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1. Exceptional zeros of the Selberg zeta function

[: @ cocompact Fuchsian group

—l, e, T =r/{x15}.

x. a character of I such that xy(—1,) = 1.
We consider xy as a character of .

The Selberg zeta function Z-(s,x) is defined by

oo
Zr(s,x) = [[ TI @ = x()(N)™)
{7} k=0
which converges absolutely when f(s) > 1 and can be continued to
an entire function. Here {v} extends over all primitive hyperbolic
conjugacy classes of I and N(v) denotes the norm of {v}. When x
is trivial, we denote Z-(s,x) by Zr(s).

I will give a simple proof that there exists I for which Z-(s) has an
exceptional zero.



L2(I\$,x): the Hilbert space consisting of all functions ¢ on $
which satisfy ¢(v2) = x(7)¢(2) for every v € ™ and || € L2(I\$).

Assume that I is torsion free.

Then the trace formula reads as follows. For a test function F' &
C*(R), put

D(s) = /_o:O F(x)e(s_l/Q)xda:.

Then, when F'is an even function,
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A = —yQ(aé;Q + 5%2): non-Euclidean Laplacian

For an eigenvalue A of A occuring in L2(I\$, x) with multiplicity
m(A), we let p occur with multiplicity m(\) by the relation p =
1/2+5/2, A= (1—-5s2)/4. (When A =1/4, s =0, we let p = 1/2
occur with the multiplicity 2m(1/4). When XA # 1/4, two p's occur.)
And {v} extends over all primitive hyperbolic conjugacy classes of I.
The p's such that 0 < R(p) < 1 coincide with the zeros of Z(I", x)
with the multiplicities stated above. Both sides of the trace formula

converge absolutely.



Interpretation by representation theory.
G =SL(2,R), K =S0O(2,R).

L2(I\G, x): the Hilbert space consisting of all functions ¢ on G
which satisfy o(v9) = x(7)¢(g) for every v € I and |p| € L2(IM\G).

We put H, = L?(I"\G, x); G acts on H, by the right translation. The
Hilbert space L2(I\$), x) can be identified with the closed subspace
of H, consisting of all K-fixed vectors. The unitary representation
of G on H, decomposes into a discrete direct sum:

HX = OrVr

where Vi is a closed invariant subspace of H, and an irreducible
unitary representation = of ¢ is realized on V;. Then m must satisfy
w(—15) = id; Vi contributes to L2(I"\$,x) if and only if = has a
(nonzero) K-fixed vector.



The classification of such =«

B: the subgroup of G consisting of all upper triangular matrices.
For s € C, we define a quasi-character ws of B by

um((é tiLl)) = |t|8+1.

PS(ws): the space of smooth functions f on G which satisfy f(bg) =
ws(b) f(g) for b € B.

G acts on PS(ws) by right translation.

When s € iR, PS(ws) is a pre-Hilbert space with a canonical in-
ner product. Let s be the unitary representation of G obtained by
completion. It is irreducible and is called a principal series represen-
tation. When —1 < s < 1, s #= 0, we obtain an irreducible unitary
representation w5 by a similar procedure from PS(ws). It is called a
complementary series representaion. We have ng = m_g.



The eigenvalue of A for a K-fixed vector of w5 (unique up to con-
stant multiple) is (1 — s2)/4. This finishes the classification besides
the trivial representation.

A principal series representation w5 corresponds to zeros 1/2 + s/2
on the critical line; a complementary series representation ws corre-
sponds to zeros p =1/2+ s/2 on the real line, 0 < p <1, p#*1/2,
I.e. exceptional zeros; the trivial representation contributes p = 0
and 1 for the trace formula.



Now the trivial representation of G occurs in Hy if and only if x = 1.
T herefore the following observation holds.

The terms ®(0) and ®(1) appear on the left hand side of
the trace formula if and only if x = 1.

(F)

Remark. This fact should not be confused with the existence of
trivial zeros of Zr(s,x); Zr(s,x) has a trivial zero at s = 0 with
multiplicity 2g — 2.

The left-hand side of the trace formula defines a distribution T ,:
Tr \(F) =Y ®(p).
P

A distribution T is called of positive type if T(axa) > 0, a(x) =
a(—x), for every a € C¥(R).




As is well known (due to Weil), Tr  is of positive type if and only
if all p lie on the critical line.

As a slight refinement of this criterion, I showed that the condition
Tr,X(Oé x &) > 0 for all odd functions « is sufficient to assure this
conclusion (Adv. Stud. in pure math. 21 (1992)). Then F = ax* &
is an even function.

