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1 Motivation.

We recall Stark’s conjecture. Let K/F bf an abelian extension of number fields. For
τ ∈ G := Gal(K/F ), we define the partial zeta function as a partial sum of the Dedekind
zeta function, as follows.

ζ(τ, s) :=
∑

a⊂OF , (K/F
a )=τ

Na−s.

Here
(

K/F
a

)
is the Artin symbol.

Assume F is a totally real field, there exists an embedding K ↪→ R, and fix this
embedding. In this case Stark’s conjecture states that

u(τ) := exp(2ζ ′(0, τ)) ∈ K,

u(τ)σ = u(στ)

for τ, σ ∈ G. We call u(τ) Stark’s units because these are units in K in almost cases.
Today we consider the case of F = Q, K = Q(ζm + ζ−1

m ) (ζm := exp(2πi/m)). Then
we have the isomorphism

(Z/mZ)×/{±1} ∼= Gal(Q(ζm + ζ−1
m )/Q),

±a 7→ [σa : ζm + ζ−1
m 7→ ζam + ζ−a

m ]

and we can calculate

u(σa) = exp(2ζ ′(0, σa)) =
(
2 sin(

a

m
π)
)−2

by using the Hurwitz-Lerch formula and Euler’s reflection formula. Therefore Stark’s
conjecture in this case, which is proved, states a reciprocity law on sin-values

sin2
( a

m
π
)σb

= sin2

(
ab

m
π

)
.

The aim of this talk is

• to drive this reciprocity law from a “reciprocity law on beta functions”,

• by studying periods of Fermat curves and its p-adic analogues.
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2 Periods of Fermat curves.

Let Fm be the mth Fermat curve xm + ym = 1. We consider the differentials of second
kind ηr/m,s/m := xr−1ys−mdx (0 < r, s < m, r + s ̸= m). Then
• Rohrlich showed that for any γ ∈ H1(Fm(C),Q)∫

γ
ηr/m,s/m

B(r/m, s/m)
∈ Q(ζm),

where we define the beta function by B(α, β) := Γ(α)Γ(β)
Γ(α+β)

.

• Since H1(Fm(C),Q) is a Q(ζm)-vector space, there exists γ0 s.t.∫
γ0
ηr/m,s/m

B(r/m, s/m)
= 1.

Note. The reason why we will study Fermat curves is because Euler’s reflection for-
mula

Γ(s)Γ(1− s) =
π

sin(πs)

relates such periods to Stark’s units over Q which are sin-values.

3 p-adic gamma functions.

For simplicity, assume p is an odd prime.
• Morita constructed the p-adic gamma function Γp : Zp → Z×

p , which is continuous and
characterized by

Γp(n) = (−1)n
n−1∏

i=1, p ̸ | i

i (n ∈ N).

• We can generalize it to Qp. Namely there exists a function Γp : Qp → Qp
×
, unique up

to Ker(logp), satisfying

• it is continuous, and is a generalization of Morita’s Γp,

• Γp(z + 1) ≡ zΓp(z) mod Ker(logp) for z ∈ Qp − Zp,

• Γp(2z) ≡ 22z−1/2Γp(z)Γp(z + 1/2) mod Ker(logp) for z ∈ Qp − Zp.

Note.

1. Ker(logp) is the subgroup of Qp
×

generated by rational powers of p and roots of
unity.

2. The functional equations which characterize our Γp are p-adic analogues of classical
formulas

Γ(z + 1) = zΓ(z), Γ(2z) =
22z−1/2

√
2π

Γ(z)Γ(z + 1/2).
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4 p-adic periods of Fermat curves.

Facts.

• By comparison theorems of cohomologies (H1 = Ĥ1
B, HB⊗Qp = Hp,et, Hp,et⊗BdR =

HdR ⊗BdR), we define a pairing

H1(Fm(C),Q)×H1
dR(Fm/Q) → BdR

and denote by
∫
γ,p

η the image of (γ, η) under this map. This is a p-adic counterpart

of the usual integral
∫
γ
η ∈ C.

• Actually, images
∫
γ,p

η are in a smaller ring BcrisQp ∩B+
dR.

• On the ring BcrisQp, there exist (more than one) absolute Frobenius actions

Φσ := Φdegσ
cris ⊗ σ (σ ∈ Gal(Qp/Qp)).

Here Φcris is the absolute Frobenius action on Bcris and degσ is defined by

Gal(Qp/Qp) → Gal(Qur
p /Qp), σ 7→ Frobdegσ

p .

Note.

1. Bcris, BdR are Fontaine’s rings of p-adic periods.

2. The definition of our pairing depends on the choices of embeddingsQ ↪→ C, Q ↪→ Cp,
etc.

3. The Jacobian of Fm has CM, therefore is potentially good at p.

Theorem 1. (K-, a corollary of Coleman’s Theorem.)

• Define the p-adic beta function by Bp(α, β) :=
Γp(α)Γp(β)

Γp(α+β)
.

• Define the action of Gal(Qp/Qp) on rational numbers Q ∩ [0, 1) by identifying Q ∩
[0, 1) ∼= { roots of unity ∈ Qp}, a/m 7→ ζam.

• For simplicity, assume that p > 3, p|m, p̸ |r, s, r + s.

Then we have

Φσ

(∫
γ,p

η r
m
, s
m

Bp(
r
m
, s
m
)

)
≡

∫
γ,p

ησ( r
m
),σ( s

m
)

Bp(σ(
r
m
), σ( s

m
))

mod Q×Ker(logp),

for σ ∈ Gal(Qp/Qp), 0 < r, s < m, r + s ̸= m.
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5 A reciprocity law.

