 9.98327 0.00221 10.05037 0.00226 10.05037 0.00226
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3.2 The geometric Brownian motion

We treat the one-dimensional diffusion process defined by

dXt = θXtdt + εXtdwt, t ∈ [0, 1], ε ∈ (0, 1], X0 = x0, (10)

where θ > 0 is an unknown parameter, x0 and ε are known constants. This model is called
the geometric Brownian motion. Note that the dynamical system with ε = 0 is given by
X0

t (θ) = x0e
θt and the asymptotic Fisher information is I(θ0) = 1.

The first contrast function in Genon-Catalot (1990) is

Uε,n(θ) =
1
ε2

n∑
k=1

θ

Xtk−1

(Xtk −Xtk−1
− θ

2n
Xtk−1

).

Solving the estimating equation ∂θUε,n(θ) = 0, we have the MCE

θ̂(S)
ε,n =

n∑
k=1

Xtk −Xtk−1

Xtk−1

.

Although the second contrast function in Genon-Catalot (1990) is given by

Λε,n(θ) = − n

2x2
0

n∑
k=1

(e−θtkXtk − e−θtk−1Xtk−1
)2,

the MCE can not be explicitly derived. As in the previous subsection, we need to compute an
approximate estimator. The contrast function in Laredo (1990) is described as

l̃ε(θ) =
1
ε2

{
θ log |X1| − θ log |x0| −

θ2

2

}

and the MCE is
θ̂(L)
ε,n = log |X1| − log |x0|.

The estimator based on the martingale estimating function is given by

θ̂(M)
ε,n = n

{
log

(∑ Xtk

Xtk−1

)
− log n

}
.

Table 2 gives the means and the standard deviations of the four estimators in the situation
where θ = 3 and x0 = 2. Since θ̂

(S)
ε,n has a considerable bias in all cases, it should not be used in

this setting. For the case that ε = 0.1, both θ̂
(G)
ε,n and θ̂

(L)
ε,n have small biases while θ̂

(M)
ε,n performs

quite well. Here we note that because θ̂
(L)
ε,n = log |X1| − log |x0|, θ̂

(L)
ε,n is independent of n. This

means that θ̂
(L)
ε,n has asymptotic efficiency as ε → 0. For this reason, θ̂

(L)
ε,n is not a good estimator

in the situation that ε is not so small. If n = 50 and ε ≥ 0.05, we see that θ̂
(G)
ε,n has a considerable

bias. For the case that n = 50, there seems no big difference between the three estimators θ̂
(L)
ε,n ,

θ̂
(G)
ε,n and θ̂

(M)
ε,n . Therefore we conclude that θ̂

(M)
ε,n is better than the others in all cases.
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Table 2: (The geometric Brownian motion) The mean and standard deviation of the estimators,
which are determined from 1000 independent simulated sample paths for θ = 3 and x0 = 2.

θ̂
(S)
ε,n θ̂

(L)
ε,n θ̂

(G)
ε,n θ̂

(M)
ε,n

ε n mean s.d. mean s.d. mean s.d. mean s.d.
0.10 5 4.10311 0.18635 2.99098 0.10200 3.01052 0.10506 2.99484 0.10244
0.10 10 3.49317 0.13819 2.99098 0.10200 3.03649 0.10952 2.99546 0.10246
0.10 50 3.08758 0.10858 2.99098 0.10200 3.24911 0.13646 2.99589 0.10228
0.05 5 4.10279 0.09299 2.99449 0.05100 2.99928 0.05159 2.99545 0.05110
0.05 10 3.49284 0.06894 2.99449 0.05100 3.00566 0.05243 2.99561 0.05111
0.05 50 3.08731 0.05422 2.99449 0.05100 3.05678 0.05681 2.99572 0.05107
0.01 5 4.10250 0.01857 2.99550 0.01020 2.99569 0.01022 2.99554 0.01020
0.01 10 3.49259 0.01377 2.99550 0.01020 2.99595 0.01024 2.99555 0.01020
0.01 50 3.08711 0.01083 2.99550 0.01020 2.99797 0.01036 2.99555 0.01020

3.3 The Cox-Ingersoll-Ross process

The Cox-Ingersoll-Ross model is defined by the following one-dimensional SDE

dXt = (α + βXt)dt + ε
√

Xtdwt, t ∈ [0, 1], ε ∈ (0, 1], X0 = x0, (11)

where x0 and ε are known constants, α and β are unknown parameters and we assume that α > 0
and β < 0. Let θ = (α, β). The dynamical system is given by X0

t (θ) =
[
(α + βx0)eβt − α

]
/β.

