ON L-FUNCTIONS FOR THE SPACE OF BINARY QUADRATIC
FORMS
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This note is a summary of my talk in “Workshop on L-FUNCTIONS” at Fukuoka
in 22 April 2011. I thank Professor Weng for his invitation to the conference. In this
note, we give explicit forms of L-functions with nontrivial quadratic characters for the
space of binary quadratic forms.

1. MAIN RESULTS
Let F' be an algebraic number field. We set
X={reM?2)|xz="2} and G =GL(1)x PGL(2)

over F. The group G acts on X by
a

g-x= hxz'h, g=(a,h) € G, aecGL(l), he PGL(2), z € X.

This action is faithful. Let A be the adele ring of F', | |4, the idele norm of Aj,
AL = {a € A} |als, = 1}, w a character on AL/F* and S(X(Ar)) the Schwartz
space on X (Ap). We assume that w is a quadratic character, that is, w? = 1. We put

a
w(g) = w(m) and x(g) = a* for g = (a,h) € G.

We set
X*(F)={r € X(F)| detx #0 and —detz ¢ (F*)*}.
Let dg be the Tamagawa measure on G(A). We define the zeta integral Z(®, s,w) by

2(®,5,w) = /G IGIEOR LY

zeX*(F)

for s € Cand ® € S(X(Ap)). Z(®,s,w) is absolutely convergent for Re(s) > 3/2. We
will give an explicit form of Z(®,s,w) for any non-trivial quadratic character w. Let
3 denote the set of places of F'. For any v € ¥, we denote by F), the completion of
F at v and | |, the normal valuation of F,. Let S(X(F,)) be the Schwartz space on
X(F,). For each v < 0o, we denote by 9, the ring of integers of F,, p, the maximal
ideal of 9,,, and 7, a prime element. We set ¢, = |O,/p,|. Let d be an element of F*
such that the quadratic extension F(v/d) corresponds to w via the class field theory.
We set w = [], o5, wy where w, is a character on F*. Let (p(s) denote the Dedekind
zeta function defined by (p(s) = [[,..(1 — ¢, )" and L(s,w) the Hecke L-function
defined by L(s,w) = [],cx; Lv($,w,) where

vEX

1 otherwise
1

Ly(s,w,) = {(1 — wy(my)g,*)™" if v < 0o and w, is unramified '



Let Ap be the discriminant of F', e, the ramification index of F, for v|2, and &, the
characteristic function of

{(Z b) € X(F)|a, c €O, and be%Dv}

for v < co. For each v € 3, we define the local zeta function Z(®,, s, w,, d) by

2c s_3
Z(®y, 8, wy,d) = ——— X / | det z,|v 2wy(xy) @y(z,) dr,
Ly(1,w,) G(Fy)
1—qg7Ht if
where x; = L0 , Cy = ( %) 1 v OO, dx, is the Haar measure on
0 —d 1 if v|oo

X (F,) normalized by fX(Dv) dz, = 1, and wy(z,) = wy(gy) for 2y = gy - w4, g =
(ay, hy) € G(F,). The following formula is deduced from Saito’s works [Saitol, Saito2].
Theorem 1. We assume that ® = [, .5, ®, where ®, € S(X(F,)). Let S be any finite

subset of 3, which contains {v € X |v|oo or w, is ramified or ®, # ®q,}. Then, we
have

L(L,w) |Ap| 2 2q N CF 25
Z(P Z(®y, 8,wy, d
(@, 5,w) = Residue,—;(r(s) % |2H¢s 10X 1 (D)7 X H 5 W

where we set (3(s) = [Logs(1—aq,°)7 "

From Theorem 1 and some results for local zeta functions (cf. [Igusal, Igusa2, SSJ)
we find that Z(®, s,w) is meromorphically continued to the whole complex s-plane. It
is proved by [Yukie| in general. We define the function @, as

v vES

(I)l,v (xv) -

wy(a) if3hst. x,=h (a
b c

b),aeﬂj,b,cepv

0 otherwise

for each v < oco. By Theorem 1 and local computations we have the following.

Theorem 2. We set
Sin ={v € ¥|v <00 and w, is ramified},
Stn, 2 ={v € S |V [2},
Stno1 ={v € San |v[2 and d € OX(F))*},
Stn2.m ={v € Sn |v[2 and d € 7,0 (F))?},
Yoo ={v € X |v|oo}.

We have the disjoint union Sgn = Sgnwpe U Shn,2,1 U Sn2r, .- We assume ® = HUEE
If we set ®, = D, for v & S, U X and @, = @1, for v € Sk, then we obtain

L(1,w) |Ap|3/2 2710 y gF 23 — 1

Z(q)7 s, w) — H Z 6] S, W )
Residue,_ S vrT
s—lCF( ) VEY o
25—1)ey *$+2 —25+1 o —s+3
< I &< ]I ¢ [ « [[ «
'U|2 , V€ Shn vesﬁn,vﬁ Uesﬁn 2,1 Uesﬁn,Q,wU
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We will show that the formula for L(s, L}, ) in [IS, Theorem 1] is derived from
Theorem 2. Hence, Theorem 2 is a generalization of the formula. We can similarly
deduce the other formulas of [IS, Theorem 1] from Theorem 1.

We assume F = Q. Let m be a square-free integer. We assume that m is not 0
and 1. Let w,, be the character on Ab /Q* which corresponds to the quadratic field

Q(y/m), D the discriminant of Q(y/m), and 1,,, the Dirichlet character on Z/DZ which
corresponds to the quadratic field Q(y/m). We set

L:{<2b>€XW®LmCEZmeE%Z},

c
Ly = {z € L|z is positive definite },
Ly={x€L|detz <0, —det(z) & (Q*)*}.

