Exceptional zeros of the Selberg zeta function and noncongruence subgroups

Hiroyuki Yoshida
April 23, 2011, Kyushu University

§1. Exceptional zeros of the Selberg zeta function

Г: a cocompact Fuchsian group
$-1_{2} \in \Gamma, \bar{\Gamma}=\Gamma /\left\{ \pm 1_{2}\right\}$.
χ : a character of Γ such that $\chi\left(-1_{2}\right)=1$.
We consider χ as a character of $\bar{\Gamma}$.
The Selberg zeta function $Z_{\Gamma}(s, \chi)$ is defined by

$$
Z_{\Gamma}(s, \chi)=\prod_{\{\gamma\}} \prod_{k=0}^{\infty}\left(1-\chi(\gamma)(N(\gamma))^{-s-k}\right)
$$

which converges absolutely when $\Re(s)>1$ and can be continued to an entire function. Here $\{\gamma\}$ extends over all primitive hyperbolic conjugacy classes of $\bar{\Gamma}$ and $N(\gamma)$ denotes the norm of $\{\gamma\}$. When χ is trivial, we denote $Z_{\Gamma}(s, \chi)$ by $Z_{\Gamma}(s)$.

I will give a simple proof that there exists Γ for which $Z_{\Gamma}(s)$ has an exceptional zero.
$L^{2}(\Gamma \backslash \mathfrak{H}, \chi)$: the Hilbert space consisting of all functions φ on \mathfrak{H} which satisfy $\varphi(\gamma z)=\chi(\gamma) \varphi(z)$ for every $\gamma \in \Gamma$ and $|\varphi| \in L^{2}(\Gamma \backslash \mathfrak{H})$.

Assume that $\bar{\Gamma}$ is torsion free.
Then the trace formula reads as follows. For a test function $F \in$ $C_{c}^{\infty}(\mathbf{R})$, put

$$
\Phi(s)=\int_{-\infty}^{\infty} F(x) e^{(s-1 / 2) x} d x
$$

Then, when F is an even function,

$$
\begin{aligned}
\sum_{\rho} \Phi(\rho) & =\frac{\operatorname{vol}(\Gamma \backslash \mathfrak{H})}{2 \pi} \int_{-\infty}^{\infty} r \frac{e^{\pi r}-e^{-\pi r}}{e^{\pi r}+e^{-\pi r}} \Phi\left(\frac{1}{2}+i r\right) d r \\
& +2 \sum_{\{\gamma\}} \sum_{k=1}^{\infty} \frac{\chi(\gamma)^{k} \log (N(\gamma))}{N(\gamma)^{k / 2}-N(\gamma)^{-k / 2}} F(k \log (N(\gamma))) .
\end{aligned}
$$

$\Delta=-y^{2}\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right):$ non-Euclidean Laplacian
For an eigenvalue λ of Δ occuring in $L^{2}(\Gamma \backslash \mathfrak{H}, \chi)$ with multiplicity $m(\lambda)$, we let ρ occur with multiplicity $m(\lambda)$ by the relation $\rho=$ $1 / 2 \pm s / 2, \lambda=\left(1-s^{2}\right) / 4$. (When $\lambda=1 / 4, s=0$, we let $\rho=1 / 2$ occur with the multiplicity $2 m(1 / 4)$. When $\lambda \neq 1 / 4$, two ρ 's occur.) And $\{\gamma\}$ extends over all primitive hyperbolic conjugacy classes of $\bar{\Gamma}$. The ρ 's such that $0<\Re(\rho)<1$ coincide with the zeros of $Z_{\Gamma}(\Gamma, \chi)$ with the multiplicities stated above. Both sides of the trace formula converge absolutely.

Interpretation by representation theory.

$$
G=\operatorname{SL}(2, \mathbf{R}), K=\operatorname{SO}(2, \mathbf{R})
$$

$L^{2}(\Gamma \backslash G, \chi)$: the Hilbert space consisting of all functions φ on G which satisfy $\varphi(\gamma g)=\chi(\gamma) \varphi(g)$ for every $\gamma \in \Gamma$ and $|\varphi| \in L^{2}(\Gamma \backslash G)$.

We put $H_{\chi}=L^{2}(\Gamma \backslash G, \chi) ; G$ acts on H_{χ} by the right translation. The Hilbert space $L^{2}(\Gamma \backslash \mathfrak{H}, \chi)$ can be identified with the closed subspace of H_{χ} consisting of all K-fixed vectors. The unitary representation of G on H_{χ} decomposes into a discrete direct sum:

$$
H_{\chi}=\oplus \pi V_{\pi}
$$

where V_{π} is a closed invariant subspace of H_{χ} and an irreducible unitary representation π of G is realized on V_{π}. Then π must satisfy $\pi\left(-1_{2}\right)=$ id; V_{π} contributes to $L^{2}(\Gamma \backslash \mathfrak{H}, \chi)$ if and only if π has a (nonzero) K-fixed vector.