Now from (F), we see that there exists odd a € CZ°(R) such that
Tr1(axa) < 0. We fix such an a.

g > 2: the genus of the compact Riemann surface M\$).

Since ' = w1 (M\$), [ has 2g generators o4, ..., og, 71, ..., Tg Whose
fundamental relation is



-1 -1 1 —
(%) (o171101 711 ") - (09790, 1Tg by =1.
Choose s, € C, |55l =1,t; €C, |t;] =1, 1 <i<g. In view of (x), we
can define a character ¥ of [T by

x(oi) = s;; x(7) = ti, 1<i<yg.
Then we define a character y of T by x =Xop, wherep: T — T is
the canonical homomorphism.

If s; and t; are sufficiently close to 1, then we see that T, (axa) <0
from the right-hand side of the trace formula. In view of (F), this
implies that Z-(s,x) has a zero p such that 0 < p < 1, p # 1/2 (if

X7 1).
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In particular, choose s; = t;, = ¢2™/N 1 < < g for a positive integer
N. Let 'y be the kernel of x. Then '/l =7Z/NZ and we have

Zr (s) =11 2r(s,m)
1

where n extends over all characters of ' which are trivial on [.
Therefore, when N is sufficiently large, Z,—X(s) has a zero p such
that 0 <p <1, p# 1/2.

The reason breaking the Riemann hypothesis.

Zr(s,x) has deformations. The zeros at s = 0, 1 move to excep-
tional zeros by deformation.

Contrary to this, the Hecke L-function L(s, 1) with Grdssenchakter
W is rigid. (lc}l/k>< is compact for a number field k.)
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I found this proof about 20 years ago; it seems to be conceptually
simpler than

A. Selberg: Proc. Symposia Pure Math. VIII (1965)
B. Randol: Bull. of AMS. 80 (1974)

A conjecture of Selberg states that Z-(s) has no exceptional zeros
if " is of arithmetic type. In view of this conjecture, the group [y
should be a noncongruence subgroup when [ is of arithmetic type.
In §3, we will examine this problem.
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§2. Construction of nhoncongruence subgroups of SL(2,7)

I will give a simple construction of noncongruence subgroups of
SL(2,7Z).

N: a positive integer

F(N)={7 ‘ N = <CCL 2) cSL(2,Z),a—1=b=c=0=d—-1 mod N}

(The principal congruence subgroup of level N.)

Mo(V) = {’Y ' v = (CCL Z) € SL(2,Z),c=0 mod N}

A subgroup of SL(2,Z) of finite index is called a noncongruence
subgroup if it does not contain N'(N) for any positive integer N.
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F. Klein: Math. Ann, 17(1880)

asserted the existence of noncongruence subgroups and proofs were
given in

R. Fricke: Math. Ann. 28 (1887)
G. Pick: Math. Ann. 28 (1887)

Let

. m .
A(z) — 627Tzz H (1 . 627mk2)24’ =)
k=1

be the cusp form of weight 12 with respect to SL(2,7Z).
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n. a positive integer.

We define a holomorphic function A(z)l/” so that it takes positive
values when z is purely imaginary. Then A(z)l/” has the product
expansion

A(Z)l/n — e27m'z:/n H (1— 627Tik2)24/n’ =
k=1

Here the branch of (1 — e27k2)24/n s taken so that it is positive
when z is purely imaginary.

m > 2. an integer

Put
f(2) = A@m)Y"/A()Hm

Then f(z)™ is an automorphic function with respect to I'g(m), since
A(mz) € S12(IMo(m)).
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For v € M'g(m), put
x(v) = f(vz)/f(2).

Since x(v)® = 1, we see that x(v) does not depend on z and x is a
character of I'g(m).

From the product expansion, we see that

A(z + 1)1/n — eQWi/nA(Z)l/n’

A(m(z + 1))1/77, — 62m7ri/nA(mz)1/n.

Hence we obtain

(2.1) X(<(1) D) _ 2rilm-1)/n

Let [y be the kernel of x. Write

(m—1)/n=p/q
with relatively prime positive integers p and ¢q. By (2.1), we see that
the order of x divides n and is divisible by g. Hence [[[g(m) : y]
divides n and is divisible by gq.
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Theorem 2.1. We assume that q has a prime factor | > 5 which
does not divide m and t— 1 for every prime factort of m. Then the
group [y IS @ noncongruence subgroup.

Proof. Suppose that I, contains the principal congruence sub-
group N(N) for a positive interger N. Then m divides N and yx
factors through the canonical map N'g(m) — Fo(m)/IF(N). Hence
Mo(m) /T (IN) posesses a character whose order is divisible by g.

