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1. INTRODUCTION

We consider the time series {Xt} generated by the following auto-regressive model.

Xt = µ(Xt−1) + εt, (1)

where µ is an unknown non-linear function that is independent of t and {εt} are

independent random variables which satisfy E(εt) = 0, E(ε2
t ) <∞. Therefore,

µ(x) = E[Xt|Xt−1 = x].

The series has neen considered by many authors under the assumption of stationar-

ity, for example, see Taniguchi and Kakizawa (2000) Section 3.2; and also see Lasoka

and Mackey (1989) for a sufficient condition of the stationarity. We do not assume

staionarity for {Xt} in this paper, but assuming α-mixing condition for {Xt}, we

consider a method to estimate unknown function µ from given data. We deal with

regression estimate using wavelets. Wavelets is a mathematical tool to express the

function in orthonormal series expansion. Unlike the traditional Fourier series expan-

sion, wavelets method offers a simultaneous localization of the function in space and

frequency domain. This enables the multiresolution analysis of function. Wavelet

method has been largely applied in sound and image analysis with its usefulness for

the detection of edges and singularities. See Chui (1997) for detail.

In statistics, wavelet methods have been introduced in nonparametric estimation

by Donoho, Johnston, Kerkyacharian, and Picard (1995, 1996). These papers fo-

cused on density estimation or regression estimation for IID Gaussian white noise

model, and demonstrated remarkable local adaptivity against discontinuities and

spatially varying degree of oscillations in function. This local adaptivity had not

been accomplished by kernel estimator or other orthogonal series estimators. Re-

cently, wavelet method is applied in nonparametric regression for time series data

with non-linear dependent structure. Truong and Patil (2001) show that the local

adaptivity of wavelet estimate can also overcome the sensitivity of the other meth-

ods such as kernel-based method, against discontinuities. They focused on wavelet

estimate for stationary α-mixing time series generated by model (1).
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In this paper we generalize Truong and Patil (2001) to non-stationary multivariate

auto-regressive model. It is developed a convergence theorem similar to Truong and

Patil (2001). In wavelet estimates, non-linear functions such as ”hard thresholding”

and ”soft thresholding” are generally used for smoothing in addition to linear wavelet

estimator. The usefulness of these techniques have been well studied mainly from

the view point of local adaptivity over large function classes (See Donoho et al.

(1995, 1996), Hall and Patil (1996)). We also introduce a simple linear function for

smoothing, and show its superiority to the linear wavelet estimator. Furthermore,

we propose a criterion similar to Cross-Validation for auto-regressive time series, and

show that our criterion is asymptotically unbiased for MSE under α-mixing condition.

In Section 2 we review briefly the wavelet expansion based on Chui (1992, 1997) and

Daubechies (1992). Wavelet estimator of µ is developed in Section 3. The estimator

is generalized in Section 4 for multivariate auto-regressive model. Theorems for the

asymptotic convergence of the estimator are given in Section 5. In Section 6 we

propose a MSE-based criterion and develop a theorem for its consistency. In Section

7 we apply the method to EEG data by computer simulation.

2. WAVELETS

In this section, we briefly describe the basic concepts of wavelets. Roughly speaking,

wavelets is one of the tool to obtain the series expansion of L2(R) function, which is

called the wavelet expansion. It can be said that the main characteristic of wavelets

is explained by the ”multiresolution analysis” which is not shared by Fourier analysis.

For detail, see Chui (1992, 1997), or Daubechies (1992). We start with introducing

two orthonormal functions φ(x) (father wavelet) and ψ(x) (mother wavelet).

2.1 Base Functions
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Figure 1: φ (father wavelet, left) and ψ (mother wavelet, right)

Definition 1 Let φ be the orthonormal function with compact support on R, which

satisfy

∫
φ(x) dx = 1,

∫
φ(x)φ(x− l) dx = δ0l,

and

φ(x) =
∑
k∈Z

pkφ(2x− k), (2)

where {pk} is a finite sequence satisfying
∑

k∈Z pk = 2,
∑

k∈Z pkpk+2l = 2δ0l and∑
k∈Z(−1)kp1−k = 0. φ is called the father wavelet.

On the other hand, let define ψ by

ψ(x) =
∑
k∈Z

(−1)kp1−kφ(2x− k), (3)

where {pk} is the same sequence as φ. ψ is called the mother wavelet.

It follows that ψ has compact support on R and satisfies the orthonormality

∫
ψ(x) dx = 0.

In addition, if
∑

k∈Z(−1)kkvpk = 0, (1 ≤ v ≤ r) for some integer r ≥ 1, then the

moment condition
∫
xvψ(x) dx = 0, (1 ≤ v ≤ r) is satisfied. Generally, a pair of
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wavelets φ, ψ is not represented as specific functions, but their wave patterns are

fixed by the peculiar sequence {pk}, (2) and (3). For example, Figure 1 shows the

wave patterns of φ(x) and ψ(x) which are called ”Daubechies father and mother

wavelets” of 3rd order moment condition.

Next, as the translations about scale j ∈ Z and shift k ∈ Z of φ and ψ, define

φjk(x) = 2j/2φ(2jx− k), ψjk(x) = 2j/2ψ(2jx− k).

It follows that φjk(x) and ψjk(x) are orthonormal, i.e.

∫
φjk(x)φjm(x) dx = δkm,∫
ψjk(x)ψlm(x) dx = δjlδkm,∫
φjk(x)ψlm(x) dx = 0, j ≤ l. (4)

2.2 Multiresolution Analysis and Wavelet Expansion

Using φjk(x) and ψjk(x) as base functions, one can construct the following subspaces

Vj and Wj in L2(R).

Vj = closL2〈φjk(x) ; k ∈ Z〉,
Wj = closL2〈ψjk(x) ; k ∈ Z〉, j ∈ Z.

Vj and Wj are L2(R)-closures spanned by the linear combinations of φjk(x) and

ψjk(x) about the shift parameter k ∈ Z. The scale parameter j ∈ Z represents

the resolution level of each subspaces. It is known that {Vj} have the following

hierarchical structure,

· · · ⊂ Vj−1 ⊂ Vj ⊂ Vj+1 ⊂ · · · → L2(R),

and that {Wj} is the orthocomplement, i.e.

Vj+1 = Vj ⊕Wj .
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From these facts, L2(R) can be orthogonally decomposed in countable subspaces

with different resolutions based on the level j0 ∈ Z as follows

L2(R) = Vj0 ⊕Wj0 ⊕Wj0+1 ⊕ · · ·
= Vj0 ⊕

⊕
j≥j0

Wj .