The classification of such π
B : the subgroup of G consisting of all upper triangular matrices. For $s \in \mathbf{C}$, we define a quasi-character ω_{s} of B by

$$
\omega_{s}\left(\left(\begin{array}{cc}
t & u \\
0 & t^{-1}
\end{array}\right)\right)=|t|^{s+1}
$$

$P S\left(\omega_{s}\right)$: the space of smooth functions f on G which satisfy $f(b g)=$ $\omega_{s}(b) f(g)$ for $b \in B$.
G acts on $P S\left(\omega_{s}\right)$ by right translation.

When $s \in i \mathbf{R}, P S\left(\omega_{s}\right)$ is a pre-Hilbert space with a canonical inner product. Let π_{s} be the unitary representation of G obtained by completion. It is irreducible and is called a principal series representation. When $-1<s<1, s \neq 0$, we obtain an irreducible unitary representation π_{s} by a similar procedure from $P S\left(\omega_{s}\right)$. It is called a complementary series representaion. We have $\pi_{s} \cong \pi_{-s}$.

The eigenvalue of Δ for a K-fixed vector of π_{s} (unique up to constant multiple) is $\left(1-s^{2}\right) / 4$. This finishes the classification besides the trivial representation.

A principal series representation π_{s} corresponds to zeros $1 / 2 \pm s / 2$ on the critical line; a complementary series representation π_{s} corresponds to zeros $\rho=1 / 2 \pm s / 2$ on the real line, $0<\rho<1, \rho \neq 1 / 2$, i.e. exceptional zeros; the trivial representation contributes $\rho=0$ and 1 for the trace formula.

Now the trivial representation of G occurs in H_{χ} if and only if $\chi=1$. Therefore the following observation holds. The terms $\Phi(0)$ and $\Phi(1)$ appear on the left hand side of the trace formula if and only if $\chi=1$.

Remark. This fact should not be confused with the existence of trivial zeros of $Z_{\Gamma}(s, \chi) ; Z_{\Gamma}(s, \chi)$ has a trivial zero at $s=0$ with multiplicity $2 g-2$.

The left-hand side of the trace formula defines a distribution $T_{\Gamma, \chi}$:

$$
T_{\Gamma, \chi}(F)=\sum_{\rho} \Phi(\rho)
$$

A distribution T is called of positive type if $T(\alpha * \tilde{\alpha}) \geq 0, \tilde{\alpha}(x)=$ $\overline{\alpha(-x)}$, for every $\alpha \in C_{c}^{\infty}(\mathbf{R})$.

As is well known (due to Weil), $T_{\Gamma, \chi}$ is of positive type if and only if all ρ lie on the critical line.

As a slight refinement of this criterion, I showed that the condition $T_{\Gamma, \chi}(\alpha * \tilde{\alpha}) \geq 0$ for all odd functions α is sufficient to assure this conclusion (Adv. Stud. in pure math. 21 (1992)). Then $F=\alpha * \tilde{\alpha}$ is an even function.

Now from (F), we see that there exists odd $\alpha \in C_{c}^{\infty}(\mathbf{R})$ such that $T_{\Gamma, 1}(\alpha * \tilde{\alpha})<0$. We fix such an α.
$g \geq 2$: the genus of the compact Riemann surface $\Gamma \backslash \mathfrak{H}$.

Since $\bar{\Gamma} \cong \pi_{1}(\Gamma \backslash \mathfrak{H}), \bar{\Gamma}$ has $2 g$ generators $\sigma_{1}, \ldots, \sigma_{g}, \tau_{1}, \ldots, \tau_{g}$ whose fundamental relation is

$$
\begin{equation*}
\left(\sigma_{1} \tau_{1} \sigma_{1}^{-1} \tau_{1}^{-1}\right) \cdots\left(\sigma_{g} \tau_{g} \sigma_{g}^{-1} \tau_{g}^{-1}\right)=1 \tag{*}
\end{equation*}
$$

Choose $s_{i} \in \mathbf{C},\left|s_{i}\right|=1, t_{i} \in \mathbf{C},\left|t_{i}\right|=1,1 \leq i \leq g$. In view of $(*)$, we can define a character $\bar{\chi}$ of $\bar{\Gamma}$ by

$$
\bar{\chi}\left(\sigma_{i}\right)=s_{i}, \quad \bar{\chi}\left(\tau_{i}\right)=t_{i}, \quad 1 \leq i \leq g
$$

Then we define a character χ of Γ by $\chi=\bar{\chi} \circ p$, where $p: \Gamma \longrightarrow \bar{\Gamma}$ is the canonical homomorphism.

If s_{i} and t_{i} are sufficiently close to 1 , then we see that $T_{\Gamma, \chi}(\alpha * \tilde{\alpha})<0$ from the right-hand side of the trace formula. In view of (F), this implies that $Z_{\Gamma}(s, \chi)$ has a zero ρ such that $0<\rho<1, \rho \neq 1 / 2$ (if $\chi \neq 1$).

In particular, choose $s_{i}=t_{i}=e^{2 \pi i / N}, 1 \leq i \leq g$ for a positive integer N. Let Γ_{χ} be the kernel of χ. Then $\Gamma / \Gamma_{\chi} \cong \mathbf{Z} / N Z$ and we have

$$
Z_{\Gamma_{\chi}}(s)=\prod_{\eta} Z_{\Gamma}(s, \eta)
$$

where η extends over all characters of Γ which are trivial on Γ_{χ}. Therefore, when N is sufficiently large, $Z_{\Gamma_{\chi}}(s)$ has a zero ρ such that $0<\rho<1, \rho \neq 1 / 2$.