The components of the asymptotic Fisher information matrix are

I(1,1)(θ0) = − 1
α0

{
β0 + log(β0C − α0)− log(β0Ceβ0 − α0)

}
,

I(2,2)(θ0) =
1
β0

(Ceβ0 − α0 − C), I(1,2)(θ0) = I(2,1)(θ0) = 1,

where C = x0 + α0/β0.
The first contrast function in Genon-Catalot (1990) is expressed as follows:

Uε,n(θ) =
1
ε2

n∑
k=1

α + βXtk−1

X2
tk−1

{
Xtk −Xtk−1

− 1
2n

(α + βXtk−1
)
}

.

The solutions which satisfy ∂αUε,n(θ) = ∂βUε,n(θ) = 0 are

α̂(S)
ε,n =

∑n
k=1(Xtk −Xtk−1

)− 1
n

∑n
k=1 Xtk−1

∑n
k=1

Xtk
−Xtk−1

Xtk−1

1− 1
n2

∑n
k=1 Xtk−1

∑n
k=1 X−1

tk−1

,

β̂(S)
ε,n =

∑n
k=1

Xtk
−Xtk−1

Xtk−1
− 1

n

∑n
k=1(Xtk −Xtk−1

)
∑n

k=1 X−1
tk−1

1− 1
n2

∑n
k=1 Xtk−1

∑n
k=1 X−1

tk−1

.

The second contrast function in Genon-Catalot (1990) is

Λε,n(θ) = −1
2

n∑
k=1

{
Xtk −X0

tk
− eβ/n(Xtk−1

−X0
tk−1

)
}2

e2βtk
∫ tk
tk−1

e−2βs 1
β [(α + βx0)eβs − α] ds

7



and the MCE is obtained by a numerical method. The contrast function in Laredo (1990) is

l̃ε(θ) =
1
ε2

{
α log |X1|+ βX1 − α log |x0| − βx0 −

1
2
(α2I + 2αβ + β2J)

}
,

where

I =
1
n

n∑
k=1

log |Xtk | − log |Xtk−1
|

Xtk −Xtk−1

, J =
1
2n

n∑
k=1

(Xtk + Xtk−1
)

and the MCEs can be expressed as

α̂(L)
ε,n =

1
IJ − 1

[J(log |X1| − log |x0|)−X1 + x0] ,

β̂(L)
ε,n =

1
IJ − 1

[I(X1 − x0)− log |X1|+ log |x0|] .

By using the martingale estimating functions, the estimators are given by

α̂(M)
ε,n =

n
∑n

k=1 Xtk −
∑ Xtk

Xtk−1

∑n
k=1 Xtk−1

n
∑n

k=1
Xtk

Xtk−1
−
∑n

k=1
1

Xtk−1

∑n
k=1 Xtk−1

− n2 +
∑n

k=1
1

Xtk−1

∑n
k=1 Xtk−1

nβ̂(M)
ε,n ,

β̂(M)
ε,n = n

{
log

(
n

n∑
k=1

Xtk

Xtk−1

−
n∑

k=1

1
Xtk−1

n∑
k=1

Xtk

)
− log

(
n2 −

n∑
k=1

1
Xtk−1

n∑
k=1

Xtk−1

)}
.

For α = 1, β = −3 and x0 = 10, the simulation results of the four estimators for α and β

are given in tables 3 and 4, respectively. For the case that n = 5, α̂
(S)
ε,n and α̂

(L)
ε,n has considerable

biases while both α̂
(G)
ε,n and α̂

(M)
ε,n work well. We can say that α̂

(M)
ε,n is a good estimator with a

small variance in all cases. Speaking of β, we see that β̂
(M)
ε,n performs very well in all cases. Note

that both α̂
(L)
ε,n and β̂

(L)
ε,n also work very well when n = 50.

Table 3: (The Cox-Ingersoll-Ross process) The mean and standard deviation of the estimators
for α, which are determined from 1000 independent simulated sample paths for α = 1, β = −3
and x0 = 10.