Let N =][p® be the prime factorization. We have

Fo(m)/T(N) =2 ] Gp x ] SL(2,Z/p*PZ),
plm ptm

where, p% being the exact power of p dividing m,

Gp = {(‘Z Z) € SL(2,Z/p%?7Z)

cE pde/pGQZ)} :

17



et

T Gp X SL(2,Z/2%2Z) x SL(2,Z/3%3Z) if 6 does not divide m,
Hp|m Gp x SL(2,Z/3%3Z) if 2 divides m and 3 does not divide m,
[pim Gp x SL(2,Z/2%27Z) if 3 divides m and 2 does not divide m,
[Ipjm Gp If 6 divides m.

By Lemma 2.2 given below, the commutator subgroup of SL(2,Z/p°rZ)
coincides with itself if p > 5.

(Another simple proof is given as follows. It is well known that
the commutator subgroup of SL(2,Z) contains (6). Take g €
SL(2,Z/p?Z). Write g = v mod p® with v € I'(6). We can write
~ as the product of commutators of elements of SL(2,Z). Reduce
this expression modulo pf. Then we obtain an expression of g as
the product of commutators of the elements of SL(2,Z/prZ).)

Therefore G must have a character whose order is divisible by gq.
Since the order of G is not divisible by [, this is a contradiction and
we complete the proof.
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Lemma 2.2. Let K be a non-archimedean local field, Oy be the
ring of integers, @ be a prime element and g be the order of the
residue field of K.

Take a positive integer n and let G = SL(2,0x/w"OF).

If ¢ > 3, then the commutator subgroup [G,G] of G coincides with
G.
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Proof. For a, b € GG, we define the commutator by
[a,b] = aba~ 167 1.

First we consider the case n = 1.

Let F; = Op/wOfr be the finite field with ¢ elements. It is well
known that PSL(2,Fy) is a simple group when g > 3. Therefore we
have [G,G]{x1o} = G. Since

o %) (5)l=( %)

we have —15 € [G,G]. Hence the assertion holds in this case.
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Now assume n > 2. We put R = O /@"Of.

Define a subgroup H of GG by
H={geG|g=1, mod w}.

Then H is a normal subgroup of G such that G/H = SL(2,F;). We
have [G,G]H = G. For t € R* and u € R, we have

(o %) 3)]= (6 “3™)

Since g > 3, we can choose t so that t2 — 1 ¢ RX. Hence we have

(é ?) c [G, G

(i C1)> c [G, ]

for every u € R. Similarly

for every u € R.
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Forz € R, y € wOg/w"Ofk, we have

( 1 o) (1 x) (1 o) (1 —x/(l—l—azy))
—y/(L+=2y) 1)\0 1/ \y 1/ \0O 1

(14 =2y O
-\ 0 1/ +a=y))

T herefore
t O
(O t_]') S [G7 G]

for every t € 1 + (wOg/@w"Ofk). We can check easily that H is

generated by such elements together with ((1) ‘f) (; (1)> T, Yy €

wOg /w"Of. Therefore [G,G] D H. Combined with [G,G]H = G,
the assertion follows.
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Remark 2.3. The condition of the theorem is satisfied if m = 2
and n > 5 is a prime number. In the case m = 2, n = 5, we obtain
a noncongruence subgroup of SL(2,Z) of index 15.

Remark 2.4. It is well known that the principal congruence sub-
group IN'(p) is a free group for a prime number p. Using this fact, we
can apply the method of the next section to produce noncongruence
subgroups.

Remark 2.5. Let D be a hermitian symmetric space. If there
exists an everywhere nonvanishing holomorphic automorphic form
on D with respect to an arithmetic group ', then we can produce
noncongruence subgroups of ' by a similar argument to the above.
However the non-existence of such a form is known for a wide class
of D.
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I found the proof of this section when I wrote the paper

On absolute CM-periods,

Proc. Symposia Pure Math. 66, Part 1, 1999, 221-278.
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3. Construction of noncongruence subgroups
for cocompact case

I will give a simple proof for the existence of noncongruence sub-
groups of a cocompact arithmetic Fuchsian group.

F': a totally real algebraic number field of degree n.
Opr: the ring of integers of F.

B: a division quaternion algebra over F' such that
BoqgR = M(2,R) x H" 1.

Here H denotes the Hamilton quaternion algebra.
x. the main involution.
N : B — F: the reduced norm.

We have N(x) = zx™.
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R: a maximal order of B (we fix it).

