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MHF 2004-11

( Received March 25, 2004 )

Faculty of Mathematics

Kyushu University
Fukuoka, JAPAN



Transformations of Gauss hypergeometric functions

Raimundas Vidūnas∗
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Abstract

The paper classifies algebraic transformations of Gauss hypergeometric functions and pull-back trans-

formations between hypergeometric differential equations. This classification recovers the classical trans-

formations of degree 2, 3, 4, 6, and finds other transformations of some special classes of the Gauss

hypergeometric function.

1 Introduction

An algebraic transformation of Gauss hypergeometric functions is an identity of the form

2F1

(
Ã, B̃

C̃

∣∣∣∣∣ x
)

= θ(x) 2F1

(
A, B

C

∣∣∣∣ϕ(x)
)
. (1)

Here ϕ(x) is a rational function of x, and θ(x) is a radical function, i.e., product of some powers of
rational functions. Examples of algebraic transformations are (see [Erd53, AAR99]):
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)
. (5)

In the last formula, ω is a primitive cubic root of unity. These identities are well-known classical trans-
formations of hypergeometric functions. They hold in some neighborhood of x = 0 in the complex plane,
and can be continued analytically. For example, formula (2) holds for Re(x) < 1/2.

Algebraic transformations of Gauss hypergeometric functions are usually induced by pull-back trans-
formations of their hypergeometric differential equations. The general relation between these two kinds of
transformations is given in Lemma 2.1 here below. By that Lemma, if a pull-back transformation converts
a hypergeometric equation to a hypergeometric equation as well, then there are identities of the form (1)
between hypergeometric solutions of the two hypergeometric equations, unless the transformed equation
has a trivial monodromy group. Conversely, an algebraic transformation (1) is induced by a pull-back
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transformation of the corresponding hypergeometric equations, unless the hypergeometric function on
the left-hand side of (1) satisfies a simple first order differential equation.

In this paper we classify pull-back transformations between hypergeometric differential equations. At
the same time we essentially classify algebraic transformations (1) of Gauss hypergeometric functions.
Only transformations of elementary instances of hypergeometric functions are missed out.

A general pull-back transformation converts the hypergeometric equation to a Fucshian differential
equation. There are simple rules to determine possible regular points and local exponent differences at
the singular points for the transformed equation, see Lemma 2.2 here below. To classify transforma-
tions between hypergeometric equations, we have to look at the cases when the pull-backed Fuchsian
equation has at most 3 singular points. This restriction allows us to investigate all possible pull-back
transformations between hypergeometric equations.

Ultimately, the list of pull-back transformations of hypergeometric differential equations (and of their
hypergeometric solutions) is the following.

• Classical algebraic transformations of hypergeometric functions due to Gauss, Euler, Kummer, Pfaff
and Goursat. These include fractional-linear transformations, quadratic transformations, and Gour-
sat’s transformations of degree 3, 4 and 6.

• Transformations of hypergeometric equations with an abelian monodromy group. This is a degenerate
case; the hypergeometric equations have 2 (rather than 3) actual singularities.

• Transformations of hypergeometric equations with a dihedral monodromy group.

• Transformations of algebraic Gauss hypergeometric functions.

• Transformations of hypergeometric functions that are expressible as (incomplete) elliptic integrals.

• Transformations of hypergeometric equations with the local exponent differences being 1/k1, 1/k2,
1/k3, where k1, k2, k3 are positive integers such that 1/k1 + 1/k2 + 1/k3 < 1. We refer to the
corresponding hypergeometric functions as hyperbolic hypergeometric functions.

The classification scheme is presented in Section 3. We follow the approach of Riemann and Papperitz
[AAR99, Sections 2.3 and 3.9]. For basic theory of hypergeometric functions and Fucshian equations we
also refer to [Beu02] or [vdW02, Chapters 1 and 2]. In Section 4 we outline more interesting types of
algebraic transformations. All non-classical special cases are extensively considered in separate papers
[Vid04a], [Vid04b], [Vid03], [Vid04c].