The reason breaking the Riemann hypothesis.
$Z_{\Gamma}(s, \chi)$ has deformations. The zeros at $s=0,1$ move to exceptional zeros by deformation.

Contrary to this, the Hecke L-function $L(s, \psi)$ with Grössenchakter ψ is rigid. (k_{A}^{1} / k^{\times}is compact for a number field k.)

I found this proof about 20 years ago; it seems to be conceptually simpler than
A. Selberg: Proc. Symposia Pure Math. VIII (1965)
B. Randol: Bull. of AMS. 80 (1974)

A conjecture of Selberg states that $Z_{\Gamma}(s)$ has no exceptional zeros if Γ is of arithmetic type. In view of this conjecture, the group Γ_{χ} should be a noncongruence subgroup when Γ is of arithmetic type. In $\S 3$, we will examine this problem.
§2. Construction of noncongruence subgroups of $\operatorname{SL}(2, \mathbf{Z})$

I will give a simple construction of noncongruence subgroups of SL(2, Z).
N : a positive integer
$\Gamma(N)=\left\{\gamma \left\lvert\, \gamma=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \operatorname{SL}(2, \mathbf{Z})\right., a-1 \equiv b \equiv c \equiv 0 \equiv d-1 \quad \bmod N\right\}$
(The principal congruence subgroup of level N.)

$$
\Gamma_{0}(N)=\left\{\gamma \left\lvert\, \gamma=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \operatorname{SL}(2, \mathbf{Z})\right., c \equiv 0 \quad \bmod N\right\}
$$

A subgroup of $S L(2, Z)$ of finite index is called a noncongruence subgroup if it does not contain $\Gamma(N)$ for any positive integer N.
F. Klein: Math. Ann, 17(1880)
asserted the existence of noncongruence subgroups and proofs were given in
R. Fricke: Math. Ann. 28 (1887)
G. Pick: Math. Ann. 28 (1887)

Let

$$
\Delta(z)=e^{2 \pi i z} \prod_{k=1}^{\infty}\left(1-e^{2 \pi i k z}\right)^{24}, \quad z \in \mathfrak{H}
$$

be the cusp form of weight 12 with respect to $\operatorname{SL}(2, \mathbf{Z})$.
n : a positive integer.

We define a holomorphic function $\Delta(z)^{1 / n}$ so that it takes positive values when z is purely imaginary. Then $\Delta(z)^{1 / n}$ has the product expansion

$$
\Delta(z)^{1 / n}=e^{2 \pi i z / n} \prod_{k=1}^{\infty}\left(1-e^{2 \pi i k z}\right)^{24 / n}, \quad z \in \mathfrak{H}
$$

Here the branch of $\left(1-e^{2 \pi i k z}\right)^{24 / n}$ is taken so that it is positive when z is purely imaginary.
$m \geq 2$: an integer

Put

$$
f(z)=\Delta(m z)^{1 / n} / \Delta(z)^{1 / n}
$$

Then $f(z)^{n}$ is an automorphic function with respect to $\Gamma_{0}(m)$, since $\Delta(m z) \in S_{12}\left(\Gamma_{0}(m)\right)$.

For $\gamma \in \Gamma_{0}(m)$, put

$$
\chi(\gamma)=f(\gamma z) / f(z) .
$$

Since $\chi(\gamma)^{n}=1$, we see that $\chi(\gamma)$ does not depend on z and χ is a character of $\Gamma_{0}(m)$.

From the product expansion, we see that

$$
\begin{aligned}
\Delta(z+1)^{1 / n} & =e^{2 \pi i / n} \Delta(z)^{1 / n}, \\
\Delta(m(z+1))^{1 / n} & =e^{2 m \pi i / n} \Delta(m z)^{1 / n}
\end{aligned}
$$

Hence we obtain
(2.1)

$$
\left.\chi\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)\right)=e^{2 \pi i(m-1) / n}
$$

Let Γ_{χ} be the kernel of χ. Write

$$
(m-1) / n=p / q
$$

with relatively prime positive integers p and q. By (2.1), we see that the order of χ divides n and is divisible by q. Hence $\left[\Gamma_{0}(m): \Gamma_{\chi}\right]$ divides n and is divisible by q.

Theorem 2.1. We assume that q has a prime factor $l \geq 5$ which does not divide m and $t-1$ for every prime factor t of m. Then the group Γ_{χ} is a noncongruence subgroup.

Proof. Suppose that Γ_{χ} contains the principal congruence subgroup $\Gamma(N)$ for a positive interger N. Then m divides N and χ factors through the canonical map $\Gamma_{0}(m) \longrightarrow \Gamma_{0}(m) / \Gamma(N)$. Hence $\Gamma_{0}(m) / \Gamma(N)$ posesses a character whose order is divisible by q.