This idea is called MultiResolution Analysis (MRA) of L2(R) generated by φ and ψ.

From this MRA, any function f ∈ L2(R) can be expressed as a series

f(x) =
∑
k

αj0kφj0k(x) +
∑
j≥j0

∑
k

βjkψjk(x). (5)

This is called the wavelet expansion of f . From orthonormality (4), each coefficients

in (5) are uniquely expressed by the L2-products of f and φjk, and f and ψjk,

respectively

αjk =
∫
f(x)φjk(x) dx, βjk =

∫
f(x)ψjk(x) dx.

3. ESTIMATION OF µ(x)

In this section, we describe a wavelet method for estimating the underlying regression

function from {Xt} given by (1). We develop a new technique to cope with the non-

stationality.

3.1 Method for the Non-Stationality

For time series data {X0, X1, . . . , Xn} given by model (1), define each p.d.f of Xt−1

by ft(x) and let

f(x) =
1

n

n∑
i=1

fi(x),

g(x) = µ(x)f(x).

We first estimate f and g, then estimate µ by using relationship µ(x) = g(x)/f(x).

6



The wavelet expansion of f is represented as follows,

f(x) =
∑
k

αf
j0kφj0k(x) +

∑
j≥j0

∑
k

βf
jkψjk(x),

where αf
jk =

∫
f(x)φjk(x) dx, βf

jk =
∫
f(x)ψjk(x) dx. The wavelet expansion of g

may be given in the same way, using αg
jk =

∫
g(x)φjk(x) dx, βg

jk =
∫
g(x)ψjk(x) dx.

Put

α̂f
jk =

1

n

n∑
i=1

φjk(Xi−1), β̂f
jk =

1

n

n∑
i=1

ψjk(Xi−1). (6)

Then

E[α̂f
jk] =

1

n

n∑
i=1

E[φjk(Xi−1)]

=
1

n

n∑
i=1

∫
φjk(x) fi(x) dx

=
∫ [

1

n

n∑
i=1

fi(x)
]
φjk(x) dx

=
∫
f(x)φjk(x) dx

= αf
jk, and E[β̂f

jk] = βf
jk.

Thus α̂f
jk and β̂f

jk are unbiased estimators of the coefficients in wavelet expansion of

f . In estimating g, let

α̂g
jk =

1

n

n∑
i=1

Xiφjk(Xi−1), β̂g
jk =

1

n

n∑
i=1

Xiψjk(Xi−1). (7)

Then

E[α̂g
jk] =

1

n

n∑
i=1

E[Xiφjk(Xi−1)]

=
1

n

n∑
i=1

E[E[Xi|Xi−1]φjk(Xi−1)]

=
1

n

n∑
i=1

E[µ(Xi−1)φjk(Xi−1)]
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=
1

n

n∑
i=1

∫
µ(x)φjk(x) fi(x) dx

=
∫
µ(x)

[
1

n

n∑
i=1

fi(x)
]
φjk(x) dx

=
∫
µ(x) f(x)φjk(x) dx

=
∫
g(x)φjk(x) dx

= αg
jk, and E[β̂g

jk] = βg
jk.

Thus α̂g
jk and β̂g

jk are also unbiased estimators of αg
jk and βg

jk. Note that the estima-

tors α̂f
jk, β̂

f
jk, α̂

g
jk and β̂g

jk are identical to those estimators given in Truong and Patil

(2001) who assumed the stationality for {Xt}.

3.2 Wavelet Estimator and Smoothing Functions

Using those estimators given in (6) and (7), we define the estimator of f and g by

f̂(x) =
∑
k

α̂f
j0kφj0k(x) +

j1−1∑
j=j0

∑
k

β̂f
jkψjk(x),

ĝ(x) =
∑
k

α̂g
j0kφj0k(x) +

j1−1∑
j=j0

∑
k

β̂g
jkψjk(x), (8)

and µ by µ̂ = ĝ/f̂ .

Estimators f̂ and ĝ have two tuning parameters j0 and j1; j0 is the base resolution

level, and j1 is the truncation parameter. Because the second term of right hand

side of equation (8) is truncated at level j1 − 1, the smaller j1 causes the bias but

the larger causes the variance. This type of estimators are called the linear wavelet

estimators. Note that there are different types of wavelet estimators.

f̂λ(x) =
∑
k

α̂f
j0kφj0k(x) +

j1−1∑
j=j0

∑
k

ηλ(β̂
f
jk)ψjk(x),

ĝλ(x) =
∑
k

α̂g
j0kφj0k(x) +

j1−1∑
j=j0

∑
k

ηλ(β̂
g
jk)ψjk(x), (9)
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where ηλ(·) is called the smoothing function. Generally, the following functions are

used for smoothing functions.

ηh
λ(t) = t I{| t | > λ},

is the hard thresholding and

ηs
λ(t) = sgn(t) (| t | − λ) I{| t | > λ},

is the soft thresholding, where λ > 0 is a smoothing parameter.

The estimator with above non-linear ηλ(·) is called the threshold wavelet esti-

mator or the nonlinear wavelet estimator. This type of estimator can control the

balance of bias and variance of (9) by tuning the parameters j1 and λ.

As for smoothing function, we introduce

ηλ(t) = λt, λ ∈ R,

in this paper. It speed-ups the computation of such algorithm as CV, and also has

such nice property as will be shown in Theorem 1.

4. MULTIVARIATE MODEL

In the foregoing sections, we considered univariate model for simplicity. In this

section, we extend the model to multivariate auto-regressive models.

4.1 Extention of the Model

We consider the following model.

Xt = µ(Xt−d, . . . , Xt−1) + εt,

where {εt} are independent random variables, and

µ(x1, . . . , xd) = E[Xt|Xt−d = x1, . . . , Xt−1 = xd].
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Let ft(x1, . . . , xd) be the joint p.d.f of (Xt−d, . . . , Xt−1) and put

f(x1, . . . , xd) =
1

n

n∑
i=1

fi(x1, . . . , xd),

g(x1, . . . , xd) = µ(x1, . . . , xd)f(x1, . . . , xd).

4.2 Estimation of f , g and µ by Multivariate Wavelets

The wavelet expansions of f and g are represented by the tensor product of univariate

case. We use the notation x for (x1, · · · , xd) and
∫
Rd dx for

∫
Rd dx1 · · ·dxd, for

simplicity.