2 Preliminaries

The hypergeometric differential equation is [AAR99, Formula (2.3.5)]:

z (1− z)
d2y(z)
dz2

+
(
C − (A+B+1) z

) dy(z)
dz

−AB y(z) = 0. (6)

This is a Fuchsian equation with 3 regular singular points z = 0, 1 and ∞. The local exponent differences
at these points are (up to a sign) 1−C, C −A−B and A−B respectively. A basis of solutions for (6) is

2F1

(
A, B

C

∣∣∣∣ z) , z1−C
2F1

(
1 +A− C, 1 +B − C

2− C

∣∣∣∣ z) . (7)

A pull-back transformation of the hypergeometric equation has the form

z 7−→ ϕ(x), y(z) 7−→ Y (x) = θ(x) y(ϕ(x)), (8)

where ϕ(x) and θ(x) have the same meaning as in formula (1). Geometrically, by such a transformation
we pull-back the hypergeometric equation on the projective line P1

z to a differential equation on the
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projective line P1
x, with respect to the finite covering ϕ : P1

x → P1
z determined by the rational function

ϕ(x). We use the notations P1
x, P1

z throughout the paper.
Pull-back transformations (8) between hypergeometric equations and algebraic transformations (1) of

Gauss hypergeometric functions are related as follows.

Lemma 2.1 1. Suppose that pull-back transformation (8) of hypergeometric equation (6) is a hyper-
geometric equation as well (with the new indeterminate x), and that the transformed equation has
non-trivial monodromy. Then, possibly after fractional-linear transformations on P1

x and P1
z, there is

an identity of the form (1) between hypergeometric solutions of two hypergeometric equations.

2. Suppose that hypergeometric identity (1) holds in some region of the complex plane. Let Y (x) denote
the left-hand side of the identity. If Y ′(x)/Y (x) is not a rational function of x, then the transformation
(8) converts the hypergeometric equation (6) into the hypergeometric equation for Y (x).

Proof. In the setting of the first statement, the transformed equation has either a logarithmic point
or a singular point with non-integer local exponent difference. Such a point P ∈ P1

x must lie above a
point Q ∈ {0, 1,∞} ⊂ P1

z. By suitable fractional-linear transformations on P1
x and P1

z one can keep the
hypergeometric form of differential equations, and achieve that P is the point x = 0 and that Q is the
point z = 0. Then identification of two hypergeometric solutions with the local exponent 0 and the value
1 at (respectively) x = 0 and z = 0 gives a two-term identity as in formula (1).

For the second statement, we have two second-order differential equations for the left-hand side of
(1): the hypergeometric equation for Y (x), and the pull-back transformation (8) of the hypergeometric
equation (6). If these two equations are not C(x)-proportional, then we can combine them to a first-
order differential equation Y ′(x) = r(x)Y (x) with r(x) ∈ C(x), which would contradict the condition on
Y ′(x)/Y (x).

Since any Fuchsian equation with 3 singular points can be converted to a hypergeometric equation by
a fractional-linear transformation [AAR99, Section 2.3], we essentially look for the pull-back transforma-
tions of hypergeometric equations into Fucshian equations with (at most) 3 singular points. Here is how
the singular points and local exponents alter under pull-back transformation (8).

Lemma 2.2 Let ϕ : P1
x → P1

z be a finite covering. Let H1 denote a Fuchsian equation on P1
z, and let H2

denote the pull-back transformation of H1 under (8). Let P ∈ P1
x, Q ∈ P1

z be points such that ϕ(P ) = Q.

1. If the point Q is a regular point for H1, then the point P is a regular point for H2 only if the covering
ϕ is unramified at P .

2. If the point Q is a singular point for H1, then the point P is a regular point for H2 only if the local
exponent difference at Q is equal to 1/k, where k is the branching index of ϕ at P .

3. Let d denote the degree of ϕ, and let Ξ denote a set of three points on P1
z. If all branching points of

ϕ lie above Ξ, then there are exactly d + 2 distinct points on P1
x above Ξ. Otherwise there are more

than d+ 2 distinct points above Ξ.