Let $N=\Pi p^{e_{p}}$ be the prime factorization. We have

$$
\Gamma_{0}(m) / \Gamma(N) \cong \prod_{p \mid m} G_{p} \times \prod_{p \nmid m} \operatorname{SL}\left(2, \mathbf{Z} / p^{e_{p}} \mathbf{Z}\right)
$$

where, $p^{d_{p}}$ being the exact power of p dividing m,

$$
\left.G_{p}=\left\{\left.\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \mathbf{S L}\left(2, \mathbf{Z} / p^{e_{2}} \mathbf{Z}\right) \right\rvert\, c \in p^{d_{p}} \mathbf{Z} / p^{e_{2}} \mathbf{Z}\right)\right\} .
$$

Let
$\left(\Pi_{p \mid m} G_{p} \times \operatorname{SL}\left(2, \mathbf{Z} / 2^{e_{2}} \mathbf{Z}\right) \times \operatorname{SL}\left(2, \mathbf{Z} / 3^{e_{3}} \mathbf{Z}\right) \quad\right.$ if 6 does not divide m, $G= \begin{cases}\prod_{p \mid m} G_{p} \times \operatorname{SL}\left(2, \mathbf{Z} / 3^{e_{3}} \mathbf{Z}\right) & \text { if } 2 \text { divides } m \text { and } 3 \text { does not divide } m, \\ \prod_{p \mid m} G_{p} \times \operatorname{SL}\left(2, \mathbf{Z} / 2^{e_{2}} \mathbf{Z}\right) & \text { if } 3 \text { divides } m \text { and } 2 \text { does not divide } m, \\ \prod_{p \mid m} G_{p} \quad \text { if } 6 \text { divides } m .\end{cases}$

By Lemma 2.2 given below, the commutator subgroup of $\operatorname{SL}\left(2, \mathbf{Z} / p^{e_{p}} \mathbf{Z}\right)$ coincides with itself if $p \geq 5$.
(Another simple proof is given as follows. It is well known that the commutator subgroup of $\operatorname{SL}(2, \mathbf{Z})$ contains $\Gamma(6)$. Take $g \in$ $\operatorname{SL}\left(2, \mathbf{Z} / p^{e_{p}} \mathbf{Z}\right)$. Write $g=\gamma \bmod p^{e_{p}}$ with $\gamma \in \Gamma(6)$. We can write γ as the product of commutators of elements of $\operatorname{SL}(2, \mathbf{Z})$. Reduce this expression modulo $p^{e_{p}}$. Then we obtain an expression of g as the product of commutators of the elements of $\left.\operatorname{SL}\left(2, \mathbf{Z} / p^{e_{p}} \mathbf{Z}\right).\right)$

Therefore G must have a character whose order is divisible by q. Since the order of G is not divisible by l, this is a contradiction and we complete the proof.

Lemma 2.2. Let K be a non-archimedean local field, \mathcal{O}_{K} be the ring of integers, ϖ be a prime element and q be the order of the residue field of K.

Take a positive integer n and let $G=\operatorname{SL}\left(2, \mathcal{O}_{K} / \varpi^{n} \mathcal{O}_{K}\right)$.

If $q>3$, then the commutator subgroup $[G, G]$ of G coincides with G.

Proof. For $a, b \in G$, we define the commutator by

$$
[a, b]=a b a^{-1} b^{-1}
$$

First we consider the case $n=1$.

Let $\mathbf{F}_{q}=\mathcal{O}_{F} / \varpi \mathcal{O}_{F}$ be the finite field with q elements. It is well known that $\operatorname{PSL}\left(2, \mathbf{F}_{q}\right)$ is a simple group when $q>3$. Therefore we have $[G, G]\left\{ \pm 1_{2}\right\}=G$. Since

$$
\left[\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right),\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)\right]=\left(\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right)
$$

we have $-1_{2} \in[G, G]$. Hence the assertion holds in this case.

Now assume $n \geq 2$. We put $R=\mathcal{O}_{K} / \varpi^{n} \mathcal{O}_{K}$.

Define a subgroup H of G by

$$
H=\left\{g \in G \mid g \equiv 1_{2} \quad \bmod \varpi\right\}
$$

Then H is a normal subgroup of G such that $G / H \cong \operatorname{SL}\left(2, \mathbf{F}_{q}\right)$. We have $[G, G] H=G$. For $t \in R^{\times}$and $u \in R$, we have

$$
\left[\left(\begin{array}{cc}
t & 0 \\
0 & t^{-1}
\end{array}\right),\left(\begin{array}{ll}
1 & u \\
0 & 1
\end{array}\right)\right]=\left(\begin{array}{cc}
1 & \left(t^{2}-1\right) u \\
0 & 1
\end{array}\right)
$$

Since $q>3$, we can choose t so that $t^{2}-1 \in R^{\times}$. Hence we have

$$
\left(\begin{array}{ll}
1 & u \\
0 & 1
\end{array}\right) \in[G, G]
$$

for every $u \in R$. Similarly

$$
\left(\begin{array}{ll}
1 & 0 \\
u & 1
\end{array}\right) \in[G, G]
$$

for every $u \in R$.