The wavelet expansion of f is

f(x) =
∑

k∈Zd

αf

j0k
Φ

j0k(x) +
∑
j≥j0

∑
k∈Zd

∑
i∈Id

βf

jkiΨjki(x), (10)

where k = (k1, . . . , kd), Id = {i = (i1, . . . , id) : is = 0 or 1 (s = 1, . . . , d), and i1 +

· · · + id ≥ 1}, and

Φ
jk(x) = φjk1(x1) · · ·φjkd

(xd),

Ψ
jki(x) = χi1

jk1
(x1) · · ·χid

jkd
(xd). (11)

In (11), we used

χis
jks

(·) =

{
φjks(·) if is = 0,
ψjks(·) if is = 1,

s = 1, . . . , d.

It follows from the following orthonormalities

∫
Rd

Φ
jk(x) Φjm(x) dx =

d∏
s=1

∫
φjks(xs)φjms(xs) dxs

= δkm,∫
Rd

Ψ
jki(x) Ψ

lmi′(x) dx =
d∏

s=1

∫
χis

jks
(xs)χ

i′s
lms

(xs) dxs

= δjl δkm δii′ ,∫
Rd

Φ
jk(x) Ψ

lmi(x) dx =
d∏

s=1

∫
φjks(xs)χ

is
lms

(xs) dxs

= 0, j ≤ l, (12)
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that the coefficients of (10) are represented as

αf

jk =
∫
Rd
f(x) Φ

jk(x) dx, βf

jki =
∫
Rd
f(x) Ψ

jki(x) dx.

The wavelets expansion of g is similarly given.

It is easy to show that

α̂f

jk =
1

n

n∑
i=1

Φ
jk(Xi−d, . . . , Xi−1),

β̂f

jki =
1

n

n∑
i=1

Ψ
jki(Xi−d, . . . , Xi−1), (13)

are the unbiased estimators of αf

jk and βf

jki.

Also

α̂g

jk =
1

n

n∑
i=1

XiΦjk(Xi−d, . . . , Xi−1),

β̂g

jki =
1

n

n∑
i=1

XiΨjki(Xi−d, . . . , Xi−1), (14)

are unbiased estimators of αg

jk and βg

jki. For example, the unbiasedness of α̂g

jk is

shown as follows.

E[α̂g

jk] =
1

n

n∑
i=1

E
[
XiΦjk(Xi−d, . . . , Xi−1)

]

=
1

n

n∑
i=1

E
[
E[Xi|Xi−d, . . . , Xi−1]Φjk(Xi−d, . . . , Xi−1)

]

=
1

n

n∑
i=1

E
[
µ(Xi−d, . . . , Xi−1)Φjk(Xi−d, . . . , Xi−1)

]

=
1

n

n∑
i=1

∫
Rd
µ(x) Φ

jk(x) fi(x) dx

=
∫
Rd
µ(x)

[
1

n

n∑
i=1

fi(x)
]
Φ

jk(x)dx

=
∫
Rd
µ(x) f(x) Φ

jk(x) dx

=
∫
Rd
g(x) Φ

jk(x)dx

= αg

jk.
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Using (13), (14), the linear wavelet estimators of f are g are given as follows;

f̂(x) =
∑

k∈Zd

α̂f

j0k
Φ

j0k(x)

+
j1−1∑
j=j0

∑
k∈Zd

∑
i∈Id

β̂f

jkiΨjki(x),

ĝ(x) =
∑

k∈Zd

α̂g

j0k
Φ

j0k(x)

+
j1−1∑
j=j0

∑
k∈Zd

∑
i∈Id

β̂g

jkiΨjki(x), (15)

Also the threshold wavelet estimators are given as follows;

f̂λ(x) =
∑

k∈Zd

α̂f

j0k
Φ

j0k(x)

+
j1−1∑
j=j0

∑
k∈Zd

∑
i∈Id

ηλ(β̂
f

jki)Ψjki(x),

ĝλ(x) =
∑

k∈Zd

α̂g

j0k
Φ

j0k(x)

+
j1−1∑
j=j0

∑
k∈Zd

∑
i∈Id

ηλ(β̂
g

jki)Ψjki(x). (16)

5. ASYMPTOTIC PROPERTY

In this section, we consider the convergence of multivariate wavelet estimators for

non-stationary time series that satisfy α-mixing condition. In addition, we consider

the behavior of the smoothing function ηλ(t) = λ t introduced in Section 3.. For

the independent observations, a lot of studies have been conducted on asymptotic

properties of wavelet estimator by Donoho et al. (1995, 1996), Hall and Patil (1996)

among others. For the stationary time series, Truong and Patil (2001) have derived

the convergence rate of wavelet estimator under the α-mixing settings. We derive a

similar rate for our estimators under non-stationarity.

To begin with we define α-mixing condition for d variables case.
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Definition 2 Time series {Xt} is α-mixing when

lim
u→∞α(u) = 0,

where

α(u) = sup{|P (A ∩B) − P (A)P (B)| : A ∈ Fj and B ∈ F j+u},

where Fj is the σ-algebra generated by (Xi−d, . . . , Xi), −∞ < i ≤ j and F j is the

σ-algebra generated by (Xi−d, . . . , Xi), j ≤ i <∞.

The next lemma is useful for studying the α-mixing time series.

Lemma 1 Let X be a Fj-measurable random variable, and Y be F j+u-measurable.

And X, Y are bounded satisfying |X | ≤ C1, |Y | ≤ C2, respectively. Then,

|Cov(X, Y )| ≤ 4 C1C2 α(u).

The proof of Lemma 1 and details about mixing conditions are given in Hall and

Heyde (1980) and Bosq (1998) among others.

We assume the following conditions.

(a) µ and ft (t ∈ Z) belong to Cr-class and their derivatives up to rth order are

all bounded and continuous on Rd.

(b) There exists bounded and closed interval Q ⊂ Rd such that supp(ft) ⊂ Q for

all t ∈ Z, where supp(ft) is the support of ft.

(c) There exists a subset U ⊂ Q and a positive constant M such that for all t ∈ Z,

M−1 ≤ ft(x) ≤M for x ∈ U .

(d) φ and ψ have compact support on R.

(e) It holds that
∫
xvψ(x) dx = 0 (0 ≤ v ≤ r − 1) and ( r! )−1

∫
xrψ(x) dx <∞.

(f) α(u) = O(ρu) as u→ ∞ for some 0 < ρ < 1.