For x € L, we set

.

Ym(a) if there exists an element g € SL(2,Z) such that gz'g = (Z i),

be%mZandCEmZifmzl mod 4,
b,ce mZ it m=2 mod 4,
and b,c € 2mZ if m =3 mod 4,

0 otherwise.

@Z)m(m) =

\

For each = € L, we denote by 9, the maximal order of Q(v/—detx) and &, > 1 the
fundamental unit of Q(v/— detx). We set

7T|D;<‘_1 ifl’ELl
p(w) = . :
loge, if v € Ly

Let G, denote the stabilizer of x € X(F) in G and let G% denote the connected
component of 1 in G,. We define the L-function L(s, m,i) by

N /1(93) ¢m(x)
Hami= 2. @) ool detal

except for the case m < 0 and i = 2. We put ((s) = (p(s). From Theorem 2 we deduce
the following.

Theorem 3. We have
2725 jfm=3 mod 4
)= L(1,wn) x C(2s — 1) x |m| "2 x {271 ifm=2 mod4.
2252 ifm=1 mod 4

3
L(s,m, %n(m)

We also have L(s,m,1) =0 form > 0.

If we substitute m = —p (p =3 mod 4) into Theorem 3, then the above formula is

the same as the formula for L(s, L3,1) in [IS, Theorem 1].
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2. ENDOScCOPY

In this section, we explain why we are interested in the zeta integrals with quadratic
characters.
First, we review a formula given by Labesse-Langlands [LL, (5.11)]. We consider the

parabolic subgroup
{(8 a91> <(1) 11}> |aEFX,v€F}

of SL(2, F'). By the adjoint action of the Levi subgroup a € G,, on the unipotent
radical v € G,, we can define the prehomogeneous zeta function (¢, s) as

E(p,s) = /AX/FX la?|* Z p(a*v)d*a

veFX

where ¢ € S(Ar) and Re(s) > 1. They proved the following formula in [LL].
Theorem 4 (Labesse-Langlands). For Re(s) > 1, we have

E(6,5) = 5 3 C(6.5,w)

where w runs over all quadratic characters on AL /F* and ((¢, s,w) is the Tate integral,
that s,

C(p,s,w) = / la|® w(a) ¢p(a) d*a.
Af

This theorem is proved by the Poisson summation formula for AL /(F*)? and F* /(F*)?2.
They used this formula to stabilize the trace formula for SL(2). We can understand
the meaning of the formula from point of view of trace formula.

Let f € C°(SL(2,Ar)) and ¢(v) = [, f(k™" (1) 1{) k)dk where K is the standard
maximal compact subgroup of SL(2, Ar). Then, the unipotent term in the geometric
side of the trace formula for f is

d 1 1

S
w#1

The first term corresponds to an unipotent term of trace formula for GL(2). Hence,
it is stable. If L is the quadratic extension of F' which corresponds to w # 1, then
H = R(Ll/)FGm is an elliptic endoscopic group of SL(2). Furthermore, if f# is the
transfer of f to H, then we have

¢(d,1,w) = L(L,w) f7(1).

From this we have obtained a stabilization of the unipotent term of SL(2). The stabi-
lization directly followed from Theorem 4. Hence, Theorem 4 looks like a stabilization
of the zeta function (¢, s). We are interested in stabilizations of prehomogeneous zeta
functions as a generalization of Theorem 4. In addition, we also want to know relations
between such stabilizations and explicit forms of prehomogeneous zeta functions, which

were studied by Ibukiyama and Saito.
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If we see the Siegel parabolic subgroup

{(32 t;?—zl) (32 Z) € Sp(2,F) ‘ he€GL(2,F) and S e X(F)}

of Sp(2, F), we can define the prehomogeneous zeta function =Z(®, s) by

2(®,s) = | det h|2, Z ®(hx'h)d

zEX*(F

/GL(Q,AF)/GL(Q,F)

where ® € S(X(A)r), Re(s) > 3/2, and dh is the Tamagawa measure on GL(2). If we
apply the above-mentioned argument of [LL] to Z(®, s) and the center of GL(2), then
we have

=(P, s) ZZ (@, 5,w)
where w runs over all quadratic characters on AL/F*. Let f € C>*(Sp(2,Ar)) and
x) = [ f(k7? Loz )dk, where K is a suitable maximal compact subgroup of
K Oy I
Sp(2,Ar). We denote by {v}spe,r the Sp(2, F)-conjugacy class of v € Sp(2, F).
Hoffmann and I proved that the unipotent term for Uye x+(p){ (éz Z) }sp(2,F) in the

geometric side of the trace formula for f is equal to
d 3

lim —(s—=)=Z(P
sallgb ds(s 2) (®,5).
Furthermore, it follows from the above-mentioned equality that
d 3 d 3 3
lim —(s—=)Z2(P,s) = lim —(s— =) Z(d,s,1 Z(®, -, w).
Jim (s = 5)E(®s) = lim o(s = ) Z(0s, 1) + ) Z(®,5,w)

w#1
The first term should be unstable. However, I do not know how to stabilize it. If we
substitute s = 3/2 into Theorem 1, then we have

3 L(1,w) |Ap|3/2 g2
2(2,5,w) = < 1] o HZ v,—wv, d).

Residue,—;Cr(s) o, v¢5‘ o - (

If we see the result of [Assem], then it seems that Z(®, g,w) is related to the elliptic

endoscopic group H = (R(LI}FG ) X SL(2) of Sp(2), where L is the quadratic extension
of F' corresponding to w # 1. Spallone and I are studying this stabilization now.
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