For $x \in R, y \in \varpi \mathcal{O}_{K} / \varpi^{n} \mathcal{O}_{K}$, we have

$$
\begin{aligned}
& \left(\begin{array}{cc}
1 & 0 \\
-y /(1+x y) & 1
\end{array}\right)\left(\begin{array}{ll}
1 & x \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
y & 1
\end{array}\right)\left(\begin{array}{cc}
1 & -x /(1+x y) \\
0 & 1
\end{array}\right) \\
= & \left(\begin{array}{cc}
1+x y & 0 \\
0 & 1 /(1+x y)
\end{array}\right) .
\end{aligned}
$$

Therefore

$$
\left(\begin{array}{cc}
t & 0 \\
0 & t^{-1}
\end{array}\right) \in[G, G]
$$

for every $t \in 1+\left(\varpi \mathcal{O}_{K} / \varpi^{n} \mathcal{O}_{K}\right)$. We can check easily that H is generated by such elements together with $\left(\begin{array}{ll}1 & x \\ 0 & 1\end{array}\right),\left(\begin{array}{ll}1 & 0 \\ y & 1\end{array}\right), x, y \in$ $\varpi \mathcal{O}_{K} / \varpi^{n} \mathcal{O}_{K}$. Therefore $[G, G] \supset H$. Combined with $[G, G] H=G$, the assertion follows.

Remark 2.3. The condition of the theorem is satisfied if $m=2$ and $n \geq 5$ is a prime number. In the case $m=2, n=5$, we obtain a noncongruence subgroup of $\operatorname{SL}(2, \mathbf{Z})$ of index 15 .

Remark 2.4. It is well known that the principal congruence subgroup $\Gamma(p)$ is a free group for a prime number p. Using this fact, we can apply the method of the next section to produce noncongruence subgroups.

Remark 2.5. Let D be a hermitian symmetric space. If there exists an everywhere nonvanishing holomorphic automorphic form on D with respect to an arithmetic group Γ, then we can produce noncongruence subgroups of Γ by a similar argument to the above. However the non-existence of such a form is known for a wide class of D.

I found the proof of this section when I wrote the paper On absolute CM-periods,

Proc. Symposia Pure Math. 66, Part 1, 1999, 221-278.

§3. Construction of noncongruence subgroups for cocompact case

I will give a simple proof for the existence of noncongruence subgroups of a cocompact arithmetic Fuchsian group.
F : a totally real algebraic number field of degree n.
\mathcal{O}_{F} : the ring of integers of F.
B : a division quaternion algebra over F such that

$$
B \otimes_{\mathbf{Q}} \mathbf{R} \cong M(2, \mathbf{R}) \times \mathbf{H}^{n-1}
$$

Here \mathbf{H} denotes the Hamilton quaternion algebra.
*: the main involution.
$N: B \longrightarrow F:$ the reduced norm.

We have $N(x)=x x^{*}$.
R : a maximal order of B (we fix it).

For a prime ideal \mathfrak{p} of F, we define localizations by

$$
B_{\mathfrak{p}}=B \otimes_{F} F_{\mathfrak{p}}, \quad R_{\mathfrak{p}}=R \otimes_{\mathcal{O}_{F}} \mathcal{O}_{F_{\mathfrak{p}}}
$$

where $F_{\mathfrak{p}}$ is the completion of F at \mathfrak{p} and $\mathcal{O}_{F_{\mathfrak{p}}}$ is the ring of integers of $F_{\mathfrak{p}}$.

We say that B is ramified at \mathfrak{p} if $B_{\mathfrak{p}}$ is a division algebra and unramified otherwise. In the latter case, $B_{\mathfrak{p}}$ is isomorphic to $M\left(2, F_{\mathfrak{p}}\right)$ as algebras over $F_{\mathfrak{p}}$.

Put

$$
\Gamma=R^{1}=\{x \in R \mid N(x)=1\}
$$

By the projection to the first factor, we can regard Γ as a subgroup of $\operatorname{SL}(2, \mathbf{R})$; Γ is a cocompact Fuchsian group.
$\Gamma \backslash \mathfrak{H}$: (a special case of) the Shimura curve.

For an integral ideal \mathfrak{n} of F, we put

$$
\Gamma_{\mathfrak{n}}=\{\gamma \in \Gamma \mid \gamma-1 \in \mathfrak{n} R\}
$$

We call $\Gamma_{\mathfrak{n}}$ the principal congruence subgroup of level \mathfrak{n}. A subgroup of finite index of Γ is called a noncongruence subgroup if it does not contain $\Gamma_{\mathfrak{n}}$ for any \mathfrak{n}. We are going to show that Γ contains noncongruence sugbroups.

Lemma 3.1. There exists an ideal \mathfrak{n} such that $\Gamma_{\mathfrak{n}}$ is torsion free.

We take an ideal \mathfrak{n} so that $\Gamma_{\mathfrak{n}}$ is torsion free and put $\Delta=\Gamma_{\mathfrak{n}}$.
g : the genus of the compact Riemann surface $\Delta \backslash \mathfrak{H}$.