13



Theorem 1 Assume the α-mixing condition and conditions (a), (b), (c), (d), (e)

and (f). Furthermore, suppose j0, j1 → ∞ as n → ∞ in such a manner that

2dj0 , 2dj1 = o(n). Then

(i) Linear wavelet estimator ĝ of g given in (15) satisfies,

E
[ ∫

Rd
(ĝ − g)2 dx

]
= O

(
2dj0

n
+

2dj1

n
+ 2−2j1r

)

= o(1) as n→ ∞.

(ii) If 2dj0, 2dj1 = o(n1/3), then estimator µ̂ = ĝ/f̂ of µ satisfies,

∫
U
(µ̂− µ)2 dx = op(1).

(iii) Moreover, for smoothing function ηλ(t) = λt, there exists some λ ∈ R such that

∫
Rd

(ĝ − g)2 dx >
∫
Rd

(ĝλ − g)2 dx,

for arbiterary j0 and j1.

proof). Proof is given in Appendix.

Theorem 2 Assume the α-mixing condition and conditions (a), (b), (c), (d), (e)

and (f). Furthermore, suppose that d < r and j0, j1 → ∞ as n → ∞ in such a

manner that 2(d−r)j0, 2(d−r)j1 = o(1). Then as n→ ∞ we have for x ∈ U

E
(
f̂(x)

)
− f(x) = O

(
2(d−r)j0

)
= o(1),

E
(
ĝ(x)

)
− g(x) = O

(
2(d−r)j1

)
= o(1),

E
(

ˆµ(x)
)
− µ(x) = o(1).

proof). Proof is given in Appendix.

6. SELECTION OF PARAMETERS

In this section, we discuss a criterion for choosing the optimum θ = (j0, j1, λ) involved

in the estimator by assuming α-mixing condition.
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6.1 Basic Criterion

At first, we assume auto-regressive model Xt = µ(X t−1) + εt where X t−1 denote a

vector of random variables (Xt−d, . . . , Xt−1), and consider mean squared error

R(θ) =
1

n

n∑
i=1

E[µ(X i−1) − µ̂θ(X i−1)]
2,

where µ̂θ( · ) is the estimator of µ with θ = (j0, j1, λ) ∈ Θ based on given data

{(X1,X0), . . . , (Xn,Xn−1)} . Define the residual sum of squares by

RSS(θ) =
1

n

n∑
i=1

[Xi − µ̂θ(X i−1)]
2,

then we have the following lemma.

Lemma 2

E[RSS(θ)] =
1

n

n∑
i=1

σ2
i + R(θ) − 2

n

n∑
i=1

Cov{εi, µ̂θ(X i−1)}, (17)

where σ2
i denote the variance of εi.

proof).

E[RSS(θ)] =
1

n

n∑
i=1

E[Xi − µ̂θ(X i−1)]
2

=
1

n

n∑
i=1

E[µ(X i−1) + εi − µ̂θ(X i−1)]
2

=
1

n

n∑
i=1

E[ε2
i + {µ(Xi−1) − µ̂θ(X i−1)}2

+ 2εi{µ(Xi−1) − µ̂θ(X i−1)}]
=

1

n

n∑
i=1

σ2
i + R(θ) +

2

n

n∑
i=1

E{εiµ(X i−1)}

− 2

n

n∑
i=1

E{εiµ̂θ(X i−1)}.

Since εi and X i−1 are independent, and µ̂θ(X i−1) is the random variable of (X1−d, . . . ,

Xn), it hold that E{εiµ(Xi−1)} = 0 and E{εiµ̂θ(X i−1)} = Cov{εi, µ̂θ(X i−1)}.
Note that, the first term in the right hand side of (17) is independent of param-

eter θ, however the third term is not, so arg minθ{RSS(θ)} may not coincide with

arg minθ{R(θ)}. This is because the time series data has dependent structure.
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6.2 A Criterion for α-mixing Time Series

We develop a criterion whose miminum argument agree with an arg minθ{R(θ)}
under α-mixing condition.

Let µ̂
\(i,Mn)
θ ( · ) be the estimator from the data which delete Mn data points

{(Xi,X i−1), . . . , (Xi+Mn−1,X i+Mn−2)} from an original data {(X1,X0), . . . , (Xn,Xn−1)}
for each i, and let

CVMn(θ) =
1

n

n∑
i=1

[Xi − µ̂
\(i,Mn)
θ (X i−1)]

2.

We have the following theorem.

Theorem 3 Assume {Xt} be the α-mixing time series generated by model Xt =

µ(X t−1) + εt. Set Mn = o(n) as n→ ∞, then

E[CVMn(θ)] =
1

n

n∑
i=1

σ2
i + R(θ) + o(1).

proof). Proof is given in Appendix.

It follows from Theorem 3 that

arg min
θ
{CVMn(θ)} −→ arg min

θ
{R(θ)} as n→ ∞,

thus we may use CVMn(θ) for selecting the optimum parameters.

7. APPLICATION TO EEG DATA

In this section, we apply the wavelet estimation method to a real time series data.

We treat here a time series of EEG(human brain waves) which is recorded from an

11 years old female patient suffering from epilepsy. Figure 2 and Figure 3 show the

631 data points (X1, . . . , X631) sampled by 200 points per second frequency.
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Figure 3: Lorenz plot of original data

7.1 EEG Data and Non-Parametric Models

It is well-known that EEG data have non-linear probability structure. In particular,

EEG recorded from an epilepsy patient is characterized by the Spike and Wave

(SW) pattern as be seen in Figure 2 and suggested to have strong non-linearlity

(see Theiler (1995)). In order to search for the deterministic structure of EEG,

Miwakeichi, Ramirez-Padron, Valdes-Sosa, and Ozaki (2001) applied nonparametric

models based on Nadaraya-Watson, Local-Linear regression and other kernel based

regression methods.

We start with assuming the model (10) for the EEG data. Yanagawa and

Yonemoto estimated d = 2 from the data and we assume in the sequel that d = 2.