For a prime ideal p of F', we define localizations by

By = B QF Iy, Ry = R®op OR,

where Fy is the completion of F' at p and OFp is the ring of integers
of Fp.

We say that B is ramified at p if By is a division algebra and unram-
ified otherwise. In the latter case, By is isomorphic to M (2, Fy) as

algebras over Fy.

Put
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By the projection to the first factor, we can regard ' as a subgroup
of SL(2,R); I' is a cocompact Fuchsian group.

M\$: (a special case of) the Shimura curve.

For an integral ideal n of F', we put

n={yel |vy—1€enR}.

We call ' the principal congruence subgroup of level n. A subgroup
of finite index of I is called a noncongruence subgroup if it does

not contain Iy for any n. We are going to show that I contains
noncongruence sugbroups.

Lemma 3.1. There exists an ideal n such that [ is torsion free.
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We take an ideal n so that [ is torsion free and put A = [y.
g: the genus of the compact Riemann surface A\$).

As in 81, A has 2g generators oy, ..., og, 71, ..., Tg Whose funda-
mental relation is (x). Let p be a prime ideal of F. We put

Ry ={z € Rp | N(z) = 1}.

For a nonnegative integer f, we put

Ups={u€ Rt |u—1¢p/Ry}.

S: the finite set of all prime ideals of F' at which B is ramified.
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Theorem 3.2. Let m be a positive integer and define a character
x of A by x(o;) = x(1;) = e2™/™, 1 < i< g. Let [y be the kernel of
x. We assume that m has a prime factor | > 5 which satisfies the
following three conditions.

(i) | does not divide the norm of n.
(ii) 1 is relatively prime to every prime ideal p € S.

(iii) | does not divide the order of U, /U, 1 for every prime ideal
pes.

Then [y is a noncongruence subgroup of .
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Proof. Suppose that [y, contains a principal congruence subgroup
of level m. Then [, contains I'hm. We may regard x as a character
of A/Twm. Therefore A/l has a character of order [.

Let
n=[]p, m:dep
p p

be the prime ideal decompositions. By the strong approximation
theorem, we have

Mo/Tam = H(Ulﬂaep/Up,ep-l-dp)'
p

Hence there exists p such that Up,ep/Up7ep_|_dp has a character ¢ of
order [. We distinguish two cases.
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(I) The case where p € S.
Let pZ =pN7Z.

If ep > 0, then Up,e,/Up e,+4, IS @ p-group. Since | # p by (i), this is
a contradiction.

Suppose ep = 0. Since Ry = M(2,0p,), we have

Up,0/Up ay, == SL(2, Op/p®Op).

If p>5, then by Lemma 2.2, the commutator subgroup of
SL(2,0r/p%Or) coincides with itself, which is a contradiction.

Suppose that p =2 or 3. Since !l > 5 and Up,l/Up,dp IS a p-group,
Y is trivial on U, 1. Hence ¢ can be identified with a character of
SL(2,0r/pOFr). We see that o is trivial on the subgroups

H = {(é ?’) u € OF/pOF}

and 'H. Since H and 'H generate SL(2,0r/pOr), this is a con-
tradiciton.
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(II) The case where p € S.

By (ii) and (iii), we see that [ does not divide the order of Up,ep/Up,ep+dp,
which is a contradiction.

This completes the proof.

Remark 3.3. If x is a character of A whose order is divisible by a
prime number [ satisfying the conditions of Theorem 3.2, then [y
IS @ noncongruence subgroup of .
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Problem. The Selberg conjecture states
If A is a congruence subgroup of I,
then ZA(s) does not have an exceptional zero.

Is the converse true?
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4. An example of modular forms for
a honcongruence subgroup

Our construction in §2 has the merit that we can easily obtain
examples of modular forms for a noncongruence subgroup. I will
present an explicit example.

In Theorem 2.1, we assume that m and n are prime numbers such
that n > 5, n # m and n does not divide m — 1. Then [y is a
noncongruence subgroup such that [[g(m) : ] = n.

Up to equivalence, Ng(m) has two cusps oo and 0. The equiva-
lence classes of the cusps of [y lying over oo are in one to one
correspondence with M\\["'g(m)/IMg(m)sc Where

Mo(m)eo = {y € Fo(m) | yoo = oo}
By (2.1), we see easily that Ng(m) = TMyIg(Mm ).
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Hence, up to equivalence, there is only one cusp of 'y lying over
oco. Similarly, we see that there is only one cusp of 'y lying over O,
up to equivalence.