As in $\S 1, \Delta$ has $2 g$ generators $\sigma_{1}, \ldots, \sigma_{g}, \tau_{1}, \ldots, \tau_{g}$ whose fundamental relation is $(*)$. Let \mathfrak{p} be a prime ideal of F. We put

$$
R_{\mathfrak{p}}^{1}=\left\{x \in R_{\mathfrak{p}} \mid N(x)=1\right\}
$$

For a nonnegative integer f, we put

$$
U_{\mathfrak{p}, f}=\left\{u \in R_{\mathfrak{p}}^{1} \mid u-1 \in \mathfrak{p}^{f} R_{\mathfrak{p}}\right\}
$$

S : the finite set of all prime ideals of F at which B is ramified.

Theorem 3.2. Let m be a positive integer and define a character χ of Δ by $\chi\left(\sigma_{i}\right)=\chi\left(\tau_{i}\right)=e^{2 \pi i / m}, 1 \leq i \leq g$. Let Γ_{χ} be the kernel of χ. We assume that m has a prime factor $l \geq 5$ which satisfies the following three conditions.
(i) l does not divide the norm of \mathfrak{n}.
(ii) l is relatively prime to every prime ideal $\mathfrak{p} \in S$.
(iii) l does not divide the order of $U_{\mathfrak{p}, 0} / U_{\mathfrak{p}, 1}$ for every prime ideal $\mathfrak{p} \in S$.

Then Γ_{χ} is a noncongruence subgroup of Γ.

Proof. Suppose that Γ_{χ} contains a principal congruence subgroup of level \mathfrak{m}. Then Γ_{χ} contains $\Gamma_{\mathfrak{n m}}$. We may regard χ as a character of $\Delta / \Gamma_{\mathfrak{n} m}$. Therefore $\Delta / \Gamma_{\mathfrak{n m}}$ has a character of order l.

Let

$$
\mathfrak{n}=\prod_{\mathfrak{p}} \mathfrak{p}^{e_{\mathfrak{p}}}, \quad \mathfrak{m}=\prod_{\mathfrak{p}} \mathfrak{p}^{d_{\mathfrak{p}}}
$$

be the prime ideal decompositions. By the strong approximation theorem, we have

$$
\Gamma_{\mathfrak{n}} / \Gamma_{\mathfrak{n} \mathfrak{m}} \cong \prod_{\mathfrak{p}}\left(U_{\mathfrak{p}, e_{\mathfrak{p}}} / U_{\mathfrak{p}, e_{\mathfrak{p}}+d_{\mathfrak{p}}}\right)
$$

Hence there exists \mathfrak{p} such that $U_{\mathfrak{p}, e_{\mathfrak{p}}} / U_{\mathfrak{p}, e_{\mathfrak{p}}+d_{\mathfrak{p}}}$ has a character ψ of order l. We distinguish two cases.
(I) The case where $\mathfrak{p} \notin S$.

Let $p \mathbf{Z}=\mathfrak{p} \cap \mathbf{Z}$.
If $e_{\mathfrak{p}}>0$, then $U_{\mathfrak{p}, e_{\mathfrak{p}}} / U_{\mathfrak{p}, e_{\mathfrak{p}}+d_{\mathfrak{p}}}$ is a p-group. Since $l \neq p$ by (i), this is a contradiction.

Suppose $e_{\mathfrak{p}}=0$. Since $R_{\mathfrak{p}} \cong M\left(2, \mathcal{O}_{F_{\mathfrak{p}}}\right)$, we have

$$
U_{\mathfrak{p}, 0} / U_{\mathfrak{p}, d_{\mathfrak{p}}} \cong \mathrm{SL}\left(2, \mathcal{O}_{F} / \mathfrak{p}^{d_{\mathfrak{p}}} \mathcal{O}_{F}\right)
$$

If $p \geq 5$, then by Lemma 2.2, the commutator subgroup of $\operatorname{SL}\left(2, \mathcal{O}_{F} / \mathfrak{p}^{d_{\mathfrak{p}}} \mathcal{O}_{F}\right)$ coincides with itself, which is a contradiction.

Suppose that $p=2$ or 3 . Since $l \geq 5$ and $U_{\mathfrak{p}, 1} / U_{\mathfrak{p}, d_{\mathfrak{p}}}$ is a p-group, ψ is trivial on $U_{\mathfrak{p}, 1}$. Hence ψ can be identified with a character of $\operatorname{SL}\left(2, \mathcal{O}_{F} / \mathfrak{p} \mathcal{O}_{F}\right)$. We see that ψ is trivial on the subgroups

$$
H=\left\{\left.\left(\begin{array}{cc}
1 & u \\
0 & 1
\end{array}\right) \right\rvert\, u \in \mathcal{O}_{F} / \mathfrak{p} \mathcal{O}_{F}\right\}
$$

and ${ }^{t} H$. Since H and ${ }^{t} H$ generate $\operatorname{SL}\left(2, \mathcal{O}_{F} / \mathfrak{p} \mathcal{O}_{F}\right)$, this is a contradiciton.
(II) The case where $\mathfrak{p} \in S$.

By (ii) and (iii), we see that l does not divide the order of $U_{\mathfrak{p}, e_{\mathfrak{p}}} / U_{\mathfrak{p}, e_{\mathfrak{p}}}+d_{\mathfrak{p}}$, which is a contradiction.