7.2 Estimation by 2 Variables Wavelets

We assume

Xt = µ(Xt−2, Xt−1) + εt,

17



and estimate µ(x, y) from {X3, (X1, X2)},. . .,{X631, (X629, X630)}. f̂ and ĝ in (16)

are represented as follows,

f̂θ(x, y) =
∑
k1k2

α̂f
j0(k1,k2)

φj0k1(x)φj0k2(y)

+
j1−1∑
j=j0

∑
k1k2

ηλ

(
β̂f

j(k1,k2)(0,1)

)
φjk1(x)ψjk2(y)

+
j1−1∑
j=j0

∑
k1k2

ηλ

(
β̂f

j(k1,k2)(1,0)

)
ψjk1(x)φjk2(y)

+
j1−1∑
j=j0

∑
k1k2

ηλ

(
β̂f

j(k1,k2)(1,1)

)
ψjk1(x)ψjk2(y),

ĝθ(x, y) =
∑
k1k2

α̂g
j0(k1,k2)

φj0k1(x)φj0k2(y)

+
j1−1∑
j=j0

∑
k1k2

ηλ

(
β̂g

j(k1,k2)(0,1)

)
φjk1(x)ψjk2(y)

+
j1−1∑
j=j0

∑
k1k2

ηλ

(
β̂g

j(k1,k2)(1,0)

)
ψjk1(x)φjk2(y)

+
j1−1∑
j=j0

∑
k1k2

ηλ

(
β̂g

j(k1,k2)(1,1)

)
ψjk1(x)ψjk2(y),

where θ = (j0, j1, λ).

The values of f̂ may be close to zero, and we suggest to introduce sufficiently

small δ > 0 and compute the estimator as follows,

µ̂θ(x, y) =

{
ĝθ(x, y)/f̂θ(x, y) if |f̂θ(x, y)| > δ,

0 if |f̂θ(x, y)| ≤ δ,

7.3 Cross-Validation

For the estimation of the parameter θ = (j0, j1, λ) when ηλ(t) = λ t, we compute the

value of

CV(η, θ) =
1

629

631∑
i=3

[Xi − µ̂
\i
ηθ(Xi−2, Xi−1)]

2.
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for combinations of j0, j1 and λ and select the θ which attains the minimum of CV.

To save the computational time we set j1 = 6 in this simulation. The results are given

in Table 1. The table also contain the value of CV for hard and soft thresholdings

when j1 = 6. The Haar wavelets are employed as the base. From the table j0 and

λ of our estimator are estimated to be j0 = 2 and λ = 0.8 with the value of CV

0.138. On the other hand j0 and λ for hard and soft thresholdings are estimated to

be j0 = 2, λ = 0.3 (or λ = 0.4), and j0 = 2, λ = 0.3 with the values of CV 0.197 and

0.202, respectively. The comparison shows that the CV values of our estimator is

smallest, indicating the superiority of our estimator to the others considered in the

table.

Figure 4 is the graph of {µ̂θ(x, y), (x, y)} obtained when δ = 0.001.
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Table 1: Cross-Validation (j1 = 6)

λ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

hard 2.367 1.425 0.318 1.440 0.480 16.631 16.181 0.383 0.383
j0 = 1 soft 0.540 68.820 0.429 0.405 0.427 0.395 0.386 0.386 0.549

new 0.277 0.260 0.253 0.250 0.249 0.248 0.248 0.248 0.248

hard 2.714 1.314 0.197 0.197 0.234 3.320 1.528 0.210 0.210
j0 = 2 soft 0.993 0.215 0.202 0.205 1.923 0.329 0.219 0.213 0.213

new 0.166 0.152 0.146 0.143 0.140 0.139 0.139 0.138 0.138

hard 6.640 1.431 0.288 0.288 0.286 1.114 0.282 0.282 0.282
j0 = 3 soft 0.355 0.322 0.283 0.281 0.281 0.284 0.282 0.282 0.282

new 0.266 0.259 0.255 0.252 0.250 0.249 0.248 0.248 0.248

hard 3.905 1.404 5.168 2.894 0.789 0.756 1.007 0.877 0.756
j0 = 4 soft 3.778 0.815 0.785 0.759 0.758 0.759 0.760 0.756 0.756

new 0.753 0.752 0.751 0.750 0.750 0.750 0.750 0.750 0.751

hard 1.904 3.175 1.704 1.884 2.218 2.444 3.795 1.517 1.517
j0 = 5 soft 1.635 1.533 1.528 1.528 1.532 1.524 1.518 1.517 1.517

new 1.517 1.517 1.517 1.517 1.517 1.517 1.517 1.518 1.518

7.4 Reproduction of the New Time Series

To assure our estimator we generated a new time series {Yt} using µ̂(x, y) as follows,

Y3 = µ̂(Y1, Y2)

Y4 = µ̂(Y2, Y3)

...

by giving an appropriate initial value for (Y1, Y2). Figure 5 gives the plot of {Yt} and

Figure 6 is the Lorentz plot. Figures show that Figure 2 and 3 are well reproduced by

our method. Furthermore, Figure 5 shows that the present data may be characterized

as a repetition of the same dynamics.
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8. CONCLUSION

In this paper we generalized the wavelet estimator of regression function considered

by Truong and Patil (2001) to non-stationary time series in a multivariate auto-

regressive model. Assuming α-mixing condition for the time series, we developed

the convergence theorem. In addition, we introduced a new smoothing function

ηλ(t) = λ t in the context of thresholding techniques for the wavelet estimate and

showed its superiority to the linear wavelet estimator mathematically. For the op-

timum selection of parameters, we proposed to use a CV-criterion, and gave its

relationship to the MSE-based criterion. The method was applied to EEG data. It

is indicated that the method captured successfully the non-linear structure of EEG

data. Although the new smoothing function was introduced to improve the inte-

grated squared error of estimating g, the inspection of the table indicates that it

also improve the value of Cross-Validation of hard and soft thresholding function in

estimating µ.
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APPENDIX: PROOFS

Proof of Theorem 1 (i)

Without loss of generality, we assume supp(φ), supp(ψ) = [0, 1] and Q = [0, 1]d,

for simplicity. Under these settings, it is sufficient to give the proof for the order of

E[
∫
Q(ĝ− g)2 dx]. In the following, we use the notation X i−1 for (Xi−d, . . . , Xi−1), x

for (x1, · · · , xd) and
∫
Rd dx for

∫
Rd dx1 · · ·dxd.

At first, define

Ωd
j = {k = (k1, . . . , kd) ∈ Zd : 0 ≤ k1, . . . , kd ≤ 2j − 1}.

Then, it follows from supp(φ), supp(ψ) = [0, 1] that

ĝ(x) − g(x) =
∑

k∈Ωd
j0

(α̂
j0k − α

j0k)Φ
j0k(x) (A.1)

+
j1−1∑
j=j0

∑
k∈Ωd

j

∑
i∈Id

(β̂
jki − β

jki)Ψjki(x)

− ∑
j≥j1

∑
k∈Ωd

j

∑
i∈Id

β
jkiΨjki(x), x ∈ Q.