The number of equivalence classes of elliptic points of Ng(m) of
order 2 (resp. 3) are vy (resp. v3) where

(4.1) n=1+(), =1+,

We can show easily that the number of equivalence classes of elliptic
points of I, of order 2 (resp. 3) are nvy (resp. nv3).

gy: the genus of the compact Riemann surface I, \$ U {cusps}

go: the genus of the compact Riemann surface N'g(m)\$H U {cusps}
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Calculating using a formula of Shimura’'s book, we find

1 1 1

(4-2) gy — N E(m + 1) — ZVQ — §V3 3 gx — Nngo-

Here v» and v3 are given by (4.1).

We have dim S>(IMy) = g, and for an even integer k > 2, we have

(43)  dimS(M) =k~ gy~ 1+mnl,] + sl
Let
f(z) = Alm)m a)tn

be the function used in §2. We see that f(z) is an automorphic
function with respect to [y.

Let ¢ = e2™%/™ (resp. ¢') be the uniformizing parameter at the cusp
oo (resp. 0) of I'y.
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We have

(4.4) ordq¢(f(z)) =m — 1, ord,(f(z)) = —(m —1).

a b

For a funtion FFon $, k€ Z and g = . d

) e GL(2,R), detg > 0,
we define a function (F|,g)(z) on § by

(Fl9)(z) = (det g)*/?F(g2)(cz + d) 7, 2 € 9.

For 1 <:<n-—1, we set

Sp(MFo(m), x") = {h c Sp(y) | hey = x(7)'h, ~€ I_o(’m)}-
Then we have a decomposition:

(4.5) Si(My) = Sk(Mo(m)) ® (BRZ1SK(Mo(m), xH)).
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Letw:< 0 1). We have
—m O
x(wyw ™) = x() 1, v € Mo(m).

Hence we see that w normalizes ', and that the operator |, w gives
an isomorphism of S.(Ig(m), x*) onto Si.(Fo(m), x ™).
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Now we take m =2, n=5. We have v, =1, v3 =0. By (4.2), we
have gy = 0. By (4.3), we have dim Sg(I"'y) = 4. Let

Eq(2) = 14240 Y o3(n)e™n*

n=1
be the Eisenstein series of weight 4 with respect to SL(2,Z). Here
o3(n) = Y &>
0<d|n
Put
(4.6) 9(2) = E4(2) — 2%E4(22).

Then g(z) is a modular form of weight 4 with respect to Ng(2) and
we see that

ordq(g(z)) = 0, ord,(g(z)) = n.
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In view of (4.4), f(2)'g(z) € S4(Mg(2),x") C S4(ly) for 1 < i < 4.
By (4.5), they are linearly independent. Therefore a basis of Ss(IMy)
IS given by

{F()9(2), (2)%9(2), f(2)%9(2), F(2)*9(2)}.

Remark 4.1. We have
F(2)'g(2)|pw = F(2)°>"g(2), 1 <i<4
Put h(z) = E4(2) — E4(2z). Then we have
ordq(h(z)) = n, ordq/(h(z)) = 0.

A basis of S4(I"y) is also given by

{f(2) 7 h(2), f(2)°Rh(2), f(2) >h(2), f(2)*Rh(2)}.
Using the fact dim S4(IMg(2),x) = 1, we can prove the relation

h(z) = —16f(2)°g(2).
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Remark 4.2. We have dim Sg(I"y) = 4 and a basis of this space
can be given similarly.

We have dimSg(lMy) = 9, dimSg(l'g(2)) = 1. For 1 < i < 4, a
basis of Sg(F(2),x") is given by {f(2)'g(2)?, f(2)'g(2)Ea(z)} and
f(2)°g(2)? spans Sg(M(2)).

Remark 4.3. It would be interesting to examine the example of
this section in more detail in view of the Atkin-Swinnerton-Dyer

congruences.
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Playing with modular forms
A. O. L. Atkin and H. P. F. Swinnerton-Dyer,
Symposia Pure Math. 19 (1971)
A. J. Scholl, Invent. Math. 79 (1985)
Consider f(z)g(z) € Sa(ly).

We have

F(2) = DE@DVEA() Y5 = gt/ ] (1 - ¢)29/5.

n=1
Here ¢ = e2™%, Put x = q1/5 and

©@,

f()9(2)/(=15) = »  a(n)z".

n=1
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Then a(1) =1, a(n) € Z[1/5]; a(n) can be nonzero only when n =1
mod 5.

We can observe A-S type congruence

a(pn) — A(p)a(n) + p3a(n/p) =0 mod p3@+1)
if ordp(n) = o, A(p) € Zp.

Here p is a prime such that p=1 mod 5.
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