This completes the proof.

Remark 3.3. If χ is a character of Δ whose order is divisible by a prime number l satisfying the conditions of Theorem 3.2, then Γ_{χ} is a noncongruence subgroup of Γ.

Problem. The Selberg conjecture states

If Δ is a congruence subgroup of Γ,
then $Z_{\Delta}(s)$ does not have an exceptional zero.

Is the converse true?

§4. An example of modular forms for a noncongruence subgroup

Our construction in $\S 2$ has the merit that we can easily obtain examples of modular forms for a noncongruence subgroup. I will present an explicit example.

In Theorem 2.1, we assume that m and n are prime numbers such that $n \geq 5, n \neq m$ and n does not divide $m-1$. Then Γ_{χ} is a noncongruence subgroup such that $\left[\Gamma_{0}(m): \Gamma_{\chi}\right]=n$.

Up to equivalence, $\Gamma_{0}(m)$ has two cusps ∞ and 0 . The equivalence classes of the cusps of Γ_{χ} lying over ∞ are in one to one correspondence with $\Gamma_{\chi} \backslash \Gamma_{0}(m) / \Gamma_{0}(m)_{\infty}$ where

$$
\Gamma_{0}(m)_{\infty}=\left\{\gamma \in \Gamma_{0}(m) \mid \gamma \infty=\infty\right\}
$$

By (2.1), we see easily that $\Gamma_{0}(m)=\Gamma_{\chi} \Gamma_{0}(m)_{\infty}$.

Hence, up to equivalence, there is only one cusp of Γ_{χ} lying over ∞. Similarly, we see that there is only one cusp of Γ_{χ} lying over 0, up to equivalence.

The number of equivalence classes of elliptic points of $\Gamma_{0}(m)$ of order 2 (resp. 3) are ν_{2} (resp. ν_{3}) where

$$
\begin{equation*}
\nu_{2}=1+\left(\frac{-1}{m}\right), \quad \nu_{3}=1+\left(\frac{-3}{m}\right) . \tag{4.1}
\end{equation*}
$$

We can show easily that the number of equivalence classes of elliptic points of Γ_{χ} of order 2 (resp. 3) are $n \nu_{2}$ (resp. $n \nu_{3}$).
g_{χ} : the genus of the compact Riemann surface $\Gamma_{\chi} \backslash \mathfrak{H} \cup\{$ cusps $\}$
g_{0} : the genus of the compact Riemann surface $\Gamma_{0}(m) \backslash \mathfrak{H} \cup\{$ cusps $\}$

Calculating using a formula of Shimura's book, we find (4.2) $g_{\chi}=n\left[\frac{1}{12}(m+1)-\frac{1}{4} \nu_{2}-\frac{1}{3} \nu_{3}\right], \quad g_{\chi}=n g_{0}$.

Here ν_{2} and ν_{3} are given by (4.1).

We have $\operatorname{dim} S_{2}\left(\Gamma_{\chi}\right)=g_{\chi}$ and for an even integer $k>2$, we have (4.3) $\quad \operatorname{dim} S_{k}\left(\Gamma_{\chi}\right)=(k-1) g_{\chi}-1+n \nu_{2}\left[\frac{k}{4}\right]+n \nu_{3}\left[\frac{k}{3}\right]$. Let

$$
f(z)=\Delta(m z)^{1 / n} / \Delta(z)^{1 / n}
$$

be the function used in $\S 2$. We see that $f(z)$ is an automorphic function with respect to Γ_{χ}.

Let $q=e^{2 \pi i z / n}$ (resp. q^{\prime}) be the uniformizing parameter at the cusp ∞ (resp. 0) of Γ_{χ}.

We have
(4.4) $\quad \operatorname{ord}_{q}(f(z))=m-1, \quad \operatorname{ord}_{q^{\prime}}(f(z))=-(m-1)$.

For a funtion F on $\mathfrak{H}, k \in \mathbf{Z}$ and $g=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathrm{GL}(2, \mathbf{R})$, $\operatorname{det} g>0$, we define a function $\left(\left.F\right|_{k} g\right)(z)$ on \mathfrak{H} by

$$
\left(\left.F\right|_{k} g\right)(z)=(\operatorname{det} g)^{k / 2} F(g z)(c z+d)^{-k}, \quad z \in \mathfrak{H}
$$

For $1 \leq i \leq n-1$, we set

$$
S_{k}\left(\Gamma_{0}(m), \chi^{i}\right)=\left\{h \in S_{k}\left(\Gamma_{\chi}\right)|\quad h|_{k} \gamma=\chi(\gamma)^{i} h, \quad \gamma \in \Gamma_{0}(m)\right\}
$$

Then we have a decomposition:

$$
\begin{equation*}
S_{k}\left(\Gamma_{\chi}\right)=S_{k}\left(\Gamma_{0}(m)\right) \oplus\left(\oplus_{i=1}^{n-1} S_{k}\left(\Gamma_{0}(m), \chi^{i}\right)\right) \tag{4.5}
\end{equation*}
$$

Let $\omega=\left(\begin{array}{cc}0 & 1 \\ -m & 0\end{array}\right)$. We have

$$
\chi\left(\omega \gamma \omega^{-1}\right)=\chi(\gamma)^{-1}, \quad \gamma \in \Gamma_{0}(m) .
$$

Hence we see that ω normalizes Γ_{χ} and that the operator $\left.\right|_{k} \omega$ gives an isomorphism of $S_{k}\left(\Gamma_{0}(m), \chi^{i}\right)$ onto $S_{k}\left(\Gamma_{0}(m), \chi^{-i}\right)$.