α̂
(S)
ε,n α̂

(L)
ε,n α̂

(G)
ε,n α̂

(M)
ε,n

ε n mean s.d. mean s.d. mean s.d. mean s.d.
0.10 5 0.75954 0.16780 0.65683 0.21300 0.99537 0.71616 1.01175 0.22945
0.10 10 0.87598 0.19225 0.91668 0.22059 1.02786 0.62927 1.01485 0.22578
0.10 50 0.98675 0.21811 1.00129 0.22440 1.30557 0.55896 1.01685 0.22541
0.05 5 0.75527 0.08348 0.65610 0.10621 1.00736 0.35551 1.00502 0.11408
0.05 10 0.86876 0.09558 0.91547 0.10995 1.01521 0.31698 1.00593 0.11220
0.05 50 0.97686 0.10850 1.00001 0.11187 1.08924 0.30132 1.00653 0.11212
0.01 5 0.75315 0.01664 0.65503 0.02120 1.00406 0.07078 1.00195 0.02273
0.01 10 0.86552 0.01904 0.91402 0.02194 1.00443 0.06332 1.00203 0.02235
0.01 50 0.97258 0.02162 0.99844 0.02232 1.00748 0.06175 1.00209 0.02234
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Table 4: (The Cox-Ingersoll-Ross process) The mean and standard deviation of the estimators
for β, which are determined from 1000 independent simulated sample paths for α = 1, β = −3
and x0 = 10.

β̂
(S)
ε,n β̂

(L)
ε,n β̂

(G)
ε,n β̂

(M)
ε,n

ε n mean s.d. mean s.d. mean s.d. mean s.d.
0.10 5 -2.25774 0.04769 -2.82332 0.07713 -3.00078 0.14510 -3.00403 0.08697
0.10 10 -2.59519 0.06264 -2.95597 0.08204 -3.00369 0.13070 -3.00491 0.08460
0.10 50 -2.91691 0.07978 -3.00013 0.08458 -3.04132 0.11921 -3.00552 0.08473
0.05 5 -2.25777 0.02382 -2.82455 0.03855 -3.00376 0.07245 -3.00352 0.04343
0.05 10 -2.59456 0.03129 -2.95712 0.04099 -3.00444 0.06594 -3.00380 0.04225
0.05 50 -2.91551 0.03985 -3.00125 0.04226 -3.01484 0.06336 -3.00399 0.04231
0.01 5 -2.25824 0.00476 -2.82571 0.00771 -3.00454 0.01446 -3.00419 0.00868
0.01 10 -2.59494 0.00625 -2.95824 0.00819 -3.00457 0.01320 -3.00422 0.00844
0.01 50 -2.91577 0.00796 -3.00235 0.00845 -3.00501 0.01297 -3.00424 0.00846

4 Proof

Proof of Theorem 1. In order to prove theorem 1, it suffices to show (A1)-(A6) in Uchida
(2004). It is so easy to prove (A1)-(A5) that we will do just (A6). That is,

sup
θ∈Θ̄

∣∣∣∣∣
{

n∑
k=1

∂b

∂θi
(Xtk−1

, θ)σ−2(Xtk−1
)
∂F

∂θj
(Xtk−1

, θ)

}
− I(i,j)(θ)

∣∣∣∣∣→ 0

in probability as ε → 0 and n → ∞, where b(x, θ) = θ1 + θ2x and F (x, θ) = Eθ[X1/n|X0 = x].
It follows from Uchida (2004) that

sup
θ∈Θ̄

∣∣∣∣∣ 1n
{

n∑
k=1

∂b

∂θi
(Xtk−1

, θ)σ−2(Xtk−1
)

∂b

∂θi
(Xtk−1

, θ)

}
− I(i,j)(θ)

∣∣∣∣∣→ 0

in probability as ε → 0 and n →∞. Thus, it is enough to show that

sup
θ∈Θ̄

∣∣∣∣∣
n∑

k=1

∂b

∂θi
(Xtk−1

, θ)σ−2(Xtk−1
)

{
∂F

∂θj
(Xtk−1

, θ)− 1
n

∂b

∂θj
(Xtk−1

, θ)