According to the orthonormality of wavelets (12),

∫
Q
(ĝ − g)2 dx = S1 + S2 + S3,

S1 =
∑

k∈Ωd
j0

(α̂
j0k − α

j0k)2,

S2 =
j1−1∑
j=j0

∑
k∈Ωd

j

∑
i∈Id

(β̂
jki − β

jki)
2,

S3 =
∑
j≥j1

∑
k∈Ωd

j

∑
i∈Id

β2
jki. (A.2)
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We evaluate E(S1), E(S2), E(S3) in (A.2) respectively. It follows from

E
{
XiΦj0k(X i−1)

}
=

∫
Rd
µ(x)Φ

j0k(x)fi(x) dx

that

E(α̂
j0k − α

j0k)2 = E

[
1

n

n∑
i=1

XiΦj0k(X i−1) − 1

n

n∑
i=1

∫
Rd
µ(x)Φ

j0k(x)fi(x) dx

]2

=
1

n2
E

[
n∑

i=1

{
XiΦj0k(X i−1) −

∫
Rd
µ(x)Φ

j0k(x)fi(x)dx
}]2

=
1

n2

n∑
i=1

Var
{
XiΦj0k(X i−1)

}

+
2

n2

∑
i<j

Cov
{
XiΦj0k(X i−1), XjΦj0k(Xj−1)

}
. (A.3)

First, we evaluate the Variance term of (A.3);

Var
{
XiΦj0k(X i−1)

}
= E

{
XiΦj0k(X i−1)

}2 −
[
E

{
XiΦj0k(X i−1)

}]2
, (A.4)

where

E
{
XiΦj0k(X i−1)

}
=

∫
Rd
µ(x)Φ

j0k(x)fi(x) dx

= 2−dj0/2
∫
Rd
µ

(
x + k

2j0

)
φ(x1) · · ·φ(xd)fi

(
x + k

2j0

)
dx

= O(2−dj0/2) (A.5)

and

E
{
XiΦj0k(X i−1)

}2 ≤ Const. E
{
Φ

j0k(X i−1)
}2

= Const.
∫
Rd

Φ2
j0k

(x)fi(x) dx

= Const.
∫
Rd

{
φ(x1) · · ·φ(xd)

}2
fi

(
x + k

2j0

)
dx

= O(1). (A.6)

Note that we used the boundness and the support compactness of µ, fi, Xi in the

above evaluations.
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Combining (A.4), (A.5) and (A.6), we have

Var
{
XiΦj0k(X i−1)

}
= O(1),

1

n2

n∑
i=1

Var
{
XiΦj0k(X i−1)

}
= O(n−1). (A.7)

Next, we evaluate the Covariance term of (A.3). Let fij denote the joint p.d.f of

(X i−1,Xj−1), and let

hij(x,y) = fij(x,y) − fi(x) fj(y),

then

Cov
{
XiΦj0k(X i−1) , XjΦj0k(Xj−1)

}
= Const.

[
E

{
Φ

j0k(X i−1)Φj0k(Xj−1)
}

− E
{
Φ

j0k(X i−1)
}
E

{
Φ

j0k(Xj−1)
} ]

= Const.
∫
Rd

∫
Rd

Φ
j0k(x)Φ

j0k(y) hij(x,y)dxdy

= Const.
∫
Rd

∫
Rd

2−dj0 φ(x1) · · ·φ(xd)φ(y1) · · ·φ(yd)

× hij

(
x + k

2j0
,
y + k

2j0

)
dxdy

= O(2−dj0). (A.8)

On the other hand, from α-mixing condition, we can also evaluate the covariance

term of (A.3) as follows. Since XiΦj0k(X i−1) is Fi-measurable, and XjΦj0k(Xj−1)

is F j-measurable, it follows from lemma 1 that

Cov
{
XiΦj0k(X i−1) , XjΦj0k(Xj−1)

}
= Const.

[
E

{
Φ

j0k(X i−1)Φj0k(Xj−1)
}

− E
{
Φ

j0k(X i−1)
}
E

{
Φ

j0k(Xj−1)
} ]

= Const.
∫
Rd

∫
Rd

Φ
j0k(x)Φ

j0k(y) hij(x,y)dxdy

= Const.
∫
Rd

∫
Rd

2−dj0 φ(x1) · · ·φ(xd)φ(y1) · · ·φ(yd)

× hij

(
x + k

2j0
,
y + k

2j0

)
dxdy

= O(2−dj0). (A.9)
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From (A.8) and (A.9), we have

2

n2

∑
i<j

Cov
{
XiΦj0k(X i−1), XjΦj0k(Xj−1)

}

=
2

n2

n−1∑
i=1

n−i∑
j=1

Cov
{
XiΦj0k(X i−1), Xi+jΦj0k(X i+j−1)

}

=
2

n2

n−1∑
i=1

{ ∑
j≤Mn

O(2−dj0) +
∑

j>Mn

O(2dj0α(j))
}

≤ 1

n
MnO(2−dj0) + O(2dj0α(Mn))

= o(n−1), (A.10)

where we set Mn = o(2dj0) = o(n) as n→ ∞, and used α(u) = O(ρu), (0 < ρ < 1).

Combining (A.3), (A.7) and (A.10), we can deduce that

E(S1) =
∑

k∈Ωd
j0

[O(n−1) + o(n−1)]

= O(2dj0n−1). (A.11)

Similar evaluation to E(S1) yields

E(S2) = O(2dj1n−1). (A.12)

It follows that

β
jki =

∫
Rd
g(x)Ψ

jki(x) dx (A.13)

= 2−dj/2
∫
Rd
g
(

x + k

2j

)
χi1(x1) · · ·χid(xd)dx.

In (A.13), using Taylor expansion for g around k/2j ∈ Rd, then

β
jki = 2−dj/2

r−1∑
v=0

1

v!

∑
(u1...ud)∈Ud

v

(
v

u1, . . . , ud

)

× ∂rg

∂u1x1 · · ·∂udxd

(
k

2j

)

×
∫
Rd

2−vjxu1
1 · · ·xud

d χ
i1(x1) · · ·χid(xd)dx

+ 2−dj/2
∫
Rd
Rr

(
x + k

2j

)

× χi1(x1) · · ·χid(xd)dx, (A.14)
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where Rr(·) is residual term of rth order, and

Ud
v = {(u1, . . . , ud) ∈ Zd : 0 ≤ u1, . . . , ud ≤ v and u1 + · · ·+ ud = v}.