Now we take $m=2, n=5$. We have $\nu_{2}=1, \nu_{3}=0$. By (4.2), we have $g_{\chi}=0$. By (4.3), we have $\operatorname{dim} S_{4}\left(\Gamma_{\chi}\right)=4$. Let

$$
E_{4}(z)=1+240 \sum_{n=1}^{\infty} \sigma_{3}(n) e^{2 \pi i n z}
$$

be the Eisenstein series of weight 4 with respect to $\operatorname{SL}(2, Z)$. Here

$$
\sigma_{3}(n)=\sum_{0<d \mid n} d^{3}
$$

Put

$$
\begin{equation*}
g(z)=E_{4}(z)-2^{4} E_{4}(2 z) \tag{4.6}
\end{equation*}
$$

Then $g(z)$ is a modular form of weight 4 with respect to $\Gamma_{0}(2)$ and we see that

$$
\operatorname{ord}_{q}(g(z))=0, \quad \operatorname{ord}_{q^{\prime}}(g(z))=n
$$

In view of (4.4), $f(z)^{i} g(z) \in S_{4}\left(\Gamma_{0}(2), \chi^{i}\right) \subset S_{4}\left(\Gamma_{\chi}\right)$ for $1 \leq i \leq 4$. By (4.5), they are linearly independent. Therefore a basis of $S_{4}\left(\Gamma_{\chi}\right)$ is given by

$$
\left\{f(z) g(z), f(z)^{2} g(z), f(z)^{3} g(z), f(z)^{4} g(z)\right\}
$$

Remark 4.1. We have

$$
\left.f(z)^{i} g(z)\right|_{k} \omega=f(z)^{5-i} g(z), \quad 1 \leq i \leq 4 .
$$

Put $h(z)=E_{4}(z)-E_{4}(2 z)$. Then we have

$$
\operatorname{ord}_{q}(h(z))=n, \quad \operatorname{ord}_{q^{\prime}}(h(z))=0 .
$$

A basis of $S_{4}\left(\Gamma_{\chi}\right)$ is also given by

$$
\left\{f(z)^{-1} h(z), f(z)^{-2} h(z), f(z)^{-3} h(z), f(z)^{-4} h(z)\right\} .
$$

Using the fact $\operatorname{dim} S_{4}\left(\Gamma_{0}(2), \chi\right)=1$, we can prove the relation

$$
h(z)=-16 f(z)^{5} g(z) .
$$

Remark 4.2. We have $\operatorname{dim} S_{6}\left(\Gamma_{\chi}\right)=4$ and a basis of this space can be given similarly.

We have $\operatorname{dim} S_{8}\left(\Gamma_{\chi}\right)=9$, $\operatorname{dim} S_{8}\left(\Gamma_{0}(2)\right)=1$. For $1 \leq i \leq 4$, a basis of $S_{8}\left(\Gamma_{0}(2), \chi^{i}\right)$ is given by $\left\{f(z)^{i} g(z)^{2}, f(z)^{i} g(z) E_{4}(z)\right\}$ and $f(z)^{5} g(z)^{2}$ spans $S_{8}\left(\Gamma_{0}(2)\right)$.

Remark 4.3. It would be interesting to examine the example of this section in more detail in view of the Atkin-Swinnerton-Dyer congruences.

Playing with modular forms

A. O. L. Atkin and H. P. F. Swinnerton-Dyer,

Symposia Pure Math. 19 (1971)
A. J. Scholl, Invent. Math. 79 (1985)

Consider $f(z) g(z) \in S_{4}\left(\Gamma_{\chi}\right)$.
We have

$$
f(z)=\Delta(2 z)^{1 / 5} \Delta(z)^{-1 / 5}=q^{1 / 5} \prod_{n=1}^{\infty}\left(1-q^{n}\right)^{24 / 5}
$$

Here $q=e^{2 \pi i z}$. Put $x=q^{1 / 5}$ and

$$
f(z) g(z) /(-15)=\sum_{n=1}^{\infty} a(n) x^{n}
$$

Then $a(1)=1, a(n) \in \mathbf{Z}[1 / 5] ; a(n)$ can be nonzero only when $n \equiv 1$ $\bmod 5$.

We can observe A-S type congruence

$$
a(p n)-A(p) a(n)+p^{3} a(n / p) \equiv 0 \quad \bmod p^{3(\alpha+1)}
$$

if $\operatorname{ord}_{p}(n)=\alpha, A(p) \in \mathbf{Z}_{p}$.
Here p is a prime such that $p \equiv 1 \bmod 5$.