}∣∣∣∣∣→ 0 (12)

in probability as ε → 0 and n →∞. Setting that for i, j = 1, 2,

αi,j(x, θ) =
∂b

∂θi
(x, θ)σ−2(x)

{
∂F

∂θj
(x, θ)− 1

n

∂b

∂θj
(x, θ)

}
,

one has

α1,1(x, θ) =
1

σ2(x)

[
1
θ2

(e
θ2
n − 1)− 1

n

]
,

α2,1(x, θ) =
x

σ2(x)

[
1
θ2

(e
θ2
n − 1)− 1

n

]
,

α1,2(x, θ) =
1

σ2(x)

[
1
n

xe
θ2
n − θ1

θ2
2

(e
θ2
n − 1) +

θ1

nθ2
e

θ2
n − 1

n
x

]
,

α2,2(x, θ) =
x

σ2(x)

[
1
n

xe
θ2
n − θ1

θ2
2

(e
θ2
n − 1) +

θ1

nθ2
e

θ2
n − 1

n
x

]
.
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It is obvious that for i, j = 1, 2, ∣∣∣∣∣
n∑

k=1

αi,j(Xtk−1
, θ)

∣∣∣∣∣→ 0

in probability as ε → 0 and n → ∞. Let C be a constant independent of ε and n. Define that
θA = (θA1, θA2) and θB = (θB1, θB2). In order to prove (12), it is sufficient to show the following
inequalities (cf. theorem 20 in Appendix I of Ibragimov and Has’minskii (1981)): For i, j = 1, 2
and m > 1,

E

{ n∑
k=1

αi,j(Xtk−1
, θ)

}2m
 ≤ C (13)

E

{ n∑
k=1

[
αi,j(Xtk−1

, θA)− αi,j(Xtk−1
, θB)

]}2m
 ≤ C |θA − θB|2m . (14)

We only show that α1,1 satisfies the above two inequalities. For the proof of (13),

E

{ n∑
k=1

α1,1(Xtk−1
, θ)

}2m
 = E

{ n∑
k=1

1
σ2(Xtk−1

)

[
1
θ2

(e
θ2
n − 1)− 1

n

]}2m


≤ C
1
n


n∑

k=1

E

{ 1
σ2(Xtk−1

)

}2m


≤ C.

Moreover, for the proof of (14),

E

{ n∑
k=1

[
α1,1(Xtk−1

, θA)− α1,1(Xtk−1
, θB)

]}2m


≤ n2m−1
n∑

k=1

E

[{
1

σ2(Xtk−1
)

[
1

θA2
(e

θA2
n − 1)− 1

θB2
(e

θB2
n − 1)

]}2m ]

≤ Cn−1(θA2 − θB2)2m

{
n∑

k=1

E

[
1[

σ(Xtk−1
)
]4m

]}
≤ C |θA − θB|2m .

The rest can be shown in the same way as in the proof of α1,1. This completes the proof.
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Degenerate Gauss hypergeometric functions

MHF2004-26 Ryo IKOTA
The boundedness of propagation speeds of disturbances for reaction-diffusion
systems

MHF2004-27 Ryusuke KON
Convex dominates concave: an exclusion principle in discrete-time Kolmogorov
systems



MHF2004-28 Ryusuke KON
Multiple attractors in host-parasitoid interactions: coexistence and extinction

MHF2004-29 Kentaro IHARA, Masanobu KANEKO & Don ZAGIER
Derivation and double shuffle relations for multiple zeta values

MHF2004-30 Shuichi INOKUCHI & Yoshihiro MIZOGUCHI
Generalized partitioned quantum cellular automata and quantization of clas-
sical CA

MHF2005-1 Hideki KOSAKI
Matrix trace inequalities related to uncertainty principle

MHF2005-2 Masahisa TABATA
Discrepancy between theory and real computation on the stability of some
finite element schemes

MHF2005-3 Yuko ARAKI & Sadanori KONISHI
Functional regression modeling via regularized basis expansions and model
selection

MHF2005-4 Yuko ARAKI & Sadanori KONISHI
Functional discriminant analysis via regularized basis expansions

MHF2005-5 Kenji KAJIWARA, Tetsu MASUDA, Masatoshi NOUMI, Yasuhiro OHTA &
Yasuhiko YAMADA
Point configurations, Cremona transformations and the elliptic difference Painlevé
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