Only the rth term of (A.14) remains because
∫
xvψ(x) dx = 0, (0 ≤ v ≤ r − 1).

Hence

β
jki = 2−j(r+d/2) 1

r!

∑
(u1...ud)∈Ud

r

(
r

u1, . . . , ud

)

×
∫
Rd

{
∂rg

∂u1x1 · · ·∂udxd

(
k + θx

2j

)}

× xu1
1 · · ·xud

d χ
i1(x1) · · ·χid(xd)dx.

Now, let

ξ
(u1...ud)

jk =
∂rg

∂u1x1 · · ·∂udxd

(
k + θx

2j

)

− ∂rg

∂u1x1 · · ·∂udxd

(
k

2j

)
and

g
(u1...ud)

jk =
∂rg

∂u1x1 · · ·∂udxd

(
k

2j

)
,

then, from ξ
(u1...ud)

jk = o(1) as j → ∞, and ( r! )−1
∫
xrψ(x) dx <∞, we have

β
jki = 2−j(r+d/2) 1

r!

∑
(u1...ud)∈Ud

r

(
r

u1, . . . , ud

)
(A.15)

×
{
g

(u1...ud)

jk + o(1)
} d∏

s=1

∫
xus

s χ
is(xs) dxs

=

{
O(2−j(r+d/2)) if i1 + i2 + · · ·+ id = 1,

0 if i1 + i2 + · · ·+ id > 1.

Hence,

S3 =
∞∑

j=j1

∑
k∈Ωd

j

∑
i∈Id

β2
jki =

∞∑
j=j1

2djdO(2−j(2r+d)) = O(2−2j1r). (A.16)

From (A.2), (A.11), (A.12) and (A.16), it follows that

E
[ ∫

Rd
(ĝ − g)2 dx

]
= E(S1 + S2 + S3)

= O
(

2dj0

n
+

2dj1

n
+ 2−2j1r

)
as n→ ∞.
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Proof of Theorem 1 (ii)

At first, we prove the following result.

sup
x∈U

|f̂(x) − f(x)| = o(1) a.e. (A.17)

Since supp(φ), supp(ψ) = [0, 1] and U ⊂ Q = [0, 1]d,

sup
U

|f̂ − f | ≤ s1 + s2 + s3,

where

s1 =
∑

k∈Ωd
j0

|α̂
j0k − α

j0k| ‖Φj0k‖∞,

s2 =
j1−1∑
j=j0

∑
k∈Ωd

j

∑
i∈Id

|β̂
jki − β

jki| ‖Ψjki‖∞,

s3 =
∑
j≥j1

∑
k∈Ωd

j

∑
i∈Id

|β
jki| ‖Ψjki‖∞.

Note that ‖Φ
j0k‖∞ = O(2dj0/2) and ‖Ψ

jki‖∞ = O(2dj/2). It follows from

(
s1

2dj0

)2

≤ 1

2dj0

∑
k∈Ωd

j0

(
|α̂

j0k − α
j0k| ‖Φj0k‖∞

)2
,

that

s1 = O(2dj0)
{ ∑

k∈Ωd
j0

(α̂
j0k − α

j0k)2
}1/2

.

By (A.11), for all sufficiently large n, there exists a positive constant B1 such that

n2−dj0
∑

k∈Ωd
j0

(α̂
j0k − α

j0k)2 < B1 a.e.

Hence,

s1 < n−1/22dj0/2B
1/2
1 O(2dj0) a.e,
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which together with 2dj0 = o(n1/3) yields that

s1 = o(1) a.e. (A.18)

Similally, it follows from (A.12) and 2dj1 = o(n1/3) that

s2 = o(1) a.e. (A.19)

According to the argument leading to (A.16),

s3 = o(1). (A.20)

Thus, equation (A.17) follows from (A.18), (A.19) and (A.20).

Next, we show
∫
(ĝ − g)2 = op(1). By E{∫

(ĝ − g)2} = o(1), for all sufficiently

large n, there exists a positive constants B2 such that

∫
(ĝ − g)2 < B2 a.e,

and then, it follows that

Var
{ ∫

(ĝ − g)2
}

= E
[{ ∫

(ĝ − g)2
}2

]
−

[
E

{ ∫
(ĝ − g)2

}]2

< B2E
{ ∫

(ĝ − g)2
}

+ o(1)

= o(1).

Therefore, by Chebyshev’s inequality,

∫
(ĝ − g)2 = op(1). (A.21)

Now, it follows from (A.17) and Condition (c) that

µ̂− µ = f̂−1(ĝ − µf̂) = {1 + op(1)}f−1(ĝ − µf̂) on U.

Furthermore, by Condition (a) and (A.21) respectively, g and (ĝ − g) are bounded.

Therefore, it follows that

ĝ − µf̂ = ĝ − {1 + op(1)}g = {1 + op(1)}(ĝ − g),
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and that

µ̂− µ = {1 + op(1)}f−1(ĝ − g) on U. (A.22)

Combining (A.21) and (A.22), we have

∫
U
(µ̂− µ)2 = {1 + op(1)}

∫
U
f−2(ĝ − g)2

≤ {1 + op(1)}M2
∫

U
(ĝ − g)2

= op(1).

Proof of Theorem 1 (iii)

We have the following representation.

∫
Rd

(ĝλ − g)2 dx = Sλ1 + Sλ2 + Sλ3,

where Sλ1 = S1, Sλ3 = S3 in (A.2), and

Sλ2 =
j1−1∑
j=j0

∑
k∈Ωd

j

∑
i∈Id

{ηλ(β̂jki) − β
jki}2

=
j1−1∑
j=j0

∑
k∈Ωd

j

∑
i∈Id

(λβ̂
jki − β

jki)
2

=
j1−1∑
j=j0

∑
k∈Ωd

j

∑
i∈Id

{(λ− 1)β̂
jki + (β̂

jki − β
jki)}2.