Proof. Recall that the local exponent difference for regular points is necessarily 1. Let p, q denote the
local exponents for H1 at the point Q. Let k denote the branching index of ϕ at P , and let m denote
the order of θ(x) at P . Then the local exponents for H2 at P are equal to kp + m and kq + m, so the
local exponent difference gets multiplied by k. If the point Q is regular, the point P can be regular only
if k = 1. If the point Q is singular, then the point P is regular only if |p − q| = 1/k. The first two
statements follow.

The third part is a purely algebro-geometric statement. By Hurwitz formula [Har77, Corollary 2.4],
the total branching degree is 2(d− 1). Therefore, there are at least 3d− 2(d− 1) = d+ 2 distinct points
above Ξ; this is the exact number of points if ϕ branches above Ξ only.
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3 The classification scheme

We classify all two-term identities (1) of Gauss hypergeometric functions (and pull-back transformations
between hypergeometric equations) in the following five principal steps:

1. Let H1 denote hypergeometric equation (6), and let H2 denote the pull-backed differential equation
under (8). Let S denote the number of singular points of H2, let Ξ denote the subset {0, 1,∞} of P1

z,
and let d denote the degree of the covering ϕ : P1

x → P1
z in (8). We consequently assume that exactly

N ∈ {0, 1, 2, 3} of the three local exponent differences for H1 at Ξ are restricted.

2. In each assumed case, use Lemma 2.2 and determine all possible combinations of the degree d and
local exponent differences for H1. The restricted local exponent differences have the form 1/k, where
k is a positive integer. (If k = 1 then the corresponding point on P1

z cannot be logarithmic, which
means that local exponent differences at the other two points in Ξ should be equal [Vid04b].) Let
k1, . . . , kN denote the denominators of the restricted differences. Then

S ≥ d+ 2−
N∑

j=1

⌊
d

kj

⌋
. (9)

Since we wish S ≤ 3, we get a restrictive inequality in integers. To skip specializations of the cases
with smaller N , we may assume that d ≥ max{kj}N

j=1. A preliminary list of possibilities can be
obtained by dropping the rounding down in (9) and using the weaker but more convenient inequality

1
d

+
N∑

j=1

1
kj

≥ 1. (10)

3. For each combination of d and local exponent differences forH1, determine possible branching patterns
for ϕ such that the transformed equation H2 would have at most three singular points. In most cases
we cannot allow branching points outside Ξ, and we have to take the maximal number bd/kjc of
regular points above the point with the local exponent difference 1/kj .

4. For each possible branching pattern, determine all rational functions ϕ(x) which determine a covering
with that branching pattern. For d ≤ 6 this can be done with a computer by a naive method
of undetermined coefficients. In [Vid04c], a more appropriate algorithm is introduced which uses
differentiation of ϕ(x). This problem may have no solutions, or there may be several solutions (even
up to fractional-linear transformations). To deal with infinite families of branching types, we can give
a general, algorithmic or explicit characterization of the corresponding coverings.

5. Once we know a covering ϕ(x), it is straightforward to compose it with relevant fractional-linear
transformations and derive identities (1). According to the proof of the first part of Lemma 2.1, we
consider all singular points on P1

z above {0, 1,∞} ⊂ P1
z and move them to x = 0. If the transformed

equation has less than 3 actual singular points, one can consider any point above {0, 1,∞} ⊂ P1
z in

this manner. There are two identities (possibly the same up to transforming the free parameters) for
each possibility to settle the point x = 0 above z = 0, since both solutions in (7) can be identified with
the corresponding solutions of the transformed equation. The factor θ(x) in (8) should shift the local
exponents at potentially regular points to the characteristic values 0 and 1. It is straightforward to
determine this factor for each identity (1). Riemann’s P -notation is very convenient for these purposes
[AAR99, Section 3.9]. The parameters of hypergeometric functions are determined by local exponent
differences.