• At first we saw
B( r

m
, s
m
)∫

γ η r
m , s

m

∈ Q(ζm).

• Next we considered its p-adic analogue
∫
γ,p η r

m , s
m

Bp(
r
m
, s
m
)
∈ BdR.

• Now let us product them

B( r
m
, s
m
)∫

γ
η r

m
, s
m

∫
γ,p

η r
m
, s
m

Bp(
r
m
, s
m
)
∈ BdR.

Then it does not depend on the choice of γ ∈ H1(Fm(C),Z) because the dependences
of
∫
γ
,
∫
γ,p

on γ are canceled each other.

• For τ1, τ2 ∈ Gal(Q(ζm)/Q), we take r, s so that τ1, τ2 correspond to r, s under the
isomorphism Gal(Q(ζm)/Q) ∼= (Z/mZ)×. We put

B(τ1, τ2) :=
B( r

m
, s
m
)∫

γ
η r

m
, s
m

∫
γ,p

η r
m
, s
m

Bp(
r
m
, s
m
)
.

Since there exists γ0 s.t.
B( r

m
, s
m
)∫

γ0
η r
m , s

m

= 1, i.e., B(τ1, τ2) =
∫
γ0,p

η r
m , s

m

Bp(
r
m
, s
m
)
, we may apply our

theorem to our B(τ1, τ2). Then we get a reciprocity law on beta-functions

Φσ(B(τ1, τ2)) ≡ B(στ1, στ2) mod Q×Ker(logp).

Here we identify σ ∈ Gal(Qp/Qp) as the image of σ under the map

Gal(Qp/Qp) → Gal(Qp(ζm)/Qp) ⊂ Gal(Q(ζm)/Q).

6 The relation to Stark’s units/Q.

Let ρ be the complex conjugation map. We consider the product

B(τ1, τ2)B(ρτ1, ρτ2) =
B( r

m
, s
m
)∫

γ
η r

m
, s
m

∫
γ,p

η r
m
, s
m

Bp(
r
m
, s
m
)

B(m−r
m

, m−s
m

)∫
γ
ηm−r

m
,m−s

m

∫
γ,p

ηm−r
m

,m−s
m

Bp(
m−r
m

, m−s
m

)
.

We can calculate some pairs.

• B( r
m
, s
m
)B(m−r

m
, m−s

m
) =

sin( r+s
m

π)π

sin( r
m
π) sin( s

m
π)

m
m−r−s

(by Euler’s reflection formula).

• Bp(
r
m
, s
m
)Bp(

m−r
m

, m−s
m

) ≡ m
m−r−s

mod Ker(logp) (by a direct calculation).

•
∫
γ,p η r

m , s
m

∫
γ,p ηm−r

m ,m−s
m∫

γ η r
m , s

m

∫
γ ηm−r

m ,m−s
m

should be (2πi)p
2πi

, where (2πi)p ∈ BdR is the p-adic counterpart

of 2πi (a consequence of Shimura’s monomial relations on CM-periods and its p-adic
analogues by de Shalit etc).
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Moreover by B(τ1, τ2)-symbol, we can write a power of each Stark’s unit /Q. For example,
assume that m is odd and take f s.t. 2f ≡ 1 mod m. Then

B( r
m
, r
m
)B(−r

m
, −r

m
)

2πBp(
r
m
, r
m
)B(−r

m
, −r

m
)

≡
B( r

m
, r
m
)B(m−r

m
, m−r

m
)

2πBp(
r
m
, r
m
)B(m−r

m
, m−r

m
)

≡
sin(2r

m
π)

2 sin( r
m
π) sin( r

m
π)

mod Ker(logp),

f−1∏
i=0

[
B(2

ia
m
, 2

ia
m
)B(−2ia

m
, −2ia

m
)

2πBp(
2ia
m
, 2

ia
m
)B(−2ia

m
, −2ia

m
)

]2f−i

≡
sin(2a

m
π)2

f

22f sin( a
m
π)2f+1

sin(4a
m
π)2

f−1

22f−1 sin(2a
m
π)2f

. . .
sin(2

fa
m
π)

2 sin(2
f−1a
m

π)2

≡ 1

2

(
2 sin(

a

m
π)
)2−2f+1

≡ 1

2
u(σa)

2f−1 mod Ker(logp).

Since Φσ is σ-semi linear, we can drive

u(τ)σ ≡ u(στ) mod Q×Ker(logp)

for σ ∈ Gal(Qp(ζm)/Qp) ⊂ Gal(Q(ζm)/Q), from the reciprocity law on beta-functions.
We may vary p | m. Therefore we get the reciprocity law on Stark’s units /Q, mod
Q×Ker(logp).

Remark.

• The proof of our main Theorem involves Coleman’s calculation of absolute Frobenius
automorphism on Fm.

• “mod Ker(logp)” comes from the problem of the normalization of Γp, “mod Q×”
comes up when we rewrite Coleman’s results in terms of our Γp.

• Our beta symbol B(τ1, τ2) should be generalized to any totally real field. The
Gamma function (the Beta function) and the period of Fermat curves should become
multiple gamma functions studied by Barnes, Shintani, Yoshida and Shimura’s CM-
period symbol. Yoshida and K- also studied their p-adic analogues.

• We saw the product
∏

σ∈<ρ> B(στ1, στ2) relates to cyclotomic units. In fact, the
Gross-Koblitz formula relates the product

∏
σ∈Dp

B(στ1, στ2) to Gauss sums, where
Dp is the decomposition group.
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