It follows that

S2 − Sλ2 = −(λ− 1)2
j1−1∑
j=j0

∑
k∈Ωd

j

∑
i∈Id

β̂2
jki

− 2(λ− 1)
j1−1∑
j=j0

∑
k∈Ωd

j

∑
i∈Id

β̂
jki(β̂jki − β

jki).
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Now, let

a =
j1−1∑
j=j0

∑
k∈Ωd

j

∑
i∈Id

β̂2
jki,

b =
j1−1∑
j=j0

∑
k∈Ωd

j

∑
i∈Id

β̂
jki(β̂jki − β

jki),

then we have

S2 − Sλ2 = −a(λ− 1)2 − 2b(λ− 1)

= −a
(
λ+

b

a
− 1

)2

+
b2

a
.

When λ = 1 − b/a, it holds that

S2 − Sλ2 =
b2

a
> 0 almost surely.

Hence, we have

∫
Rd

(ĝ − g)2 dx >
∫
Rd

(ĝλ − g)2 dx.

Proof of Theorem 2

From (A.2) we have

E
(
ĝ(x)

)
− g(x) = − ∑

j≥j1

∑
k∈Ωd

j

∑
i∈Id

β
jkiΨjki(x), x ∈ Q.

Now it follows from the definition that

Ψ
jki(x) = O(2dj/2).

Thus together with (A.16) we have

∑
j≥j1

∑
k∈Ωd

j

∑
i∈Id

β
jkiΨjki(x) =

∑
j≥j1

O(2(d−r)j)

= O(2(d−r)j1),
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since r > d is assumed. The bias of f̂ is evaluated similarly. For µ̂, it follows from

(A.17) that f(x)/f̂(x) = 1 + o(1) a.e. for x ∈ U . Thus

ĝ

f̂
=
g

f
+ o(1) a.e,

and the rest of the proof is trivial.

Proof of Theorem 3

Similarly as the proof of Lemma 2,

E[CVMn(θ)]

=
1

n

n∑
i=1

σ2
i +

1

n

n∑
i=1

E[µ(Xi−1) − µ̂
\(i,Mn)
θ (X i−1)]

2

− 2

n

n∑
i=1

Cov{εi, µ̂
\(i,Mn)
θ (X i−1)}. (A.23)

In the following, we evaluate each term of (A.23). Since µ̂
\(i,Mn)
θ (X i−1) is random

variable of (X1−d, . . . , Xi−1, Xi+Mn−d, . . . , Xn), we consider the joint distribution of

this random variable. Let

f \(i,Mn)(x1−d, . . . , xi−1, xi, xi+Mn−d, . . . , xn)

be the joint p.d.f of (X1−d, . . . , Xi−1, εi, Xi+Mn−d, . . . , Xn), and let

f
\(i,Mn)
1 (x1−d, . . . , xi−1, xi) and f

\(i,Mn)
2 (xi+Mn−d, . . . , xn)

be the joint p.d.f of (X1−d, . . . , Xi−1, εi) and (Xi+Mn−d, . . . , Xn) respectively. Since

(X1−d, . . . , Xi−1, εi) is Fi-measurable, and (Xi+Mn−d, . . . , Xn) is F i+Mn-measurable,

it follows from the definition of α(·) that

∣∣∣ f \(i,Mn)(x1−d, . . . , xi−1, xi, xi+Mn−d, . . . , xn)

− f
\(i,Mn)
1 (x1−d, . . . , xi−1, xi)f

\(i,Mn)
2 (xi+Mn−d, . . . , xn)

∣∣∣
≤ α(Mn). (A.24)

31



Furthermore, let f
\(i,Mn)
11 (x1−d, . . . , xi−1) and f

\(i,Mn)
12 (xi) be the p.d.f of

(X1−d, . . . , Xi−1) and εi respectively, then

f
\(i,Mn)
1 (x1−d, . . . , xi−1, xi)

= f
\(i,Mn)
11 (x1−d, . . . , xi−1)f

\(i,Mn)
12 (xi). (A.25)

Now,

Cov{εi, µ̂
\(i,Mn)
θ (X i−1)}

= E{εiµ̂
\(i,Mn)
θ (X i−1)}

=
∫
xiµ̂

\(i,Mn)
θ (x1−d, . . . , xi−1, xi+Mn−d, . . . , xn)

× f \(i,Mn)(x1−d, . . . , xi−1, xi, xi+Mn−d, . . . , xn)

× dx1−d · · ·dxi−1dxidxi+Mn−d · · ·dxn,

then, using (A.24) and (A.25) for f \(i,Mn), we have

Cov{εi, µ̂
\(i,Mn)
θ (X i−1)}

=
∫
supp(f\(i,Mn))

xiµ̂
\(i,Mn)
θ (x1−d, . . . , xi−1, xi+Mn−d, . . . , xn)

× {f \(i,Mn)
11 (x1−d, . . . , xi−1)f

\(i,Mn)
12 (xi)

f
\(i,Mn)
2 (xi+Mn−d, . . . , xn) +O(α(Mn))}

=
∫
xif

\(i,Mn)
12 (xi)

∫
µ̂
\(i,Mn)
θ f

\(i,Mn)
11 f

\(i,Mn)
2

+O(α(Mn))
∫
supp(f\(i,Mn))

xiµ̂
\(i,Mn)
θ .

It follows from
∫
xif

\(i,Mn)
12 (xi) = E(εi) = 0 and

∫
supp(f\(i,Mn)) xiµ̂

\(i,Mn)
θ <∞ that

Cov{εi, µ̂
\(i,Mn)
θ (X i−1)} = O(α(Mn)). (A.26)

Now

1

n

n∑
i=1

E[µ(X i−1) − µ̂
\(i,Mn)
θ (X i−1)]

2

=
1

n

n∑
i=1

E[µ(X i−1) − µ̂θ(X i−1)
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+ µ̂θ(X i−1) − µ̂
\(i,Mn)
θ (X i−1)]

2

= R(θ) +
1

n

n∑
i=1

E[{µ̂\(i,Mn)
θ (X i−1) − µ̂θ(X i−1)}

× {µ̂\(i,Mn)
θ (X i−1) + µ̂θ(X i−1) − 2µ(X i−1)}].

Since Mn = o(n), {µ̂\(i,Mn)
θ (X i−1) − µ̂θ(X i−1)} = o(1) as n→ ∞, and

1

n

n∑
i=1

E[µ(X i−1) − µ̂
\(i,Mn)
θ (X i−1)]

2 = R(θ) + o(1), (A.27)

Using (A.23), (A.26) and (A.27), we have

E[CVMn(θ)] =
1

n

n∑
i=1

σ2
i + R(θ) + o(1) +O(α(Mn))

=
1

n

n∑
i=1

σ2
i + R(θ) + o(1).
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