Now we sketch appliance of the above procedure. Most interesting cases of algebraic transformations are
illustrated in Section 4.
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Local exponent differences Degree Branching pattern above Covering
(1/k1, 1/k2, p) above d the regular singular points composition
(1/2, 1/3, p) (1/2, p, 2p) 3 2 + 1 = 3 = 2 + 1 indecomposable
(1/2, 1/3, p) (1/3, p, 3p) 4 2 + 2 = 3 + 1 = 3 + 1 indecomposable
(1/2, 1/3, p) (1/3, 2p, 2p) 4 2 + 2 = 3 + 1 = 2 + 2 no covering
(1/2, 1/3, p) (p, p, 4p) 6 2 + 2 + 2 = 3 + 3 = 4 + 1 + 1 2× 3
(1/2, 1/3, p) (2p, 2p, 2p) 6 2 + 2 + 2 = 3 + 3 = 2 + 2 + 2 2× 3 or 3× 2
(1/2, 1/3, p) (p, 2p, 3p) 6 2 + 2 + 2 = 3 + 3 = 3 + 2 + 1 no covering
(1/2, 1/4, p) (p, p, 2p) 4 2 + 2 = 4 = 2 + 1 + 1 2× 2
(1/3, 1/3, p) (p, p, p) 3 3 = 3 = 1 + 1 + 1 indecomposable

Table 1: Transformations of hypergeometric functions with 1 free parameter

When N = 0, i.e., when no local exponent differences are resticted, then d = 1 by formula (10). We
get Pfaff’s and Euler’s fractional-linear transformations [AAR99, Theorem 2.2.5].

When N = 1, we have the following cases:

• k1 = 2, d = 2. This gives the classical quadratic transformations [AAR99, Section 3.9].

• k1 = 1, d any. To have regular points above the z-point with the local exponent difference 1/k1, that
z-point cannot be logarithmic. This implies that the unrestricted local exponent differences must
be equal [Vid04b]. The equation H1 has only two actual singularities. The covering ϕ can branch
only above the two points with unrestricted local exponent differences. If the triple of local exponent
differences for H1 is (1, p, p), the transformed triple of local exponent differences is (1, dp, dp).

When N = 2, the most interesting possibilities are presented in Table 1. The first four columns form
a snapshot after Step 3 in our scheme. (Two degenerate cases are discussed here immediately below.)
The notation for branching pattern gives d+2 branching indices for the points above Ξ; branching indices
at points in the same fiber are separated by the + signs, different fibers are respectively separated by
the = signs. Step 4 of our scheme gives at most one covering (up to fractional-linear transformations)
for each branching pattern. Possible compositions of small degree coverings are easy to list and identify.
Ultimately, Table 1 yields precisely the classical transformations of degree 3, 4, 6 due to Goursat [Gou81].
Formulas (3)–(5) are examples of classical transformations for the three indecomposable coverings. The
two degenerate cases are:

• k1 = 2, k2 = 2, d any. The monodromy group of H1 is a dihedral group. The hypergeometric functions
can be expressed very explicitly; their algebraic transformations are described in [Vid04b]. The triple
(1/2, 1/2, p) of local exponent differences for H1 is transformed either to (1/2, 1/2, dp) for any d, or
to (1, dp/2, dp/2) for even d.

• k1 = 1, k2 and d any. To have regular points above the z-point with the local exponent difference
1/k1, the triple of local exponent differences for H1 must be (1, 1/k2, 1/k2). The monodromy group
for H1 is a finite cyclic group. Transformations are explicitly described in [Vid04b].

When N = 3, we have the following three very distinct cases:

• 1/k1+1/k2+1/k3 > 1. The monodromy groups of H1 and H2 are finite, the hypergeometric functions
are algebraic. The degree d is unbounded. The most important transformations are those implied by
Klein’s theorem [Kle78]. In particular, any hypergeometric equation with the tetrahedral, octahedral
or icosahedral monodromy group is a pull-back transformation of a standard hypergeometric equation
with that monodromy group. The local exponent differences for standard equations are, respectively:
(1/2, 1/3, 1/3), (1/2, 1/3, 1/4) or (1/2, 1/3, 1/5).
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• 1/k1 + 1/k2 + 1/k3 = 1. Non-trivial hypergeometric solutions of H1 are elliptic integrals [Vid03].
The degree d is unbounded, different transformations with the same branching pattern are possible.
The most interesting transformations pull-back the equation H1 into itself, so that H2 = H1. These
transformations correspond to the endomorphisms of the corresponding elliptic curve.

