• 追加された行はこの色です。
• 削除された行はこの色です。
```|>|~第 263 回 Q-NA セミナー|
|日&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;時| 2010 年 11月 18日 (木) 15:00 - 15:35|
|場&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;所| 九州大学伊都キャンパス |
|場&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;所| 九州大学伊都キャンパス 数理学研究院 3階 中セミナー室3|
|講&nbsp;演&nbsp;者| Tomas Oberhuber (Czech Technical University in Prague)|
|題&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;目| Comparison of the Lagrangean and level-set method for the Willmore flow|
|概&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;要| We present two numerical methods for the Willmore flow of the planar curves. The Lagrangean approach works with parametrised curves. Discretisation leads to a "string" of nodes approximating the curve. To be able to compute evolution of such curve, redistribution of the nodes along the curve is necessary. There are several methods of the redistribution aim of which is to keep equidistant distribution of the nodes. The main advantage of this method is its efficiency, on the other hand it does not allow any changes in topology of the curve (merging or splitting). In this case the level-set method is good choice. It expresses the curve implicitly which increases the dimension of the problem by one. Unfortunately, it also means more expansive computations. We present numerical schemes for both methods together with comparison on several non-trivial examples and we also demonstrate experiments with topological changes obtained by the level-set method. |
|備&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;考| お車でお越しの場合にはこの案内を印刷してご持参のうえ，入構の際に守衛所にてご掲示ください．&br;今回のセミナーは現象数理セミナーとの共催です．通常とは曜日・時間・会場が異なりますのでご注意ください.|

```

ご不明な点がございましたら、事務局: までお問い合わせ下さい。