• 1/k1 + 1/k2 + 1/k3 < 1. Here we have transformations of hyperbolic hypergeometric functions. The
list of these transformations is finite [Vid04c], the maximal degree of their coverings is 24. Some of
these transformations are anticipated in [Hod18], [Beu02].

4 Explicit transformations

Solutions of hypergeometric equations with an abelian or dihedral monodromy group are very explicit.
Their transformations are extensively considered in [Vid04b], including the cases of finite cyclic and finite
dihedral groups. Here we illustrate more interesting types of non-classical algebraic transformations.

Algebraic Gauss hypergeometric functions have been studied by many authors; see [Vid04a]
for references. A convenient way to represent algebraic hypergeometric functions is to transform them to
radical functions, for example:

2F1

(
1/4,−1/12

2/3

∣∣∣∣ x (x+ 4)3

4(2x− 1)3

)
=

1

(1− 2x)1/4
, 2F1

(
1/6,−1/6

1/4

∣∣∣∣ 27x (x+ 1)4

2(x2 + 4x+ 1)3

)
=

(1 + 2x)1/4

√
1 + 4x+ x2

,

2F1

(
7/20, −1/20

4/5

∣∣∣∣ 64x (x2 − x− 1)5

(x2 − 1) (x2 + 4x− 1)5

)
=

(1 + x)7/20

(1− x)1/20 (1− 4x− x2)1/4
.

These are so called Darboux evaluations of hypergeometric functions. Once a few such evaluations for
each Schwartz type are known, any algebraic Gauss hypergeometric function can be evaluated in this way
using contiguous relations [Vid04a]. These explicit evaluations can be used to pull-back a standard hyper-
geometric equation, with the local exponent differences (1/2, 1/3, 1/3), (1/2, 1/3, 1/4) or (1/2, 1/3, 1/5),
to any other hypergeometric equation with tetrahedral, octahedral or icosahedral monodromy group,
as implied by Klein’s theorem [Kle78]. Computations are quite straightforward [Vid04a]. For example,
Klein’s morphism for a hypergeometric equation with the local exponent differences (4/3, 4/3, 2/3), with
the tetrahedral monodromy group, is given by

ϕ14(x) = −
108 x4 (x− 1)4

(
27x2 − 27x+ 7

)3
(189x4 − 378x3 + 301x2 − 112x+ 16)3

.

Transformations between hypergeometric equations with different finite monodromy groups are usually
compositions of know transformations. An interesting exception is the following transformation between
standard tetrahedral and icosahedral equations:

2F1

(
1/4,−1/12

2/3

∣∣∣∣x) =
(

1+
7−33

√
−15

128
x

)1/12

2F1

(
11/60,−1/60

2/3

∣∣∣∣ϕ(x)
)
, (11)

where

ϕ5(x) =
50(5+3

√
−15)x (1024x−781−171

√
−15)3

(128x+ 7 + 33
√
−15)5

.

Hypergeometric incomplete elliptic integrals are solutions of hypergeometric equations with the
local exponent differences (1/2, 1/4, 1/4), (1/2, 1/3, 1/6) or (1/3, 1/3, 1/3). For example, let H4 denote
hypergeometric equation (6) with A = 0, B = 1/4, C = 3/4. It has a solution

2z1/4
2F1

(
1/2, 1/4

5/4

∣∣∣∣ z) =
1
2

∫ z

0

t−3/4 (1− t)−1/2 dt =
∫ ∞

1/
√

z

dx√
x3 − x

. (12)
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For the last integral we substituted t 7→ x−2. We recognize an integral of a holomorphic differential form
on the genus 1 curve y2 = x3 − x. Let E1 denote the corresponding elliptic curve in the standard Weier-
strass form [Sil86]. If (ψx, ψy) is an endomorphism of E1, then the substitution x 7→ ψx(x,

√
x3 − x) in

(12) gives an integral of a holomorphic differential form again. Since the linear space of holomorphic differ-
entials on E1 is one-dimensional, the transformed differential form must be proportional to dx/

√
x3 − x.

The upper integration bound does not change. Then transformation of the lower integration bound gives
the transformation z 7→ ψx(1/

√
z)−2 of the hypergeometric function into itself, up to a radical factor. It

turns out that ψx(1/
√
z)−2 is a rational function and that it gives a pull-back transformation of H4 into

itself [Vid03]. Conversely, any pull-back transformation of H4 into itself is induced by an endomorphism
of E1. Examples of corresponding algebraic transformations are:

2F1

(
1/2, 1/4

5/4

∣∣∣∣ z) =
√

1− z

1 + z
2F1

(
1/2, 1/4

5/4

∣∣∣∣ 16 z (z − 1)2

(z + 1)4

)
.

2F1

(
1/2, 1/4

5/4

∣∣∣∣ z) =
1− z/(1+2i)
1− (1+2i)z 2F1

(
1/2, 1/4

5/4

∣∣∣∣ z (z − 1− 2i)4(
(1+2i)z − 1

)4
)
.

The ring of endomorphisms of E1 is isomorphic to the ring Z[i] of Gaussian integers [Sil86]. The pull-
back transformations of H4 into itself form a group isomorphic to Z[i]∗/(±1,±i). The degree of such a
transformation is equal to the norm of a corresponding Gaussian integer. Computation of endomorphisms
of E1 is equivalent to the group law computations on E1 by the chord-and-tangent method.

Similarly, the pull-back transformations of hypergeometric equations with the local exponent differ-
ences (1/2, 1/3, 1/6) or (1/3, 1/3, 1/3) into themselves correspond to endomorphisms of the elliptic curve
y2 = x3 − 1. The group of these transformations is isomorphic to Z[ω]∗/(±1,±ω,±ω2), where ω is a
primitive cubic root of unity as in (5). Additionally, hypergeometric equations with the exponent differ-
ences (1/2, 1/3, 1/6) can also be transformed to equations with the exponent differences (1/3, 1/3, 1/3)
or (2/3, 1/6, 1/6) by composing the mentioned transformations with quadratic ones.

Transformations of hyperbolic hypergeometric functions are extensively studied in [Vid04c].
We have the following finite list of transformations. Up to fractional-linear transformations, hypergeo-
metric equations with the local exponent differences (1/2, 1/3, 1/7) can be transformed: to equations
with the exponent differences (1/3, 1/3, 1/7) by the degree 8 transformation

ϕ8(x) =
x (x− 1)

(
27x2 − (723+1392ω)x− 496+696ω

)3
64
(
(6ω + 3)x− 8− 3ω

)7 ;

to equations with the exponent differences (1/2, 1/7, 1/7) by the degree 9 transformation

ϕ9(x) =
27x (x− 1) (49x− 31− 13ξ)7

49 (7203x3 + (9947ξ − 5831)x2 − (9947ξ + 2009)x+ 275− 87ξ)3
where ξ2 + ξ + 2 = 0;

to equations with the exponent differences (1/3, 1/7, 2/7) by the degree 10 transformation

ϕ10(x) = − x2 (x− 1) (49x− 81)7

4 (16807x3 − 9261x2 − 13851x+ 6561)3
;

and to equations with the differences (1/7, 1/7, 2/7) and (1/7, 1/7, 1/7) by composite transformations of
degree 18 and 24 respectively. A hypergeometric equation with the exponent differences (1/2, 1/3, 1/8)
can be transformed to an equation with the differences (1/3, 1/3, 1/8) by the degree 10 transformation

ϕ̃10(x) =
4x (x− 1) (8βx+ 7− 4β)8

(2048βx3 − 3072βx2 − 3264x2 + 912βx+ 3264x+ 56β − 17)3
where β2 + 2 = 0;

and to an equation with the exponent differences (1/4, 1/8, 1/8) by a composite degree 12 transformation.
There is also a composite degree 12 transformation between hypergeometric equations with local exponent
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differences (1/2, 1/3, 1/9) and (1/9, 1/9, 1/9); and the indecomposable degree 6 transformation

ϕ6(x) =
4i x (x− 1) (4x− 2− 11i)4

(8x− 4 + 3i)5

between hypergeometric equations with the local exponent differences (1/2, 1/4, 1/5) and (1/4, 1/4, 1/5).
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2004-10 Raimundas VIDŪNAS
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